

Reproducibility in Science
Report

Deliverable 9.3

Authors Stratos Gerakakis
Maria Ieronymaki
Michele Iacobellis

Date September 26th, 2018

Work Package WP09 - Reproducibility in Science

DocId pkh112-06-1.0

Ref. Ares(2018)5072141 - 03/10/2018

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 2 / 25

Revision History

Version Authors Date Changes

1.0
Stratos Gerakakis
Maria Ieronymaki
Michele Iacobellis

Sep 26th, 2018 Initial Version

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 3 / 25

Contents

1. Introduction 4

2. Status of Reproducibility in Science 5
2.1. Reproducibility Theory 5
2.2. Workflow Tools 5

2.2.1. Taverna 5
2.2.2. Kepler-Project 6

2.3. Online services 6
2.3.1. Open Science Framework 6
2.3.2. Codeocean 6
2.3.3. Zenodo 7
2.3.4. Gitlab/Github/Bitbucket 7

2.4. Analysis and Usability 8

3. Reproducibility Survey 10
3.1. Introduction 10
3.2. Results 10
3.3. Findings 10

3.3.1. VCS Usage 10
3.3.2. Coding experience 11
3.3.3. Operating systems 12
3.3.4. Recreated Science 12

4. Proposed Course of Action 14
4.1. Introduction 14
4.2. Proposed Solution 14

4.2.1. Basic Functionality 14
4.2.2. Reproducibility File 15

4.3. Example Use Case Scenario 16
4.3.1. Define the Required Input files 17
4.3.2. Define the Computational Tasks 17
4.3.3. Define the Publishing of Results 18

4.4. Synopsis 19

5. GPU for PLANCK 21
5.1. General Purpose GPU 21
5.2. The Pipeline, OWL and OpenMPI 22
5.3. Storage Requirements vs GPU Workflow 23
5.4. GPU Usage Scenarios for PLANCK 24

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 4 / 25

1. Introduction
This document presents the work that was done researching the current state of art
regarding Reproducibility in Science, the results of a survey regarding Reproducibility in
Science that we circulated in small group of scientists and our proposed course of action
regarding the work we would like to proceed developing in WorkPackage 9.

We also present our findings regarding the assistance of scientific work with the use of GPU
processing facilities.

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 5 / 25

2. Status of Reproducibility in Science
We started our research on Reproducibility in Science by examining the latest developments
on the topic. We have identified several tools and services that are available online and aim
to provide solutions towards reproducible science. The different tools we have identified
cover a variety of provided functionalities that constitute the current state of the art in
reproducibility in science.

We have evaluated these tools and workflows and in this section we will briefly present
them, together with our impressions and conclusions after using them.

2.1. Reproducibility Theory
The subject of Reproducibility and the ability of scientists to exactly reproduce and confirm a
given result, is central to Science in general. At the theoretical level, researchobject
(http://www.researchobject.org) have produced plenty of useful theoretical information on
their website, regarding the subject of reproducibility, but except for a list of suggested
initiatives and resources, the wandering scientist in search for a concrete reproducibility
workflow will still be left without explicit direction.

2.2. Workflow Tools
There are plenty of tools specifically made to help scientists define and execute a specific
set of tasks, implemented by executing local (or sometimes remote) code, scripts, and other
sub-workflows. Each component only being responsible for a small fragment of
functionality, therefore many components working together in a pipeline order to obtain the
ultimate goal of the workflow, performing a useful task.

We evaluated, two of the most popular workflow engines.

2.2.1. Taverna
Taverna (https://taverna.incubator.apache.org) is an open source and domain-independent
Workflow Management System – a suite of tools used to design and execute scientific
workflows and aid in silico experimentation.

Taverna also includes the Taverna Workbench that is able to run and monitor a workflow.
Nevertheless, the taverna workflows can also be run by a command line execution tool,
remote execution server, or a provided online workflow designer.

