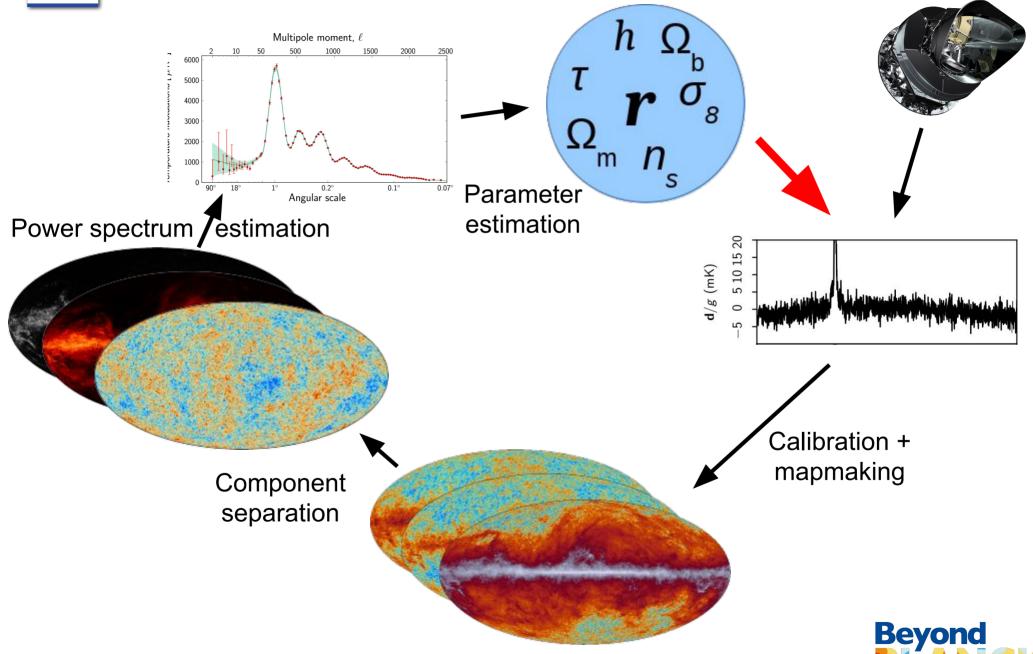


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

WP1 Commitments


Objectives This WP serves as the framework that provides contact between the various sub-modules, feeding data and partial results from one operation to the other. For now, this task is performed by human interaction, limiting the number of iterations to a handful. The main objective of this WP is to automate and streamline this process, such that hundreds of iterations may be run completely without human intervention. After cross-module integration, this work package will also be responsible for delivering the final joint products.

Description of work The work will consist of two phases, namely infrastructure construction and module population. In the first phase, we will implement a placeholder pipeline that is able to input raw time-ordered data, pass them on to simplified sub-modules, and then output final maps and deliveries to disk. This process will be coordinated by HKE (with responsibility for the Gibbs sampling aspects of the work) and SG (with responsibility for the TOD access aspects), while most of the work will be done by PD1; we foresee this work to require continuous attention for the first 12 months of the project. In the second phase, each of the sub-modules will be replaced with fully functional modules; these include gain estimation and data flagging (SG), map making (EK, PD3), component separation (IKW, PD2) and cosmological interpretation (LC).

End-to-end iterative analysis

WP1 Deliverables

Deliverables The deliverables from the WP are:

- A prototype pipeline, useful for allowing other partners to start their work; due in Month 3
- A fully functional pipeline, useful for full analysis; due in Month 12.
- Final scientific data products, due in month 21.
- Deliverable 1.1 Prototype Pipeline
 - Approved 22 January, 2020
- Deliverable 1.2 Analysis Pipeline
 - Approved 22 January, 2020
- Deliverable 1.3 Final Scientific Data Products
 - Submitted 25 November, 2020
 - Available online at https://beyondplanck.science -> Products
 - Consists of 3 chains files:
 - Main analysis chain (1200 samples)
 - Resampled high-res CMB Temperature chain (~23000 samples)
 - Resampled low-res CMB T+QU chain (~23000 samples)

