* X %
* *
* *
* *

* e K

European
Commission

Beyond

ol WA i\- 'S K

Ll

Reproducible Research
Methodology Report

Deliverable 9.4

Authors: Stratos Gerakakis, Maria leronymaki
Date: March 1st, 2019

Work Package: WP9 - Reproducibility in Science
Docld: pkh112-12-1.0

lanetek
phellas

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report

2/31

Revision History

Version

Authors

Stratos Gerakakis

Date

Changes

1.0

Maria leronymaki

March 1st, 2019

Initial Version

European
Commission

Beyond

=TI\

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 3/31

Contents

1 Introduction 5

2 Reproducible Science 6

2.1 Reproducibility in the context of BeyondPlanck 6

2.1.1 Reproducibility Plan 6

2.2 Reproducibility in Science in General 8

2.2.1 State of the Art 8

2.2.2 Goals of the Reproducibility Utility Tool 9

2.2.3 Tool Features 9

2.2.4 Modes of Operation 10

2.2.5 Workflow of a Reproducible Procedure 11

2.2.6 Architecture 12

2.2.7 Constructing the Configuration File 13

2.2.8 Tool Status 14

2.2.9 Next Steps 14

3 GPU Usage in BeyondPlanck 15

3.1 Cholesky Decomposition Algorithms 15

3.1.1 In-place Cholesky Algorithm 16

3.1.2 Cholesky-Crout Algorithm 17

3.2 OpenCL Implementation 17

3.2.1 In-place Algorithm 18

3.2.2 Cholesky-Crout Algorithm 19

3.3 CUDA Implementation 21

3.3.1 Cholesky-Crout Algorithm 22

3.4 Input Dataset and Constraint 22

3.5 Timing Performances 23

3.5.1 Derived Dataset 23

3.5.2 Platform Specifications 23

3.5.3 Benchmark 24

3.5.3.1 Timing performances VS Cache Memory 24

3.5.3.2 Cross-platform Comparison 27

3.5.3.3 State-of-the-art: Testing Intel MKL 29

3.5.3.4 C++ implementation without for loops 29

3.6 Result Accuracy 30

3.7 Conclusion and Future Perspective 31

7] Beyond

I\ T 4

Reproducible Research Methodology Report 4/31
pkh112-12-1.0_Reproducible_research_methodology_report

Applicable and Reference Documents

[ADO1] pkh112-06-1.0 Deliverable 9.3: Reproducibility in Science Report

7] Beyond _
wﬂ .,u :\n -\A :‘:

mmmmmmmmmm

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 5/31

1 Introduction

As specified in the Work Package 9 definition, the work included in the WP9 can be
subdivided into three main classes.

1. The first class concerns code organization and distribution. According to the Open
Source philosophy of this project, all source codes will be made publicly available
through a git Repository.

2. The second and most work-intensive class concerns reproducible research. In order
to ensure that external users will be able to access, reuse and reproduce the
codebase developed in the project, Planetek software scientists (who are not
themselves cosmologists) will run the code externally, as if they were external users,
and they will be in charge of developing suitable documentation. By having
non-cosmologists performing this work, the end-products will be far more
user-friendly.

3. Finally, with the aim to facilitate reproducibility of parallel algorithms, this WP will
also investigate techniques to replace expensive computing grid calculations with
low cost local or remote GPU based environment by converting suitable code into
low level representation for GPU execution.

This deliverable, although titled as “Reproducible Science Report”, in reality it encompasses
two major sections. One for the actual “Reproducible Science” and the other about “GPU
Usage in BeyondPlanck”, both sections being part of the same WP9.

7] Beyond _
ﬁ”'”"'"“ j;\i’\-.‘ :"

Reproducible Research Methodology Report 6/ 31
pkh112-12-1.0_Reproducible_research_methodology_report

2 Reproducible Science

Our goal in WP9 is to make it as easy as possible to have reproducible BeyondPlanck results
by the end of the project. For this purpose we have broken down the general concept of
reproducible science in two parts:

e How reproducibility can be applied in the context of BeyondPlanck
e How can reproducibility be applied more easily in science in general

2.1 Reproducibility in the context of BeyondPlanck

For the purposes of reproducibility, BeyondPlanck, in general, is not a typical scientific
project. It consists of multiple individual work-packages, each one a standalone scientific
endeavor of each own, and all of them working together in synergy in order to produce a final
set of results. In other words, it is a superset of a scientific piece of work, encompassing
many individual pieces all working for a common goal.

From the previous research we have performed in this project, on the current status of
Reproducibility in science in general, we have seen that although reproducibility is a sought
after feature in many scientific pieces of work, in reality it is something that is difficult or
cumbersome to achieve. Usually it is added at the end of a project without a lot of emphasis
or real work behind it.

Given the complex nature of the structure of BeyondPlanck, this reproducibility effort is
especially complex here too, thus the need for a separate Work Package in order to deal with
it.