Taverna is an Apache incubator project since 2014, while it has been an open source project
since 2003.

http://www.researchobject.org/
https://taverna.incubator.apache.org/

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 6 / 25

2.2.2. Kepler-Project
The Kepler Project (https://kepler-project.org/) is an open-source, GUI-based, scientific
workflow system that aims to to help scientists, analysts, and computer programmers to
create, execute, and share models and analyses across a broad range of scientific and
engineering disciplines enabling the the project integration between projects with different
characteristics. Kepler can operate on data stored locally or remotely and supports a variety
of formats.

It is used for integrating disparate software components, such as merging "R" scripts with
compiled "C" code, or facilitating remote, distributed execution of models. Using Kepler's
graphical user interface, users select and then connect pertinent analytical components and
data sources to create a "scientific workflow" an executable representation of the steps
required to generate results. The Kepler software helps users share and reuse data,
workflows, and components developed by the scientific community to address common
needs.

2.3. Online services
This is a list of online services that deal with the concept of Reproducibility in Science that
we evaluated.

2.3.1. Open Science Framework
The Open Science Framework (https://osf.io/) OSF, is a free, open source service of the
Center for Open Science (https://cos.io/). It’s a non-profit organization aiming to align
scientific practices with scientific values by improving openness, integrity and reproducibility
of research.

They offer a very impressive online presence, allowing users to create multiple online
projects. They offer space to upload files and manage their projects. Each project can be
individually configured to multiple components offering a high level of project customization.
Each uploaded item, gets its own short unique identifier that makes it easy addressable.

It provides an Application Programming Interface (API) that allows simple project
maintenance tasks (uploading files, creating folders) to be automated from the command
line, or to allow access to information stored in OSF by other applications.

2.3.2. Codeocean
Codeocean (https://codeocean.com/) is a for profit organization that states as its mission
the intention to make the world's scientific code more reusable, executable and reproducible.
It is a cloud-based computational reproducibility platform that provides researchers and
developers an easy way to share, discover and run code published in academic journals and

https://kepler-project.org/
https://osf.io/
https://cos.io/
https://codeocean.com/

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 7 / 25

conferences.

Their platform provides open access to the published software code and data to view and
download for everyone for free. The users can execute all published code without installing
anything on their personal computer. Everything runs in the cloud on CPUs or GPUs
according to the user needs. They make it easy to change parameters, modify the code,
upload data, run it again, and see how the results dynamically change.

It looks like an online Integrated Development Environment (IDE) and their website is very
nicely done. They offer a free tier, and extended execution times, for accounts that have
been opened with educationally based email accounts, but unfortunately for extensive use of
their platform, eventually a user will have to start paying a subscription fee that depends on
the amount of execution time they spend on Codeocean’s servers.

2.3.3. Zenodo
Zenodo (https://zenodo.org/) according to their website is built and developed by
researchers, to ensure that everyone can join in Open Science. Funded by the OpenAIRE
project (https://www.openaire.eu/), which in turn is another Horizon 2020 supported project
funded by the EU, it offers services allowing scientific work to be findable, accessible,
interoperable and reusable.

Their services mainly allow online storage of data, by offering users a very reasonable 50GB
per uploaded file (with the ability to extend that size limitation, on a case by case basis), and
allowing a tremendous amount of metadata to be associated with each one. It caters to the
general scientific workflow, allowing the imposing of embargoes, where the repository
restricts access to scientific results until the end of the embargo, at which point the content
automatically becomes publicly available. It also makes it easy to add EC funding
information and reports via OpenAIRE.

It offers persistent identifiers (DOIs) for all uploads to their service, free from cost. They
aldo include metrics and statistics on the use of the uploaded content. Their API access
allows access to content stored on site, even though it seems to require a username and
password, even for publicly available info.
Overall, we were very impressed by the functionality and services offered by Zenodo, and we
plan to fully support their services in our proposed plan for our Reproducibility in Science
efforts.