Data products

Home Project - Products

Publications

Documentation

Dissemination +

Cosmoglobe

Contact

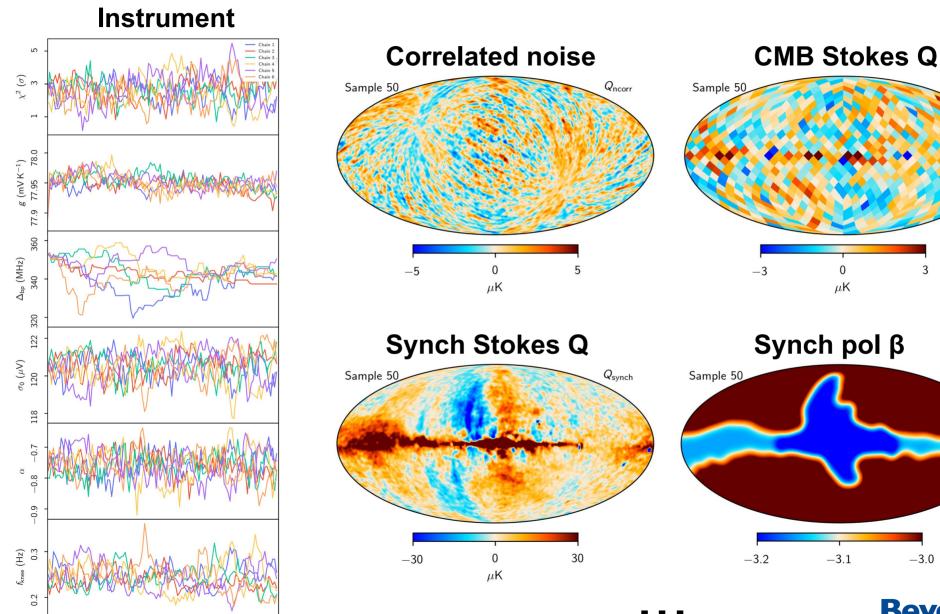
BEYONDPLANCK PRODUCTS

Parameter Files

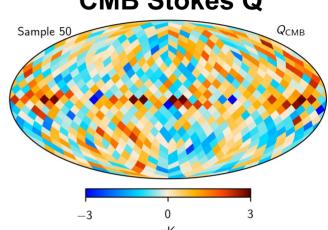
Filename	Content	Filesize	Format specification
BP_param_c0001.txt	Main Commander parameter file	69 kB	Commander parameter file documentation
BP_param_Tresamp_v1.txt	Commander parameter file for high-resolution CMB TT resampling	69 kB	Commander parameter file documentation
BP_param_resamp_c0001.txt	Commander parameter file for low-resolution CMB polarization resampling	x kB	Commander parameter file documentation

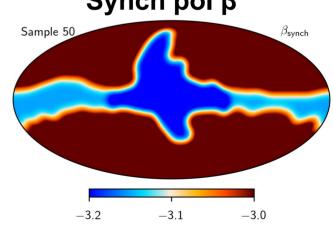
Chain Files

Filename	Content	Filesize	Format specification
BP_c000x_v1.h5 (1, 2, 3, 4, 5, 6)	Main chain files	329 GB each	File Formats
BP_c000x_Tresamp_v1.h5 (1, 2, 3, 4, 5, 6)	High-res CMB T resamp chain files	(2.3, 1.5, 1.7, 1.6, 1.5, 1.7) GB	File Formats
BP_c000x_Presamp_v1.h5 (1, 2, 3, 4, 5, 6)	Low-res CMB P resamp chain files	(437, 437, 437, 376, 397, 392) MB	File Formats


Frequency Maps

Filename	Content	Filesize	Format specification
BP_030_IQU_n0512_v1.fits	LFI 30 GHz frequency map	108 MB	
BP_044_IQU_n0512_v1.fits	LFI 44 GHz frequency map	108 MB	




Main product: Ensemble of full sample sets

100

Gibbs iteration

Commander3

- The BeyondPlanck results were generated using the Commander3 codebase
- Based on the legacy Commander code that was used for component separation for Planck
- Written in object oriented Fortran90 (Approved by Grey-Beards everywhere!)
- Implements the iterative Gibbs-sampling of specific data models, for LFI this was:

$$d_{j,t} = g_{j,t} \mathsf{P}_{tp,j} \left[\mathsf{B}^{\mathrm{symm}}_{pp',j} \sum_{c} \mathsf{M}_{cj}(\beta_{p'}, \Delta^{j}_{\mathrm{bp}}) a^{c}_{p'} + \mathsf{B}^{\mathrm{asymm}}_{j,t} \left(s^{\mathrm{orb}}_{j} + s^{\mathrm{fsl}}_{t} \right) \right] + n^{\mathrm{corr}}_{j,t} + n^{\mathrm{w}}_{j,t}.$$

 ~45000 lines of code, ~6000 for TOD processing, ~14000 in component separation, ~25000 in auxiliary modules