2.1.1 Reproducibility Plan

Our goal for providing clear, concise and detailed information for reproducing the work
performed in BeyondPlanck is to develop an online guide describing and documenting each
step of the workflow used to produce the final results, hosted in the official BeyondPlanck
website (https://beyondplanck.science). This will be provided in the form of a separate
section in the project website, where each step of the Gibbs Sampler loop will be individually
described and all incoming and outcoming files and parameters, are fully documented.

m Beyond _
wi LAY :\u -‘ j"

Reproducible Research Methodology Report 7731
pkh112-12-1.0_Reproducible_research_methodology_report

Power Spectra

Raw Data

5. 0.
——.] Parameter l Initial
~ gsiimalion Calibration

m
=)
-
o

Power Spectrum * .
Estimation _y

. - - ~ ~ /h Qh
. T :
Gibbs o % —
Q .
\ m n Final

S Results

Sampler

Component ~ ! Cosmological BeyondPlanck Maps

Maps k 3. Loo & tion ! Parameters
\ Component Recalibration ,
\ Separation »
7.
== Dissemination
= === — T
(_ - owm = ——
- 2.
Map
s Making B
Intermediary Maps Calibrated Data Scientific Publications PLA Archives

Figure 1: Major BeyondPlanck execution phases

Based on the Gibbs Sampler loop and the supporting processes at the beginning and the end
of the loop, there will be 8 major phases that will be fully documented:

Initial raw data used by BeyondPlanck
Recalibration process

Map Making process

Component Separation process

Power Spectrum Estimation process
Parameter Estimation Process

Final Results Packaging

Dissemination and inclusion to PLA Archives

© No ok wdh =

Each of these phases will be appropriately documented, and each one will offer:

e A detailed description of the tasks that take place within that phase

e The location of the codebase in the BeyondPlanck repository where code is executed
from
The input data required to be present at the beginning of the phase
The configuration parameters by which the particular phase can be customized,
configured and executed with

e A detailed description of the output produced.

Beyond _
PLANCK

European
Commission

https://www.draw.io/?scale=auto#G1IvrwHur4ycxbdyUhHFevu4WLqFJXAbwu

Reproducible Research Methodology Report 8/ 31
pkh112-12-1.0_Reproducible_research_methodology_report

At the current status of BeyondPlanck where the Gibbs loop is at its earliest stage, it is a little
premature to go onto a full documentation effort, since many of the integration paths
between components is not final yet. We are planning on starting the dull documentation
effort, on the second half of the BeyondPlanck project when the required components have
matured and stabilized enough.

2.2 Reproducibility in Science in General

In the process of reviewing available options for tools to assist us in the task of reproducing
the scientific work produced through BeyondPlanck we did an overview of the current state
of the art in Reproducibility in Science. Through that process we realized two things:
1. That reproducibility in science is a very fragmented market and that there are no
clear winners or de facto ways of producing reproducible science.
2. That BeyondPlanck as a project, is a very complex endeavour and difficult to fit into
any of the existing reproducibility tools or services.

That led us to the following two conclusions:

1. By examining the available reproducibility tools, we feel that there is a gap that we
can easily fix by providing a simple tool that will cover a big part of the needs of
scientists that are looking for an easy way to make their work reproducible, thus
deciding to provide this tool for Reproducibility in Science in General.

2. Although we might not be able to use the proposed tool in the totality of the
BeyondPlanck, we can still validate the tool by applying it to smaller subset of it, and
trying to make reproducible individual Work-packages

In the following sections we describe our plans for the reproducibility utility tool.

2.2.1 State of the Art

The latest developments on Reproducibility in Science have been examined and presented in
detail pkh112-06-1.0 Deliverable 9.3 Reproducibility in Science report [AD01].

Several initiatives are taken to this direction and services have been produced. Those
include web based applications, desktop applications as well as online computing resources
like the ones listed below:

e Taverna (workflow management)
Kepler-Project (GUI based scientific workflow system)
Open Science Framework (non-profit from Center of Open Science)
CodeOcean (cloud based computational reproducibility platform)
Zenodo (online services for reproducibility) (also Horizon2020 funded)
Gitlab/Github/Bitbucket (online repositories)

Despite the fact that some of them are offering impressive services, several disadvantages
can be pointed out including:

m Beyond _
wi yﬁl:‘lnl :"

Reproducible Research Methodology Report 9/ 31
pkh112-12-1.0_Reproducible_research_methodology_report
Having to comply with the imposed workflow of each service
Not always free to use for all future work
Enforce people who are interested in reproducing someones scientific work to also
become members of that service
No guarantees that the same services will be there tomorrow
Vendor lock in
2.2.2 Goals of the Reproducibility Utility Tool
The following goals have been identified for the Reproducibility in Science Tool we intend on
building:
e Lower the adaptation entry barrier
e Automate the reproducibility workflow as much as possible
e Make it very easy for the original author but also for the people trying to reproduce
the scientific work
Stay always current, with support for any new upcoming services or tools
Support as many reproducibility use-cases as possible
Reuse existing services and infrastructure to tie them all together
2.2.3 Tool Features
The intention of the tool is to be aimed at simple scientific workflows, usually the work of a
small number of authors, that have a simple and clearly defined execution plan.
It will be delivered as a command line based, cross platform, single binary. The tool will be
just a command line tool (think git) that does not have a user interface.
It should be able to derive most of the required information for its operation from various
configuration files, or command line user input. Although the majority of the required config
parameters will be coming from configuration files, the user should be able to overwrite
some of them by the use of command line parameters, at execution time.
It will have a Modular Design capable of being expanded by plugins. It will be localized in
different languages (already it supports English, Greek, Italian and Norwegian but it can be
translated into any other language too)
Advantages:
e Being cross platform it is usable by users of all OSes
e Easytoinstall and update, as it is just one binary
e Being command line based, aligns with the interface provided by multiple similar
tools (git, curl, docker etc)
Being a command line tool, it can be integrated into existing execution workflows
The tool embraces a modular design, offering support for writing extensions to
integrate with third party services and tools
Beyond

LAY\

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 10/31

e Thanks to its modular design, it can accommodate new trends by easily
incorporating them into the proposed workflow.
Anyone can help, by implementing a plugin for an obscure service
Localised to many languages in order to lower the entry barrier
Presentation in the BeyondPlanck website
o Documentation for each available plugin (configuration, features, usage)
o Provide instructions for extending the tool
o Offer troubleshooting and sample use-cases

2.2.4 Modes of Operation

The tool should support basic modes of operation. (think git add, git commit, git rebase etc)
Add, commit and rebase are different modes of the same git tool.