2.3.4. Gitlab/Github/Bitbucket
All three services in this section, Github (https://github.com), Gitlab (https://gitlab.com) and
Bitbucket (https://bitbucket.org) offer similar tools that mainly cater for the hosting and
online development of source code.

https://zenodo.org/
https://www.openaire.eu/
https://github.com/
https://gitlab.com/
https://bitbucket.org/

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 8 / 25

Gitlab and Bitbucket, in addition to publicly available repositories, are also offering private
repositories. This option might make them a better candidate for users that want to start
their project as a private repository, but later on, closer to publication time, switch to a fully
public repository.

Being implemented by well established organizations, they offer a full suite of online
development tools, with bug/issues management, wiki pages, and file hosting capabilities.
All of them offer API access to the files hosted there and between the three of them, they
have captured the majority of online code development. We are very familiar with the list of
tools offered by these companies, and we plan to integrate with their services in our
Reproducibility in Science efforts.

2.4. Analysis and Usability
From the list of the existing Reproducibility services that we chose to evaluate, we came to
the following conclusions.

Most of the services offer a very streamlined and user friendly interface that specializes in
the features that each service has decided are the most important to their users. In our
evaluation, we did not find any service that provides a complete, unobtrusive, workflow that
will explain and fit the needs for a complete reproducible workflow. The reproducibility
surveys (further analyzed in a later section), also validates this as the users we questioned
were not able to find something that it would be convenient for them to use.

Most of the services were free to use, although some of them were business endeavors that
offered a free trial or a free tier. Unfortunately for a more serious and heavy usage the users
would require to pay fees in order to continue using the service, which is something that we
do not believe our audience is willing to do, simply to have their work in a reproducible form.

Furthermore, the online services we evaluated did not offer a clear way to fully automate the
complete process of reproducing the authors work. Some offered online storage space only,
while others offered computational resources so the produced code could execute online.
But none offered an easy way to reproduce the full cycle.

Some services, offered a very important functionality, of offering free DOI (Digital Object
Identifiers) numbers for the final published datasets, but they were only acting as a file
storage and not as a computational environment.

Overall from what we evaluated, we saw plenty of functionality offered in the existing
services, with interesting features spread between the various services, but we were not
happy enough to use or suggest a single one of the online providers as being able to offer a
complete and user friendly reproducible environment. On the other hand, it would be really
beneficial if we could utilize some of the functionalities offered from the existing services

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 9 / 25

(especially the free to use ones) and combine the best of each one, in a new workflow tool
(as we propose later on section 4. Proposed Course of Action) This way we provide added
value to the existing services, while at the same time avoid duplicating the work that has
already been produced.

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 10 / 25

3. Reproducibility Survey

3.1. Introduction
We have decided to conduct a survey in order to gather valuable information for the views of
scientists on reproducibility.

For this purpose, we have created on online questionnaire, with an introduction page, publicly
available at https://beyondplanck.page.link/reproducability_survey, that would help us
gather information about the development habits of scientists, along with their experience
with the subject of Reproducibility in Science. The intention was to scope out, how familiar
scientists are with Reproducibility is general, if they do follow any reproducibility workflows,
and how they generally structure their work, so we might be able to tailor a potential
Reproducibility workflow to their existing workflows.

The topics that were covered in our survey, included usage of Version Control Software,
backup strategies, coding experience, use of operating systems, familiarity with virtual
machines or containers and Reproducibility workflow specifics.

An invitation to the online survey was distributed to our audience by email. Our audience
included the consortium members, scientists we have previously collaborated with in the
past, connections in other scientific fields including research fellows, scientific personnel,
professors, etc.

3.2. Results
So far, 39 responses have been collected. The answers included scientists from multiple
scientific fields that were covering a wide demographic spectrum and variety on ages and
years of research. The total number of survey responses is not exceptionally large, but we
intent to host a version of the survey on the BeyondPLANCK website, when this goes online
shortly, and solicit more responses from our extended audience there. Once we have more
responses we plan to provide an update report on these results.

3.3. Findings
In this section we will analyse the findings of the survey that illustrate what are the views of
the scientific community on the topic of reproducibility.

3.3.1. VCS Usage
Version Control Software is an important aspect of the reproducibility workflow. For this

https://beyondplanck.page.link/reproducability_survey

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 11 / 25

reason, in the beginning of the questionnaires we included a series of questions aiming to
get insights on the VCS usage among the scientific community. We found out that almost
45% of our participants does not use VCS.