**** **** European Commission

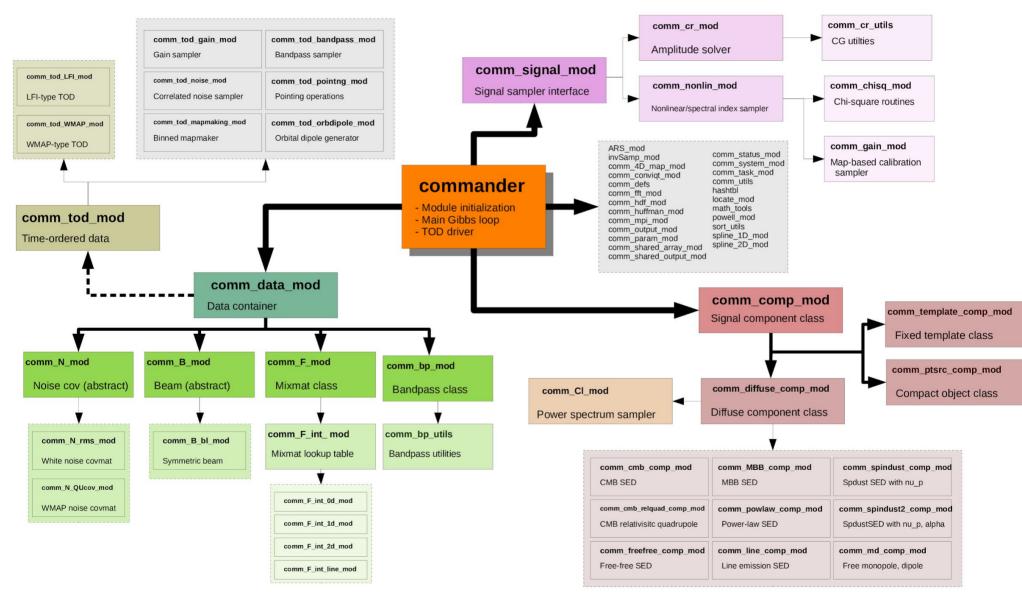
Algorithm Overview

$$\mathbf{g} \leftarrow P(\mathbf{g} \mid \mathbf{d}, \qquad \xi_n, \Delta_{\mathrm{bp}}, \mathbf{a}, \beta, C_{\ell}) \\
\mathbf{n}_{\mathrm{corr}} \leftarrow P(\mathbf{n}_{\mathrm{corr}} \mid \mathbf{d}, \mathbf{g}, \qquad \xi_n, \Delta_{\mathrm{bp}}, \mathbf{a}, \beta, C_{\ell}) \\
\xi_n \leftarrow P(\xi_n \mid \mathbf{d}, \mathbf{g}, \mathbf{n}_{\mathrm{corr}}, \qquad \Delta_{\mathrm{bp}}, \mathbf{a}, \beta, C_{\ell}) \\
\Delta_{\mathrm{bp}} \leftarrow P(\Delta_{\mathrm{bp}} \mid \mathbf{d}, \mathbf{g}, \mathbf{n}_{\mathrm{corr}}, \xi_n, \qquad \mathbf{a}, \beta, C_{\ell}) \\
\beta \leftarrow P(\beta \mid \mathbf{d}, \mathbf{g}, \mathbf{n}_{\mathrm{corr}}, \xi_n, \Delta_{\mathrm{bp}}, \qquad C_{\ell}) \\
\mathbf{a} \leftarrow P(\mathbf{a} \mid \mathbf{d}, \mathbf{g}, \mathbf{n}_{\mathrm{corr}}, \xi_n, \Delta_{\mathrm{bp}}, \qquad \beta, C_{\ell}) \\
C_{\ell} \leftarrow P(C_{\ell} \mid \mathbf{d}, \mathbf{g}, \mathbf{n}_{\mathrm{corr}}, \xi_n, \Delta_{\mathrm{bp}}, \mathbf{a}, \beta),$$

- Gibbs Sampling:
 Iteratively sample each parameter while holding the others fixed
- Easily suggests Object
 Oriented programming
 solutions, each sampling
 step can be one or more
 classes

Commander3 pseudo-code:

