
Deliverable 1.2:
Operational Gibbs

Sampler

Authors Mathew Galloway
Kristian Joten Andersen
Hans Kristian Eriksen
Trygve Leithe Svalheim
Ingunn Kathrine Wehus
Maksym Brilenkov

Date February 28th, 2019

Work Package WP1 – Gibbs Sampling Integration

Ref. Ares(2019)1370932 - 28/02/2019

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 2 / 14

Revision History

Version Authors Date Changes

1.0

Mathew Galloway
Kristian Joten Andersen
Hans Kristian Eriksen
Trygve Leithe Svalheim
Ingunn Kathrine Wehus
Maksym Brilenkov

February 25,
2019

Initial Version

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 3 / 14

Contents

1 Overview...4

2 Software..6

2.1 The bppyp Module..7

2.2 The calib Module..8

2.3 The madam Module..8

2.4 The commander module...8

2.5 The convolve module...9

3 Parameter Files...10

4 Preliminary Maps...13

5 Next Steps...14

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 4 / 14

1 Overview
The main goal of the BeyondPlanck project is to build an end-to-end Gibbs sampler
for the Planck LFI data, and use this to improve the overall calibration and fidelity of
the final LFI sky maps. This Gibbs sampler is illustrated in Figure 1, and may be
summarized by the following steps:

1. Data selection and calibration
2. Map making
3. Component separation
4. Power spectrum estimation
5. Parameter estimation

These five steps are then iterated until convergence, where each step uses
information produced by previous steps. This pipeline was first implemented in an
informal manner during the Planck project, but BeyondPlanck aims to integrate the
pipeline into a single code base that can run without human intervention on one
computer.

Figure 1: The high-level Gibbs sampling loop

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 5 / 14

To this end, this deliverable presents the BeyondPlanck Python Pipeline, a working
implementation of the theoretical Gibbs sampling loop shown in Figure 1. The
pipeline is written in Python, using an object-oriented style, and interfaces with the
various legacy codes using the Python operating system interfaces subprocess and
multiprocessing.pool. The full code base is available at:

https://gitlab.com/BeyondPlanck/repo/tree/master/pipe

https://gitlab.com/BeyondPlanck/repo/tree/master/pipe

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 6 / 14

2 Software
The pipeline uses the individual Gibbs sampling modules are available in the
following sub-directories in the Gitlab repository:

1. Data selection and calibration: calib/
2. Map making: madam/
3. Component separation: commander/
4. Power spectrum estimation: like/
5. Parameter estimation: like/

Parallelization is accomplished through the use of MPI as well as OpenMP, and
enables all codes to be run using the maximum number of cores available.
Additionally, some short segments of the pipeline use Pythons multiprocessing.pool
interface to run small jobs in parallel.

Figure 2: The data storage architecture of the python pipeline

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 7 / 14

The pipeline code can be used to run each module individually, which is helpful for
testing functionality as well as for smaller use cases. By default, the entire pipeline is
run, initializing from a specified directory or from the raw data. The pipeline is
designed to check at each step if the outputs it would create have already been
generated from a previous run, allowing it to start from where it left off.

The data storage architecture is shown in Figure 2. Each iteration generates a new
output directory so that all previous runs are stored by default. The output directory
names are chosen so as not to conflict with existing ones. The only exception to this
is that the calibrated Time Ordered Data (TODs) are overwritten every iteration, as
storing them each time would be prohibitively large. The pipeline uses a hash file
stored on disk to link each iteration to the TODs that it generated. Once they are
overwritten, that hash file is deleted and replaced with the one corresponding to the
new iteration.

All constant pipeline input data (such as the RIMO files, raw timestreams, etc.) that
do not change with iteration are stored on disk at a shared location. Each pipeline
user must simply point the pipeline at this directory to access the identical files. This
allows consistency in input versions between users. On the Owl cluster, that
directory can be found at /mn/stornext/d14/bp/data.

2.1 The bppyp Module
The main pipeline loop is located in the file bppyp.py. This file handles all the
parameter parsing that is common to the pipeline, making use of Python’s argparse
module. It uses sensible defaults so that the user only has to specify non-standard
parameters they would like to use, reducing the burden on new users to figure out
how to run it. This module also compiles all the sub-codes to ensure that the most
recent code version is used. Finally, it starts the main loop, iterating through each of
the steps of the pipeline until convergence.

To run the pipeline, simply navigate to the pipe subdirectory and type ‘python
bppyp.py’. This will execute the main loop with the default options. To adjust
parameters, simply specify them at the command line. For example, to change the
number of cores to use to 100, run ‘python bppyp.py –num-procs 100’. For a
complete list of all options and their functions, executing ‘python bppyp.py -h’ will
display a help dialog and exit.

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 8 / 14

2.2 The calib Module
The calib.py module serves as the interface to the DaCapo calibration code provided
by WPs 2 and 3. It first checks to see if the output files already exists. If not, it
constructs a calibration parameter file for each of the LFI horns, and calls the
calibration code once for each horn using the maximum number of MPI threads.
Once it has generated all the calibrated timestreams, the code creates a hash file,
linking the current TODs to the directory from which they were produced.
The calib module can also run the DataSelection code, although this is not
performed by default in the Gibbs loop. This allows the pipeline to serve as a
common interface to all the sub-modules so that the entire collaboration can use all
the codes without knowing much about the low level interfaces.

2.3 The madam Module
The mapmaker is controlled by the madam.py module. When called, it first checks if
the files it will generate are already on disk. Then it builds a parameter file and a
simulation file for each of the LFI frequencies. The parameter file includes the
general configuration parameters and the simulation file contains the paths to the
data files and pointing information. Then, the madam module executes the madam
mapmaking code provided by WP4, specifying the maximum number of MPI threads.