This is quite a disconcerting fact, since without having the ability to pull previously stored
data from a repository, it will be almost impossible to extract information from a centralized
location and attempt to make it reproducible. We look forward on checking these statistics
again, once we have collected more responses from our questionnaire.

From the users that do use a VCS, almost everyone uses Git [95,2%] but there is good
familiarity with SVN as well.

3.3.2. Coding experience
As far as coding experience is concerned, we found out that Python is very popular among
the scientific community, with Fortran and IDL following.

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 12 / 25

3.3.3. Operating systems
Most of the users are Linux & MacOS users, and the majority of them [81.6%] have root
access on their machines, allowing them to easily install any tools they might require,
without having to go through the hassle or the paperwork required to have it installed by an
IT department.

A large number of them [68.4%] where familiar with the use of virtualization machines (VM)
software, mainly VirtualBox and VMWare. A smaller percentage of them [36.8%] are familiar
with containers technology, mainly Docker and Singularity.

3.3.4. Recreated Science
Studying the answers we received regarding Reproducibility in Science and the need to
recreate the scientific work that is described in other papers, we found out that 81% of the
scientists answering our questionnaire have indeed recreated scientific work done from
others in the past. The main reasons for doing so, were to:

● extend the work performed,
● because the methods used looked interesting, and
● because some of the published results seemed suspicious.

Continuing on the analysis of our findings, [72.7%] of the scientists answered that they will
do whatever it takes to recreate previous work, if it is important for their task.

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 13 / 25

[77.8%] would like to have access to an automated reproducibility workflow but only [47.2%]
has actively seeked for one and only [45.5%] have actually found some way to make their
work reproducible.

Only 1 person [3,7%] is consistently using a reproducibility workflow tool.

Concluding, more the three quarters of our participants [78.4%], stated that they would desire
to have a reproducibility workflow in place.

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 14 / 25

4. Proposed Course of Action

4.1. Introduction
Based in the overview of the existing Reproducibility services and tools, as we evaluated
them, we concluded that the existing services are not able on their own to offer a convenient
and unobtrusive way for scientists to make their work easily reproducible.

Our proposal is to introduce a tool that allows the users to selectively choose an existing
service of their liking and have the tool perform the manual and repetitive tasks of bringing
everything together.

4.2. Proposed Solution
We propose to implement a command line tool, that will be available on all major Operating
Systems (Linux, MacOs and Windows). It will be accompanied by a companion website that
will act as an online guide, a frequent asked questions section, a way for users to provide
feedback, and as a hub where all development on it will take place.

4.2.1. Basic Functionality
The command line tool will offer three fully automated major functionalities:

1. Allow the automated collection of required input data files from various online
sources

2. Allow the execution of any required computational tasks that will operate in the input
data files

3. Allow the dissemination of the output results.

The tool should be used by the original author during the process of their scientific work, but
it could also be used by any other users that would like to recreate the same scientific work.

The tool will work from a text based configuration file that will define all requirements
necessary to make the task of reproducing the majority of scientific workflows as
automated as possible. The original author will define three major pieces of information:

1. List of input files to be collected
2. Define an executable environment where the produced code would execute in
3. List of output files to be published

It will be developed in an extensible way, so that at release time, only a few selected existing
third party services would be supported, but, upon demand, more can be later on added.
This will also future proof the core functionalities offered by the tool, by being able to be

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 15 / 25

extended to support other services that might not be available today, but can be really
popular or useful in the future

It should offer clear, concise and user friendly error messages for the cases where the
automation process cannot continue unassisted. In the majority of the cases, a solution or
additional help should be already available in the companion website. For the missing
cases, the companion website should be frequently edited to include updated information
for new edge cases.

4.2.2. Reproducibility File
The driving force behind the functionality offered by the Reproducibility tool, would be the
reproducible.yml file. This will be a plain text file that will encapsulate all required
information for making a scientific paper reproducible.