Initially supported modes are:

e verify

e setup

e run

e publish

e reproduce

Each mode has its own set of accompanied command line parameters, further defined in the
following sections.

Verify Mode
Make a sanity check if all the required dependencies for a proper reproducible environment
are installed, and check the validity of the configuration files.

Each provided plugin should offer a method called verify that is tasked to make sure that all
configuration parameters, provided by the user are correctly set. The plugin itself is the only
one able to make sure that it's custom configuration parameters are correct.

The verification should produce two different kind of messages: errors and warnings.

e Errors are configuration messages that prevent the plugin from properly operating
and changes must be made.

e Warnings are configuration message that do not prevent the plugin from working, but
they might produce unexpected or unwanted results.

As an example you can check the verify method of the HTTP input plugin, for a
demonstration of how this can be done.

Setup Mode
Setup the current environment with the required input files, as defined in the reproducibility
file. This is the mode where the required input files are downloaded.

7] Beyond _
wi NK:‘B—‘ :"

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 11/31

This mode should internally perform a call to the 'valid® mode before proceeding with the
execution. This way any potential configuration errors should be caught early one before the
operation starts. The execution details for downloading files is up the implementation of
each plugin.

Run Mode
Runs the current execution algorithms that manipulates input files and generates output.

Publish Mode
Once the scientific work is finalized, publish the produced results files.

Reproduce Mode

This is a mode used by interested third parties (not by the original author, although they
might be able to execute it too) and is responsible for reproducing some scientific work that
has been performed following the published Reproducibility in Science workflow.

2.2.5 Workflow of a Reproducible Procedure

For authors:
e They define what are the base input files required for their work
e They define the code and execution environment that manipulates the input files
e They describe where they want to publish their results, or where they can be found (if
published by third party services)

For people recreating the work they ought to just run: ‘recreate’ to have the tool:
download the required files

e download the code files
e execute the code and
e get the same results as the original author.

The following table is showing the available execution modes and their intended audience:

Commands %::%;ﬁ.l E:::’e:taortr:
verify Yes Yes
setup Yes Yes

run Yes Yes
publish Yes
reproduce e

Table 1: Execution Modes

m Beyond _
wi LAY :‘I -‘ :"

Reproducible Research Methodology Report 12/ 31
pkh112-12-1.0_Reproducible_research_methodology_report

2.2.6 Architecture

The Reproducibility utility tool has been designed following a modular architecture paradigm,
making the tool as extensible as possible.

The tool consists of several plugins, which are responsible for implementing functionalities
for third party services.

The provided plugins can be categorized according to their functionality in:
e Input plugins
e Source code Management Plugins
e Execution Plugins, and

Output Plugins,

With each category containing several plugins.

The tool architecture and the provided plugins are depicted in the figure below:

' PLA [Eucia | | _ '

Figure 2: Reproducibility tool architecture

Upon release, the tool will support a basic integration with external services, but it should be
easy to extend the tool to support any other services that might be requested or become
popular in the future. Proper documentation on how to extend the tool in order to integrate
with more services will also be offered together with the tool.

é

i
%
Y
=2
Q.

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 13/31

2.2.7 Constructing the Configuration File

The driving force behind the functionality offered by the Reproducibility tool, is the
reproducible.yml file. This will be a plain text file that encapsulates all required information
that makes a scientific paper reproducible.

This is the basic configuration file that defines how the specific work produced in a paper is
reproducible. It is meant to encapsulate all the high level details of the reproducibility
pipeline that we intend to implement.

A sample configuration file together with help notes explaining its usage is depicted below:

Allows to mark the current reproducible.yml file format version
version: '0.1'

Identify the list of input files used in this RiS workflow (Note 1)
inputs:
service: ‘name_of_service’ # (Note 2)
other_param1: other_value1 # (Note 3)
other_param2: other_value2 # (Note 3)
service: “another_service’ # (Note 4)

Specify where the code can be accessed from

code:
scm: git # (Note 5)
scm_config_param1: valuel # (Note 6)

scm_config_param2: value2

Define the produced output artifacts that ought to be preserved (Note 7)
output:

service: ‘name_of_service’ # (Note 8)

other_param1: other_value1 # (Note 9)

other_param2: other_value2

Notes:

1. "Most" of the input files, early in the RiS adoption curve, will NOT be packaged or
identified by ID, so we need to address this (more likely with the inclusion of a
generic HTTP plugin that just downloads urls)

2. Downloading files can be implemented by various download plugins, identified by a
unique name, to be used as the service name

3. Each plugin can define its own set of configuration parameters, and must accurately
document these parameters. For an example look at the HTTP input plugin

4. More than one inputs services should be configurable to allow files to be downloaded
through various services. So some files can be downloaded from the HTTP input

Beyond

1 LAY AT ..,},;

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 14/31

plugin (through simple url calls) and some other files from a (hypothetical)
PLA_Archives plugin, where files are downloaded from the PLANCK Archives website
according to the machine interface provided by PLA.

5. Mark what kind of Source Code Management tool we are using. Initially only 'git'
supported, but svn should be next. Contrary to the inputs section the scm option
should only support one SCM service at a time, as there is no need to support more
than one at the same time.

6. Each scm service should define and document it's own set of configuration
parameters (like the HTTP input plugin has done)

7. This defines what output files are ought to be preserved by uploading to a public
location and assigning a unique number.

8. Once again, this task of preserving the output artifacts will be implemented by
different output plugins that can deal with the preservation process on their own.