Once the destriped maps have been generated, the code performs a few short
operations to convert them to the correct input format for commander, the next
module in the Gibbs chain. Firstly, madam’s output per-pixel covariance matrix,
which contains I,Q and U noise terms and their cross-correlation, is converted into a
set of I, Q and U RMS maps, which is the format that Commander requires the noise
input. Then, the monopole values in the madam maps, which are set arbitrarily in the
mapmaker, are set to the same values as in the npipe maps. This ensures that the
maps are compatible with one another, and that the monopole tuning that has been
done for npipe is applicable to these maps as well. This is accomplished using the
map_editor software developed for QUIET, and uses a galactic mask to avoid
biases.

2.4 The commander module
The commander module is the next step in the Gibbs chain. It has the capability to
run both the Commander1 code and the Commander2 code, although Commander2
is what is currently used in the pipeline. Unlike the other modules, it does not

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 9 / 14

generate a commander parameter file, as these are incredibly long and writing all
that code was deemed low priority. Instead, it reads in an existing parameter file from
disk and changes only those parameters which are updated each loop, which are:

OUTPUT_DIRECTORY: The output directory path
BAND_MAPFILE: The new madam maps for the LFI channels
BAND_NOISE_RMS: The new madam noise files for the LFI channels
BAND_MASKFILE: The new madam masks for the LFI channels

Once the new parameter file has been written, the code calls commander2 with the
maximum number of MPI threads and setting OMP_NUM_THREADS to 1. This
speed trade off could be investigated to see if there are other configurations that
result in faster runtimes.

Commander runs a total of four times, once to solve for the temperature
components, once to solve for the polarized components, and twice more to project
those components into the bandpasses of all the LFI detectors. Once this has been
accomplished, the total signal model for each of the LFI detectors is summed in map
space before being converted to harmonic space using the python anafast module.
These harmonic representations of the signal are then passed to the convolution
module.

2.5 The convolve module

The final module is the sampling loop is the convolve code, which wraps the
totalconvolve_cxx code written for Planck as part of the LevelS package. It first
checks if the files it would generate are already existent, as is standard. Then, it
loops over each horn, then over each side and main detector, and then over
sidelobes and main beams. For each of these 11*2*2 = 44 cases, it generates a
totalconvolver_cxx file, and calls totalconvolver using a single thread. This is
accomplished in parallel using multiprocessing.pool, so all convolution operations
are run simultaneously as long as at least 44 cores are allocated. The totalconvolve
code takes the signal model and the beam profiles and generates a ringset, which is
then fed back to the calibration code (2.2) to close the loop.

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 10 / 14

3 Parameter Files
This section will present example parameter files that the code has generated. As
the parameters of the full pipeline are still being tuned, these are not the final
parameter files, but instead represent the current state of the pipeline. Additionally,
the commander parameter files are incredibly long (over 1000 lines each), so they
are not included here but can be accessed at:

https://gitlab.com/BeyondPlanck/repo/blob/master/pipe/

There are 4 of them and they are named:

comm2_bp_temp.txt – calculates the temperature components
comm2_bp_pol.txt – calculates the polarized components
comm2_bp_proj_temp.txt – projects the temperature components to the LFI bands
comm2_bp_proj_pol.txt – projects the polarized components to the LFI bands

https://gitlab.com/BeyondPlanck/repo/blob/master/pipe/

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 11 / 14

Figure 3: An example calibration parameter file for horn 18

Figure 4: An example madam parameter file for the 30GHz channels

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 12 / 14

Figure 5: The top of the madam simulation file that corresponds to figure 4. The
remainder is lists of files and has been omitted here.

Figure 6: The totalconvolve parameter files for the sidelobes (top) and main beam
(bottom) of detector 18M

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 13 / 14

4 Preliminary Maps

This section presents some preliminary pipeline outputs from the first iteration in the
commander stage. These are not analysis quality products as the pipeline still has
improvements that need to be made, detailed in the next section. Instead, these are
included to demonstrate that the pipeline is operational and is producing sensible
output at this stage.

Figure 7: The CMB as seen from one of the 30GHz detectors

Figure 8: The dust map at 44 GHz

Deliverable 1.2: Operational Gibbs Sampler
Version 1.0

 14 / 14

5 Next Steps
Now that the pipeline is operational, there are several things that must be done
before the loop can be left to run. Firstly, the runtime of a single iteration the whole
pipeline is currently about 2 days, broken up as follows:

Calibration: 1.5 days
Mapmaking: 5 hours
Commander: 8 hours
Misc: 1 hour

For efficiency of the loop, it would be ideal to be able to execute a full loop in around
8 hours, so that multiple iterations could be done per day. For this reason, the
parameters going into each code are all currently being tuned to improve runtime,
while still ensuring correctness of the outputs.

Secondly, there are still some improvements to be made on the commander runs.
They should be updated to the release versions of the npipe maps when those
become available. Additionally, the dipole needs to be re-estimated each iteration
which in not currently being done. Finally, the T and P runs are currently
independent, but could be linked through priors on dust and synchrotron amplitudes
and betas.

Finally, thorough testing must be done of the entire, finalized pipeline to ensure that
the results are sensible and are converging with each iteration. As the iterations get
closer and closer to the optimal values, some parameters may have to be changed
from their historical values as lower amplitude systematics are detected and fixed.

	1 Overview
	2 Software
	2.1 The bppyp Module
	2.2 The calib Module
	2.3 The madam Module
	2.4 The commander module
	2.5 The convolve module
	3 Parameter Files
	4 Preliminary Maps
	5 Next Steps