The final format of the file structure has not been finalized yet, and this is something will be
done in further detail during the implementation phase. A sample of the current proposed
implementation (and something that will be definitely augmented in the future) is presented
below, along with some annotations on the most important parts:

reproducible.yml:

version: '0.1' ➊

input: ➋
 service: zenodo ➌
 - id: ris-12345 ➍
 - id: ris-99999:/lfi/some_file.fits

code: ➎
 engine: docker ➏
 scm: git ➐
 repo: https://gitlab.com/BeyondPlanck/repo.git
 branch: master
 directory: WP9/reproducibility/usecase

output: ➑
 service: zenodo ➒
 user: my_zenodo_username

 files: ➓

 - output/planets_volume.csv

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 16 / 25

 - output/

Code 1: Sample reproducible.yml file defining all required info for reproducing a paper

Some notes on the contents of the configuration file:

➊: The file format version for the reproducible file. This will allow us to know the
available options supported by the configuration file

➋: Input files, the first phase in the reproducibility phase, is a section that defines
all the required files that must be locally present, before the execution process
can begin executing.

➌: A subsection that defines where the required input files are to be found. This
is part of the extensibility of the Reproducible Tool, allowing for more services
to be added

➍: IDs are used to identify input files that need to be download. The format can
be as complex as required to download a single file, or as in the second ID in
the example, point to a specific file inside an archive full of various files.

➎: The code section, the second phase of the the reproducibility flow, describes
specific information regarding the process of executing the provided code

➏: Specifies the execution environment to be used. Another extensible part of
the tool. Initially Docker supported, but other candidates can also include
Singularity, etc.

➐: Source code management specifies what kind of repository (git, svn, etc) the
required code is stored at. Further details, specific to each scm, follows,
regarding branches, directories etc

➑: The output section, the third phase in the reproducibility flow, tracks info
regarding where the produced files should be uploaded, as their final resting
place.

➒: Once again, a list of uploading services will be available, with the potential to
add more, as more services become available/popular

➓: Detail section where specifics about which of the output files are supposed to
be the official ones that have to be uploaded/archived.

4.3. Example Use Case Scenario
Let us assume that a user is writing a hypothetical paper where they use the Planck
component maps (as they are published in the official PLA archives) to investigate the
statistical properties of the residual signal around the galactic center. For this, they start with
the Planck full-frequency sky maps at various frequencies. Then, they extrapolate the
various diffuse component signals based on the official Planck component maps, using the
official Planck bandpasses, and subtracted the resulting signal from the corresponding sky

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 17 / 25

maps. Finally, they present the statistical properties of the residual signal in the form of plots
and data tables.

For this paper the author wants to make the whole process completely reproducible and they
decide to use the Reproducibility tool we intend to develop. This section describes the
process that they will have to follow to achieve this.

4.3.1. Define the Required Input files
Firstly, the author will have to clearly define the required input files needed for their paper. In
this example let us assume that the files are the Planck component maps A and B from the
following locations (the links are hypothetical).

The input section in the reproducible.yml will then be filled, thus:

reproducible.yml (snippet):

input:
 service: http
 - id: http://link.to.planck.archives/components/map-A.fits
 - id: http://link.to.planck.archives/components/map-B.fits

Code 2: Snippet of the input section of the usecase reproducible.yml file

4.3.2. Define the Computational Tasks
As far as the computational phase of the reproducible workflow, the author will have to
define an execution workflow.

In our use case scenario, the author chooses to host all required code on Gitlab, in a publicly
available repository. The repository will have to be publicly accessible, only once the author
decides to make the work publicly accessible. It might remain a private repo, while the work
is being performed, and accessible only to users with the right credentials, since it might be
awkward sometimes to release work in progress or different versions of experimental work.
But for the final work, to be really reproducible by everyone, by publication time all work will
have to be publicly accessible by everyone.

Assuming that the work will be done with Python, the author defines a Docker executable
environment, in a Dockerfile text file, that uses an official Docker Python base image,
and they also install a list of python packages that are required for their computational
needs.