9. Each service defines and documents its own set of configuration parameters.

2.2.8 Tool Status

We have a working version of the tool already working. We have implemented one plugin
each for each of the first three workflow phases: the HTTP service in Input Plugins, the git in
Source Code Management Plugins and the Execution

We are implementing two use cases:
e A very basic simple one, that is used for development purposes
e An full implementation of reproducing the BeyondPlanck work in Work Package 7 -
Physical Interpretation

2.2.9 Next Steps

Continue implementing the final phase of the workflow, Uploading resulting files and
assigning unique IDs to output results. Zenodo offers free persistent identifiers (DOIs) for
results published on their site and is the most likely service to be integrated with.

We might also implement more plugins for all workflow phases, based on continuing
collecting feedback for the provided functionality.

Finally, we will have to properly document and populate the Reproducibility in Science tool in
our website.

7] Beyond _
ﬁ”'”"'"“ j;\i’\-.‘ :"

Reproducible Research Methodology Report 15/ 31
pkh112-12-1.0_Reproducible_research_methodology_report

3 GPU Usage in BeyondPlanck

This section presents the approaches adopted during investigation about feasible parallel
implementations of the Cholesky factorization algorithm using a heterogeneous processing
environment (i.e. a system hosting both multi-core CPUs and many-core GPUs or similar
HPC devices).

This study is the continuation of preliminary analysis documented in [ADO1] “Deliverable 9.3,
Chapter 5, GPU for PLANCK”, where we described our hypothesis about whether and where
to introduce a GP-GPU acceleration stage in the processing pipeline of BeyondPlanck, based
on our acquired knowledge of the project and the related objectives, computations and
issues.

In that document we firstly provided a quick overview of GPU technologies and capabilities
and then we focused on the pipeline and its components.

Further planned investigations were stimulated by active interaction with members of the
consortium for determining potentially improvable “steps” of the pipeline. Scientific and
technical discussions allowed the consortium to choose the Cholesky factorization as a
relevant algorithm, deserving our attention with the aim of translating it into a form suitable
for GPU (Graphics Processing Unit) and HSA (Heterogeneous System Architecture)
execution.

The Cholesky decomposition has been selected as benchmarking algorithm being widely
used in several linear algebra problems, and moreover due to its challenging
memory-intensive nature. Different implementations and designs have been considered and
compared with the state-of-the-art solutions (such as LAPACK in Intel-MKL) in terms of both
performances and results.

Our investigation was possible thanks to the consortium providing us relevant reference
data to apply analysis and writing/testing algorithms upon. In particular the consortium
provided us a reference data matrix, typical of BeyondPlanck science problems, and a
performance baseline to compare results to.

3.1 Cholesky Decomposition Algorithms

The Cholesky decomposition is a well-known method for matrix factorization widely used to
solve linear systems of equations. In detail, the Cholesky decomposition of a Hermitian
positive-definite matrix A gives:

A=LL"

m Beyond _
wi LAY :\u -‘ j"

Reproducible Research Methodology Report 16/ 31
pkh112-12-1.0_Reproducible_research_methodology_report

where L is a lower triangular matrix and L* denotes the conjugate transpose of L. In case of A
real matrix, as in our test case, the factorization can be written as:

A=LL"
where LT denotes the transpose of L. Every Hermitian positive-definite matrix (and thus also
every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition.

The 4 =LL" decomposition is sketched in Figure 3.

Il
X

Figure 3: Visual representation of Cholesky decomposition A=LL"

The following formula defines how an element (ij) of the matrix L can be recursively
computed:

(0 ifi<j

-1
=l AJ‘}'_Z Ly ifi=]

- A E ! L; L il
—_ .. o— il >
Lij L] i ik™jk lfl J

In this study we considered two different versions of the Cholesky decomposition, denoted
and described as follows:

e in-place Cholesky algorithm
e Cholesky-Crout algorithm

In spite of that choice, there a lot of variants of the same algorithm, with different memory
pattern and computation types.

3.1.1 In-place Cholesky Algorithm

In the current version of the algorithm all the computations are performed in-place, i.e. the
input matrix A is progressively updated as shown in the corresponding pseudocode
presented below in this section. Each element of matrix A is used as argument in

Beyond

LAY\
£ 2 “F

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 17/31
subsequent operations as soon as it is computed. Such implementation allows to halve the
total memory occupation because there is no need to store the output values in an additional
matrix object.

Pseudocode
* DO I=1,N
* SECTION A
* A(lLD) = SQRT (A(l, 1))
* DO J=1I+1,N
* A(J D) = A N/A(LD
* END DO
*
* SECTION B
* DO K=I+1,N
* DOJ=K N
* A(J,K) = A(J,K) - A(JD)*A(K,I)
* END DO
* END DO
*
* END DO
3.1.2 Cholesky-Crout Algorithm
An alternative implementation has been investigated using the Cholesky—Crout algorithm,
which starts from the upper left corner of the matrix L and proceeds to calculate the matrix
column by column.
Pseudocode
Vi= (i + 1} s
1
'tj,r' = E_ (a'j,l' = Z'ijafu)

b =1
3.2 OpenCL Implementation
OpenCL (Open Computing Language) is an open standard for cross-platform parallel
programming for heterogeneous computing devices (such as CPUs, GPUs, FPGAs).
One of the most interesting and particular features of OpenCL is its high portability, which is

Beyond

mmmmmmmmm

e |] AL‘ l\l L ...}.;

Reproducible Research Methodology Report 18/ 31
pkh112-12-1.0_Reproducible_research_methodology_report

achieved by having different platforms as possible target computing devices. However, an
OpenCL implementation requires a considerable amount of setup code, in order to detect
and initialize devices, compile kernels), which yields a more complex code and higher
initialization overhead.

In the following sections we describe the versions of Cholesky-Crout algorithm investigated
using OpenCL.

3.2.1 In-place Algorithm

Considering the in-place algorithm, it can be noted that two different sections (named
Section A and Section B, Figure 4) can be distinguished in each single iteration of the
external loop.

Section A
DO I =_., N
A(I,I) = SQRT (A(I, I))
DO J=1I+, N
A(J,I) = A(J,I)/A(I,I)
END DO

DO K=I+_,N
DO J = K, N
A(J,K) = A(J,K) - A(J,I)*A(K,I)
END DO
END DO
END DO

Figure 4: In-place algorithm

The outermost loop iterates along matrix columns. For each column, the Section A is
responsible for the main diagonal calculation, followed by the update of all the elements
below diagonal in the current column. In particular, as shown in Figure 5, each cell of the i-th
column depends only on the respective diagonal element, so every pixel in a lower-column
can be computed in parallel.

On the other hand, the Section B updates all the remaining right-pixels below the diagonal
(except the current column), using values already computed in Section A. The calculation
performed in Section B can be parallelized since the elements do not depend on each other.
The only sequencing rule to be guaranteed is that between section A and B, for each column.

Figure 5 shows the computation pattern adopted in the in-place Cholesky algorithm.

Beyond

et Y\ T -
gl ™ o 4

Reproducible Research Methodology Report 19/ 31
pkh112-12-1.0_Reproducible_research_methodology_report

.Diagonal elements: computed as first

.Parallelized within SectionA, depends on diagonal

Figure 5: Computation pattern

Taking into account for these constraints, two different kernel implementations have been
tested in OpenCL:

e Multi-thread + multiple kernel implementation

e Mono-thread + single kernel implementation

Multi-thread + multiple kernels

In the current version, the host code iterates through all of the columns, enqueuing two
different kernels for Section A and Section B.

The number of threads instantiated for each columns varies in Section A and Section B.

Mono-thread + single kernel

For the implementation discussed here, the host code does not iterate through the columns,
but a single thread is enqueued only ones. In this case, the kernel code is responsible for
loops at each levels executing each iteration sequentially: the actual not-dependence
between Section A and Section B is not exploited, and parallelization is not applied.

3.2.2 Cholesky-Crout Algorithm

Reviewing the Cholesky-Crout algorithm, the parallelization can be performed row-wise: for
each column, each element on its lower-diagonal (not on the main diagonal) is independent
of each other, and therefore parallelizable. However, the columns are not independent of
each other. There are, therefore, two synchronization points:

1. acolumnjcan only be calculated once all of column j-7 has been calculated;

2. the elements within a column (except the main diagonal) can only calculate
their values after the corresponding main diagonal value has been computed (see Figure 6
and Figure 7).

Beyond

Meleyae
[d. 5‘1?\,“‘ mf:

Reproducible Research Methodology Report 20/ 31
pkh112-12-1.0_Reproducible_research_methodology_report

}

Diagonal element
computed as first

l'i,i = \ Qi; — Zl?,k'

Vi=(G+1),...,m

i—1
1 1
s = 7— | @ss — D Liulis
=1

s

Figure 6: Cholesky-Crout algorithm

3 __kernel void cholesky_crout(

4 __global double *A,

5 __global double *L,

6 const unsigned int N,

7 const unsigned int col) Get the current thread identifier
8 { and use it as index in the matrix
9 " -

10 const int g_id = get_global_id(e@);«

11 "INt row = col ¥ g_1id;

12 int k;

13 double sum = ©.8;

14 double value;

ij DDLE: o e 485 Item on the diagonal

17 if (g id == 0) |e |

18 £

19 for (k = 8; k < col; k++)

20 {

21 sum_ d += L[col * N + k]* L[col * N + k];

22 }

24 L[col * N + col] = sqrt(A[col * [N + col] - sum_d);
25 }

26 else

28 for (k = @; k < col; k++)

29 {

30 sum += L[row * N + k]* L[col * N + k];

31 sum d += L[col * N + k]* L[col * N + k];

32 }

34 value = sqrt(A[col * N + col] - sum_d);

35 L[row * N + col] = (1.@ / value * (A[row * N + col] - sum));
3% }

3700 }

Figure 7: Cholesky-Crout algorithm implementation

Figure 8 clearly shows the pattern of the Cholesky-Crout algorithm, in which each element of
a column depend only on its row and the row of the main diagonal intersecting this column.
In detail, green elements are the active elements for each iteration, which directly depend on
the yellow elements, indirectly on the orange ones, and do not depend on the grey ones.

Beyond _

PLANC

-
L]

A

European
Commission

Reproducible Research Methodology Report 21731
pkh112-12-1.0_Reproducible_research_methodology_report

=0 [...]

s 140

N

1,1 2,1 3,1 41

|—> Independent 2 parallelizable

-active element to be computed
elements on which the active one depends directly

-elements on which the active one depends indirectly

Figure 8: Cholesky-Crout algorithm pattern

Taking into account for these constraints, two different kernel implementations have been
tested in OpenCL:

e Multi-thread implementation

e Mono-thread implementation

Multi-thread + single kernel
For the implementation discussed here, the host code iterates through all of the columns,
enqueuing kernels to process the current column.

In particular, this implementation uses a single kernel to calculate each value of the column
by enqueuing, at each j-th column iteration, N-j work-items (i.e. N-j threads). Since there is no
synchronization between the main diagonal element and the others, all items are required to
recalculate that value locally. Although this may have impact on performance, it is necessary
for the algorithm to be correct. Also, since the same kernel is used for both the main
diagonal and the other elements (which have very different algorithms for calculating their
value), there’s the need for an additional conditional statement on the start of the kernel,
which in turn may also result in loss of performance.