Dockerfile:

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 18 / 25

FROM python:3

Install more dependencies here (as needed)
RUN pip install numpy pandas healpix astropy

Code 3: Sample Dockerfile defining an executable environment

Now they define a runtime environment that defines where the input files, their code base,
and the output files would be (defined as /data/input, /data/output and /code in our
example) and what is the execution startup script

docker-compose.yml:

version: '3.6'
services:

 app:
 build: .
 image: author_name/my-project-123
 volumes:
 - ./input:/data/input
 - ./output:/data/output
 - ./code:/code
 working_dir: /code
 command: ["python", "start.py"]

Code 4: Sample docker-compose.yml defining a runtime environment

With these configuration files, a simple command line command of:

$ docker-compose up

will be enough for compiling their execution environment and bring up the Docker container,
where their Python scripts will automatically start executing. Once their code successfully
completes, their output files will be conveniently placed in the /output folder (by convention,
the executing code has the responsibility of storing all output code in the /output folder).
At this point they are ready to proceed to the final phase of the reproducibility workflow,
publishing their results.

4.3.3. Define the Publishing of Results

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 19 / 25

Once all the output files have been produced they can then be uploaded to a hosting service
for their final release.

They could be reuploaded in the same hosting service where the execution code was
residing, but a better solution would be to utilize another service that provides unique DOI
IDs, like Zenodo.

This can be easily provided by a section in the reproducibility.yml file as in:

reproducible.yml (snippet):

output:
 service: zenodo
 user: author_name

 files:
 - output/diagram1.png
 - output/diagram2.png
 - output/tableA.csv

Code 5: Snippet of the output section of the use case reproducible.yml file

The files then will be picked up by the reproducibility tool, uploaded to the service and

assigned a unique DOI ID, making them publicly available for any interested parties.

4.4. Synopsis
We understand that it will be impossible to satisfy the tastes and/or needs of all scientists,
but we strongly believe that by introducing a tool that combines multiple services in a self
contained and automated way, will make it more adaptable from our intended audience.
Being a universal command line tool that will be able to utilize and work with multiple
existing services, will allow our audience to use the existing online services that makes most
sense to them, without inconveniencing and forcing on them yet another one.

Also, we understand that the provided reproducibility workflow might not be applicable in
certain edge case scenarios, due to their complexity. Special cases with either exceptional
executable phases (requiring really big amounts of execution resources, more applicable to
a computing grid) or in their usage of input or output files (for example, big datasets that are
really prohibitive in downloading and storing locally) might not be candidates for this
specific reproducibility workflow. It is not impossible to devise such an extension to the
proposed Reproducibility workflow, capable of handling these complicated edge cases, but
this would be something that could be expanded on, in a further iteration of the tool.

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 20 / 25

Due to the inherent complexity of supporting any and all kinds of possible scientific
workflows, we purposefully chose to cater to a specific subset of scientific workflows. We
chose to provide a tool that provides an automated way of reproducing the scientific work
produced in a paper, while the scope of its capabilities have been decided so that the
development of the tool would fit in the allocated time of this project.

The criteria by which a project would benefit from this proposed workflow are:

● Have an exact definition of initial input files. The author should be able to define
what input files are required and where these can be found.

● Have a process that programmatically manipulates these input files (along with any
other files that are generated for the purposes of this paper)

● Does not have excessive computational requirements for the execution of the above
programmatic code, preferably able to be executed in the modern laptop or even a
high end desktop machine

● Similarly it should have modest file system requirements, able to be accommodated,
once again, from a laptop or high end desktop machine.

● Produces some results (files, diagrams, tables etc) that is the output of the
computational phase.

Although these might appear as very limiting criteria, we believe that they will be able to
cover a large number of scientific publications. In addition, to the best of our ability we
believe that a fully automated reproducibility workflow such as this, has never been
attempted before.

The tool will also be accompanied with a companion site where a detailed description of the
workflow and usage hints will also be published. The companion site will also include a
section for collecting user feedback, offering an additional layer of assistance in addition to
the existing help topics.