Mono-thread + single kernel

For the implementation discussed here, the host code does not iterate through the columns,
but a single thread is enqueued only ones. In this case, the kernel code is responsible for
loops at each levels and de facto no parallelization is applied.

3.3 CUDA Implementation

In this section, we describe our implementations of the Cholesky decomposition in GPU
using CUDA.

Beyond

ot !J?\,li gg«;ﬁ

Reproducible Research Methodology Report 29 /31
pkh112-12-1.0_Reproducible_research_methodology_report

CUDA is a computing platform and API created by NVIDIA for general-purpose computing on
GPUs. CUDA code must be compiled with its own LLVM-based C/C++ compiler, and has the
limitation of only being able to be executed on CUDA-enabled GPUs.

The CUDA workflow is very similar to that of OpenCL: the host code enqueues different
CUDA kernels to execute on the GPU, and kernel code can only handle device memory, while
host code can only handle host memory, with CUDA API calls for memory transfer. Each
CUDA kernel execution is called a thread, and the threads are divided into individual blocks.
The total number of blocks and the maximum number of threads per block are limited by
hardware.

3.3.1 Cholesky-Crout Algorithm

Multi-thread + single kernel
The base algorithm tested in CUDA was the Cholesky-Crout in multi-thread + single kernel
version.

The overall strategy used for CUDA implementation is very similar to the one used in
OpenCL. First, the input matrix of the appropriate size is loaded to the host memory, and
then copied to the GPU memory. Then, a host loop goes through all columns enqueuing the
kernel responsible for the actual matrix decomposition.

3.4 Input Dataset and Constraint

The considered input dataset consist of a symmetric positive-definite matrix with the
following features:

NxN 2688 x 2688
Data Format double-precision floating point (64 bit)
Memory Footprint ~57.803 MB

Table 2: Input dataset features
All computation were performed in double-precision.

The input matrix used in our test has been provided by the consortium and reflects a realistic
use case in CMB field of study.

Additional tests were executed for several matrix sizes in order to measure the algorithm
performances over different data loads.

Beyond
wﬁ i) i -"_ E%}

nnnnnnnnn

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 23/31

3.5 Timing Performances
In this section, we evaluate the results of the aforementioned Cholesky decomposition

algorithms using OpenCL, in terms of timing performances.

It is important to stress that it is possible to run the same OpenCL code with different
so-called compute devices, that is, different platforms in which the code will be executed,
and this platform can either be a CPU or a GPU.

Several tests were performed varying the execution platforms and the input data size.

3.5.1 Derived Dataset

Several subsets of the initial test dataset have been created in order to evaluate the
execution time as function of the input data size. In particular, the behavior in term of
execution time with respect to the available cache memory has been analyzed.

The auxiliary test datasets have been characterized by the number N of rows (and columns)
which the matrix is composed of.

Each subset is composed of N-by-N double values extracted from (row,col)=(0,0) of the
initial matrix.

3.5.2 Platform Specifications

CPUs
Processor Intel(R) Core(TM) Intel(R) Xeon(R) CPU Intel(R) Core(TM)i7
i7CPU860 @ 2.80GHz E5-26500 @ 2.00GHz CPU3770 @ 3.40GHz
Cores | 4 16 4

Logical Processor | 8 32 8
L1 cachex core | 32.768 KB 32.768 KB 32.768 KB
L2 cachex core | 262.144 KB 262.744 KB 262.144 KB
L3 cachex core | 8388.608 KB 20971.520 KB 8388.608 KB

Total Cache ~9MB ~25MB ~9 MB
Table 3: CPUs Platform specifications
Beyond

Led LY AT

Reproducible Research Methodology Report 24 /31
pkh112-12-1.0_Reproducible_research_methodology_report

GPUs
AMD Radeon(TM) NVIDIA GeForce NVIDIA NVIDIA NVIDIA
Model | px 460 Graphics GTX 1050 Quadro K600 Quadro K2000 Tesla K20c
Compute 14 n.a. n.a. n.a. n.a.
Units
Stream 896 640 192 384 2496
Processors
Graphics 1200 MHz 1354 MHz 876 MHz 954 MHz 706 MHz
clock
On Board ' 4096 MB GDDR5 2048 MB GDDR5 | 1024 MB DDR3 | 2048 MB GDDR5 | 5120 MB GDDR5
Memory

Table 4: GPUs Platform specifications

3.5.3 Benchmark

3.5.3.1 Timing performances VS Cache Memory
The following two different devices, in terms of OpenCL compiler, have been considered:

¢ Intel® CPU Runtime for OpenCL™ Applications / Intel(R) Core(TM) i7 CPU 860@
2.80GHz

e Experimental OpenCL 2.1 CPU Only Platform / Intel(R) Core(TM) i7 CPU 860 @
2.80GHz

Kernel Comparison

Average processing time [s]
Intel® CPU Runtime for Experimental OpenCL 2.1
Algorithm Kernel version | OpenCL™ Applications CPU Only Platform
Multithread 66.77102975 68.16231025
+
Multiple kernel
Monothread 225.0516145 226.436251
+
Single kernel
Multithread 5.735215 4.931208
Cholesky-Crout +
Single kernel
Monothread 7.782861 8.3914775
+
Single kernel

In-place

Table 5: Processing time comparison

From now on, the implementation of Cholesky-Crout algorithm in multi-thread version will be

Beyond

n-idii PAY ALK .;,/

Reproducible Research Methodology Report
pkh112-12-1.0_Reproducible_research_methodology_report

25/ 31

used and the execution platform will be set to Experimental OpenCL 2.1 CPU Only Platform

[Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz.

L3 cache : 8SMB

In the following section, the trend of processing time as function of input matrix size has
been analyzed. In detail, we consider matrices of several sizes NxN (i.e. different data
memory footprint) related to the each cache memory level.