In conclusion, our goal is to develop a reproducibility workflow and accompanying helper
tool, that will be able to provide:

● A frictionless way for original authors to document and set up an automated
reproducible workflow,

● An even more easier way, for any other interested parties to locally recreate the same
project and expect to get the same results as the original author.

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 21 / 25

5. GPU for PLANCK
In this section, we describe our hypothesis and investigation results about whether and
where to introduce a GP-GPU acceleration stage in the processing pipeline of Planck, based
on our recently acquired knowledge of the project and the related objectives, computations
and issues. Moreover, we firstly provide a quick overview of GPU technologies and
capabilities and then we focus on the pipeline and its components.

5.1. General Purpose GPU
GPU devices are on the market since the nineties, but NVIDIA revealed the first
programmable device in 2001. Since then, GPUs (by NVIDIA, AMD, Intel and many other
manufacturers) acquired many new capabilities and processing speed. Designers and
developers discovered their potential for not only producing graphics on a display, but also
for performing general computations by leveraging the internal parallelism of these chips. In
fact, a GPU contains hundreds or thousands of cores with SIMD (Single Instruction Multiple
Data) capabilities for each core.

Modern HPC GPUs such as the NVIDIA Tesla V100 are ready for datacenter integration and
already used by scientists and engineers. For example, 1GPU node replaces up to 54 CPU
nodes, as reported on https://www.nvidia.com/it-it/data-center/tesla-v100/.

Figure 1 - Source: NVIDIA (www.nvidia.com)

But, how can we program GPUs ? Many APIs exist today for developing on heterogeneous
devices. For example, Khronos Group standardized an API for generic computing, named
OpenCL, which is pervasive and supported by all GPU vendors in the market, including Intel
and AMD (for details, see https://www.khronos.org/opencl/). NVIDIA provides its own

https://www.nvidia.com/it-it/data-center/tesla-v100/

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 22 / 25

proprietary and very powerful CUDA library that runs only on NVIDIA GPUs, enriched by many
3rd-party libraries (for details, https://developer.nvidia.com/cuda-zone). Microsoft provides
its DIRECTCOMPUTE (together with its well known DirectX) infrastructure for Windows OS
only.

Each API has its own programming and usage paradigm, but the concept behind GPU
programming is always the same: the CPU hosts a program responsible of communicating
with the GPU to exchange inputs, outputs and kernels. Kernels are programs that run on the
GPU. Their source code consists mainly in a C dialect and they always execute in parallel as
if they were independent processes on a multicore CPU.

One of the main advantage in using a GPU for offloading the CPU is that both CPU and GPU
execute in parallel, of course being the GPU typically the fastest device of the two. Moreover,
most of the math functions in a GPU exist as hardware implementations and operate on
vector data, in a SIMD fashion.

5.2. The Pipeline, OWL and OpenMPI
Figure 2 shows the Planck Pipeline as reported in the document “Planck 2018 results. II. Low
Frequency Instrument data processing”, September 12, 2018. It is quite complex and
component rich.

Figure 2 - The PLANCK Pipeline.

As emerged by examining the actual code base in GitLab and by analyzing related public

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 23 / 25

scientific articles, most (if not all) of the components in the pipeline requires an HPC
infrastructure to run on. We noticed that the preferred solution has been to write code
compliant with the MPI (Message Passing Interface) specification (in particular, for running
on the OWL computing cluster, designers and developers used the OpenMPI programming
library and the Intel MKL math acceleration library for BLAS functionalities).

The ompi_info command, executed on e.g. node owl26 of the cluster, shows many useful
information about the actual OpenMPI implementation running on that node. We noticed
that the implementation supports the following MPI extensions: affinity and cuda. As briefly
explained above, CUDA is a technology for implementing algorithms that run on GPUs.
Anyway, no GPGPU device is installed on that node, but the actual MPI API seems to support
for it.

By inspecting the remaining OWL’s nodes, we finally determined that the cluster does not
host any GPU device, but interesting boards were available, such as the Mellanox
ConnectX-3 Pro and Connect-IB. In particular, the latter board is capable of further
accelerating inter-host GPU communications, to boost MPI performances, when involving
GPU computing.

In this context, it is worth noting that OpenMPI supports integration with GPU through the
NVIDIA CUDA infrastructure, since v1.7.0. OpenMPI 1.8.x provides improved support and
performances for this type of technology. Best performances and stability are available in
version 1.10.1, as reported in https://www.open-mpi.org/faq/?category=runcuda.

5.3. Storage Requirements vs GPU Workflow
We noticed that the project has quite an impressive amount of data to manipulate. This may
be a real issue when dealing with CPU/GPU data transfer; in fact, the controlling applications
that run on CPUs shall deal with continuous transfer of data to/from GPU.

As reported in “3D and 4D map data objects” by Elina Keihänen, August 21, 2018, “The typical
size of a 4D map file [is] 8 GB (Nside=1024, Npsi=4096), for a file containing the full 4-year
mission data. The full LFI data set takes 90 GB of disk space, and can easily be stored on a
modern laptop.”

Moreover, in the same document: “[...]The full 4-year pointing takes 217 GB (70 GHz), 127 GB
(44 GHz), or 92 GB (30 GHz) per horn. The full detector pointing takes 1870 GB of disk space.
The signal TOI is stored as 4-byte floats, and adds 620 GB to the count[...].”

Since GPUs have a limited amount of main memory available, algorithms need to take into
account the minimum amount of data they need for running correctly. In general, a
stream-oriented approach is required when porting algorithms from general purpose CPUs
to discrete GPUs. One shall structure the data so that a process as the one shown in Figure 3
is possible.

https://www.open-mpi.org/faq/?category=runcuda

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 24 / 25

Figure 3 - Typical CPU/GPU transfer workflow.

The black arrows highlight data flow direction. One of the CPU cores (CPU core) hosts a
program that interact with the GPU (it is worth noting that a system can host more than one
GPU, on different slots, to further boost computational power). The program works in a loop
and executes mainly three steps:

1. It first sends any input data to the GPU main memory;

2. Then, it schedules a specific kernel so that it can run on the GPU;

3. Lastly, it asks for transferring output data from the GPU memory to the host memory.

Any application that deals with heterogeneous computing follows this program structure.
This means that input and output data shall be in some way segmented to be compatible
with the overall memory size in the GPU. Depending upon the minimum required memory
footprint of the algorithm implementation, it is possible to choose the right device for
processing: e.g. on board memories goes from 2GiB up to 32GiB of memory in the most
advanced HPC ready GPUs.

5.4. GPU Usage Scenarios for PLANCK
The project, its data and its processing pipeline are all extremely complex and rich of
interacting people and components. The fact that most of the software applications uses
OpenMPI on a very powerful cluster (OWL) make us consider any overall GPU optimization
useless/unworthy as a direct pipeline component.

However, by analyzing each single component in the pipeline, we perceived some interest by
the involved people and space for further parallelizing/improving the overall single

Deliverable 9.3: Reproducibility in Science Report
Doc.ID - pkh112-06-1.0 25 / 25

component execution time. For example:

1. The application of satellite attitude data (represented by a triplet of angles) to the
input data stream, in one of the preliminary steps of the pipeline, seems quite ideal
for GPU intervention, thanks to device intrinsic capability of applying trigonometric
function and per-sample processing in real-time.

2. In the map-making process, as reported in “Making CMB temperature and polarization
maps with Madam”, by E. Keihänen et al., Feb.21 2013, the overall memory footprint
of the algorithm makes direct GPU usage impossible, unless a “Split-mode” with
“Baseline 61” (memory usage of 5.7GiB) or “Baseline 8” (memory usage of 16.7GiB) is
used. In this case efforts to port the algorithm to run on high end GPUs could be
evaluated in strong coordination with MADAM owners and designers. (In both cases,
we shall take into consideration GPUs with 8Gib, 16GiB or 32GiB, to match the
aforementioned memory requirements).

3. As a general rule, components that execute per-pixel operations could benefit from
execution of programs on GPU since they run in parallel on all pixels of the image.