OpenCL on Intel CPU GNU g++ sequential
N Matrix SIZE PROCESSING TIME PROCESSING TIME
[MB] [us] [us]
500 2.00 68002 195313
750 4.50 121982 651563
1000 8.00 197998 1522500
1250 12.50 298969 3018750
L3 1500 18.00 462982 5268750
cache | 1750 24.50 612960 8750000
2000 32.00 1917908 12465620
2250 40.50 3341984 18828120
2500 50.00 4115964 25217190
2688 57.80 5382962 30612500

Table 6: L3 cache comparison

Figure 9 shows the mean execution time elapsed for Cholesky factorization of NxN matrix;
the trend shows a break-point around N=1750 (i.e. 24MB, approximately three-times the

available L3 cache).

6,E+06
5E+06
4,E+06
3,E+06
2,E+06

1,E+06

PROCESSING TIME [us]

0,E+00

0

Q..
500

y=4931,1x - BE+06
R%=0,9915

L3 cache
y = 439,86x - 201025
@ il
1000 1500 2000
N

2500

3000

Figure 9: Mean execution time elapsed for Cholesky factorization of NxN matrix

Beyond

S LAY\ 7;!

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 26/31
L3 cache
3,50E+07
® g+ + sequential = 2.9985
3,00E+07 | y=0.J4163 :
® OpenCL parallel R*=1 ’
’

2,50E+07 ,’
n =
= 2,00E+07 ’
@ L4
1=} #
& 1,50E+07 P
+74] s
= []
= 2
$ 1,00E+07 =
u ’
2 aF
8. 5,00E+06 _ 5]

e @
e [
0,00E+00 e—--8"" o] ® E]
0 500 1000 1500 2000 2500 3000
N

Figure 10: OpenCL parallel and serial Cholesky-Crout comparison

Comparison between OpenCL parallel implementation (black) and serial Cholesky-Crout
version (red) in terms of execution time are reported in Figure 10. The same comparison has
been repeated for input matrices having memory occupation comparable to L1 and L2
caches.

L1 cache: 128 KB

L1 cache

18000

16000 ® OpenCL parallel °
o @
é 14000 ® GNU g++ sequential = * o
@ 12000 ©
= e
= 10000 e
=T} e o &
£ 8000 :
g; e
$ 6000 o o ¢
<] ® "
£ 4000 — -

2000 o N

L] ° ® L
0 e o o o o @O
0 50 100 150 200
N
Figure 11

Figure 11 shows that the serial version of the algorithm gives systematically better

Beyond _

PLANCI

Yy

European
Commission

Reproducible Research Methodology Report 27 /31
pkh112-12-1.0_Reproducible_research_methodology_report

performances with respect to the parallelized version, in cases of input matrix smaller than
the available L1 cache.

L2 cache : 1024 KB

On the contrary, taking into account inputs with memory occupation comparable to L2
cache, it seems that the OpenCL parallelized implementation offers better performance that
the sequential version starting from N~270 (~600 KB), as presented in Figure 12.

L2 cache
120000
® parallel OpenCL @
100000
= e GNU g++ sequential .
"2 80000 .
= .
so 60000
; ®
w [] s ®
8 40000 o 5 *
o &
£ .3 ® o
20000 -
e 0 @ e ® L] .y
* @ L]
0 loe—9o o o o o ®
0 100 200 300 400 500
N
Figure 12

3.5.3.2 Cross-platform Comparison

OpenCL implementation

Results achieved running the OpenCL implementation of Cholesky decomposition are
reported in the table below, w.r.t. to four different target platforms. The considered testing
devices consist of six GPU and three CPUs with different technical specification in terms of
number of cores/threads and clock rate.

Beyond

Led LY AT

European
Commission

Reproducible Research Methodology Report 28 /31
pkh112-12-1.0_Reproducible_research_methodology_report

Average processing time [ms]

Algorithm “jtei(R) Core(TM) | Intel(R) Core(TM) i7 | Intel(R) Xeon(R)CPU | AMD Radeon(TM) | NVIDIA
* i7 CPU 860 @ CPU 3770 @ E5-2650 0 @ 2.00GHz | RX 460 Graphics GeForce GTX 1050
Kernel 2.80GHz 3.40GHz
GPU GPU
CPU4core, 8thread | CPU 4core, 8thread | CPU 16core, 32thread | (64 bit floating point) | (64 bit floating point)

Cholesky-
Crout
. ~5000 ~2000 ~700 ~8000 ~4500
Multi-thread
+
Single kernel
Many core CPU GPU GPU
Table 7

The obtained benchmark shows that the current implementation and input matrix size offer
better performances on CPU than GPU. In particular, parallelization on CPU had a good
speedup experimenting a very powerful device, characterized by many cores and large
cache.

CUDA implementation

Additional analyses have been performed testing the CUDA implementation of
Cholesky-Crout algorithm on the available NVIDIA GPU devices. As shown in the table below,
the considered CUDA implementation provides a sensible improvement in timing for the
most powerful device, for which the matrix decomposition is executed in ~1.3 seconds,
including the data transfer between host and device.

Average processing time [ms]

Algorithm NVIDIA NVIDIA NVIDIA NVIDIA
Ke:nel GeForce GTX 1050 Quadro K600 Quadro K2000 Tesla K20c
GPU GPU GPU GPU
(64 bit floating point) (64 bit floating point) (64 bit floating point) (64 bit floating point)
Cholesky-Crout
Multi-thread ~1300 ~9900 ~5000 ~1900
+
Single kernel
Table 8

Despite this, considering both the OpenCL and CUDA implementations over the tested
platforms, the best performance is offered by the OpenCL version running on many-core
CPU.

(] Beyond _
f-ui‘“-; T A :f:

European
Commission

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 29/31

3.5.3.3 State-of-the-art: Testing Intel MKL

In order to benchmark CPU optimizations of the Cholesky decomposition, we wrote a simple
program that makes the appropriate external calls to LAPACK routines and measured its
elapsed time.

pkcore::STimeValue tv0, tvi;
pkcore::STimeDesc td;

pkcore::TimeGetValue(&tv0);

for (size_t i = 0; i < nc; ++i)
{
if (0 != LAPACKE_dpotrf(LAPACK_ROW_MAJOR, 'L', n, reinterpret_cast<double*»(data), n)) f{
std::cout << "ERROR !" << std::endl;
return -1;

3
{
pkcore::TimeGetValue(&tvl);

fprintf(stdout, "ELAPSED: %zu microseconds.\n"
, pkcore::TimeGetElapsed(&tv0,&tvl,&td) / nc);

Figure 13

The testing program read the input matrix as contiguous-double array and perform the
external call to LAPACK routine dpotrf, corresponding to Cholesky decomposition, as
reported in Figure 13. It's worth noting that the calculation is also done in-place, so the input
matrix is also the output matrix. The table below shows the results obtained for the tested
platforms.

Intel(R) Core(TM) i7
CPU 3770 @ 3.40GHz
CPU 4core, 8thread

Intel MKL - LAPACKE ~128ms

Table 9

3.5.3.4 C++ implementation without for loops

An alternative approach has been tested in order to deal with the evident memory-intensive
nature of the considered Cholesky algorithm. In detail, the OpenCL parallelization has been
replace by a pure C++ sequential implementation in which the formulation of each output
value is explicitly expressed, so completely avoiding the use of multiple nested loops in the
code.

This approach is not feasible considering the standard test dataset size, then as been tested
using a small 3x3 matrix, resulting in a total computation time of ~3us. The target platform
for this benchmark is the following :

7] Beyond _
PLANCK

Reproducible Research Methodology Report

pkh112-12-1.0_Reproducible_research_methodology_report 30/31

Intel(R) Core(TM) i7 CPU 3770 @ 3.40GHz

Figure 14 shows the sample code used for this test pointing out instructions for reading
from memory, the actual computations and instructions for writing to memory.

139 T a00 = pkacc::Pixel2Any<P,T>(*(a_0)
140 al0 = pkacc::Pixel2Any<P, T>(*(a_1)
141 T all = pkacc::Pixel2Any<P,T>(*(a_1 + 1));
142 a20 = pkacc::Pixel2Any<P,T>(*(a_2 »:
143 a2l = pkacc::Pixel2Any<P, T>(*(a_2 + 1)): |
144 T a22 = pkacc::Pixel2Any<P,T>(*(a_2 + 2)):

VDU

T 100
T 110
T 111
T 120
T 121

T 122

std: :sqrea00);

al0 / 100;

std::sqrefall - (110 4 110));

a20 / 100;

(a21 - €120 * 110)) / 11;

std::sqrr(a22 - (120 * 120) - (121 @ 121));

LI LI (e [1]

153 “«(1.0
154 s(11
155 “11+1
156 a1 2
el a1 2

Wi

pkacc: :Any2Pixel<P, T>(100);
pkacc: :Any2Pixel<P, T>(110);
pkacc: :Any2Pixel<P, T>(111);
pkacc: :Any2Pixel<P,T>(120);
pkacc: :Any2Pixel<P, T>(121);
pkacc: :Any2Pixel<P, T>(122);

N s

Figure 14

The experiment has been performed considering limited test cases and platform
environment, but opens up promising results and will be further investigated in the near
future.

3.6 Result Accuracy

The following procedure has been used to evaluate the accuracy of the decomposition
results for each of the analyzed algorithms.

Given the input symmetric positive-definite matrix A:

1. perform Cholesky decomposition to obtain the lower triangular matrix L such as
A=L*LT
2. Reconstruct the matrix A starting from the resulting L:
A, =LALT

3. Evaluate the cumulated difference between A and its estimation A _, as:

(N.N)

€= Z A [l] []] _Aest[i][i]
ij=(0,0)

(] Beyond _
(=] i) T A :':

European
Commission

Reproducible Research Methodology Report 31/31
pkh112-12-1.0_Reproducible_research_methodology_report

Algorithm €
LAPACK dpotrf routine [Fortran 90] 3.63234 E(-10)
Cholesky In-place [OpenCL] 3.62461 E(-10)
Cholesky-Crout [OpenCL] 2.48818 E(-10)
Cholesky-Crout [CUDA] 2.62335 E(-10)

3.7 Conclusion and Future Perspective

In this work we present concrete benchmark results obtained for different platforms,
implementations and parallelization techniques of Cholesky decomposition algorithm.

Our experiments showed that parallelization on CPU seems to have a better performance
than on GPU for this particular kind of algorithm, due to the intrinsic memory-intensive
nature of the algorithm and memory transfer over-head. In addition, our implementation
does not improve performances offered by well-established library for linear algebra
problems, such as LAPACK (considering both the LAPACKE C interfaces provided by Intel
MKL, and the native Fortran90 LAPACK routines).

Despite this, the following steps can be explored in the near future:

e Use NVIDIA devices with CUDA, also testing optimized mathematical libraries as
CuSOLVER (on-going analysis)

e Test existing libraries (MAGMA, PLASMA)

e Explore AMD GPU-Open ROCm Platform

e Explore serial block algorithm + GPU Cholesky decomposition in each block

e Stress block mode by employing 3x3 computations and then proceed with
parallelizable operations.

e Improve cache friendly-ness by implementing row packing

7] Beyond _
wﬂ ’ﬂli‘.\i-‘ :«