- i) Read parameter file
- ii) Initialize data sets; store in global array called data
- iii) Initialize model components; store in global linked list called compList
- iv) Initialize stochastic parameters


for
$$i = 1, N_{Gibbs}$$
 do

- 1) Sample TOD parameters; make frequency maps
 - a) Sample gain
 - b) Sample correlated noise
 - c) Clean and calibrate TOD
 - d) Sample bandpass corrections
 - e) Bin TOD into maps
- 2) Sample astrophysical amplitude parameters
- 3) Sample angular power spectra
- 4) Output current parameter state to disk
- 5) Sample astrophysical spectral parameters
- Sample global instrument parameters for non-TOD data sets, e.g., calibration, bandpass corrections

Block Diagram

Benchmarking

Ітем	30 GHz	44 GHz	70 GHz	Sum
Data volume				
Uncompressed data volume	761 GB	1633 GB	5 522 GB	7915 GB
Compressed data volume/RAM requirements	86 GB	178 GB	597 GB	861 GB
Processing time (cost per run)				
TOD initialization/IO time	176 sec	288 sec	753 sec	1217 sec
Other initialization				663 sec
Total initialization				1880 sec
Gibbs sampling steps (cost per sample)				
Data decompression	36 sec	105 sec	252 sec	393 sec
TOD projection (P operation)	33 sec	49 sec	248 sec	330 sec
Sidelobe evaluation (s_{sl})	58 sec	85 sec	337 sec	480 sec
Orbital dipole (s_{orb})	45 sec	61 sec	343 sec	449 sec
Gain sampling (g)	13 sec	10 sec	71 sec	94 sec
Correlated noise sampling (n_{corr})	355 sec	390 sec	2393 sec	3138 sec
TOD binning (P^t operation)	22 sec	34 sec	442 sec	498 sec
Loss due to poor load-balancing	62 sec	305 sec	135 sec	502 sec
Sum of other TOD steps	32 sec	135 sec	139 sec	306 sec
TOD processing cost per sample	656 sec	1074 sec	4666 sec	6396 sec
Amplitude sampling, $P(\boldsymbol{a} \mid \boldsymbol{d}, \omega \setminus \boldsymbol{a})$				527 sec
Spectral index sampling, $P(\beta \mid d, \omega \setminus \beta)$				1080 sec
Other steps				149 sec
Total cost per sample				8168 sec

Data Formats

- All data is stored in RAM during pipeline execution, so the data discussed here is just inputs and outputs
- TODs are stored in HDF5 files, using a custom compression scheme (coming up)
- HDF5 has faster IO than fits, and supports more data customization (almost like a directory structure)
- Skymaps are stored in standard .fits format
- All of the samples are stored in a chains.h5 file, which contains the complete history of all the parameter values throughout the entire sampling run
- We have written a tool for Commander3 Post Processing (c3pp) that reads and makes plots from the output chains files, available here:

https://github.com/Cosmoglobe/c3pp

The BeyondPlanck Legacy

- The code will be improved to work with other experiments and collaborations
- Available under the GPL3 license here:
 https://github.com/Cosmoglobe/Commander
- Contains all the analysis code as well as data file generation scripts, examples of adding new data sets, etc.
- A data download tool is also available to make it easier to get started, the code installs with cmake
- Documentation and support can be found on our webpage: https://beyondplanck.science/
- The code is still under active development, and will be used in the future for datasets such as HFI, WMAP, LiteBIRD, Spider, DIRBE, FIRAS...
- Hands on code and data tutorial was held Nov 23 + 24, 2020.
 Was a big success with ~50 participants!

Beyond

WP1 Timesheets

Institute	EU Funded Person Months	In-Kind Person Months
INAF	2	0.07
University of Oslo	28	0
Total	30	0.07
Budgeted	25	0
Deviation	5	0.07

Additional complexity caused by the integration of the Gibbs loop inside Commander means that WP1 expanded in scope slightly but this was mostly offset by the reduced complexity of other work packages.

The BeyondPlanck collaboration

EU-funded institutions

Kristian Joten Andersen Ragnhild Aurlien Ranajoy Banerji Maksym Brilenkov Hans Kristian Eriksen Johannes Røsok Eskilt Marie Kristine Foss Unni Fuskeland Eirik Gjerløw Mathew Galloway Daniel Herman Ata Karakci Håvard Tveit Ihle Metin San Trygve Leithe Svalheim Harald Thommesen **Duncan Watts** Ingunn Kathrine Wehus

Sara Bertocco Samuele Galeotta Gianmarco Maggio Michele Maris Daniele Tavagnacco Andrea Zacchei

Elina Keihänen Anna-Stiina Suur-Uski

Stelios Bollanos Stratos Gerakakis Maria leoronymaki Ilias Ioannou

Marco Bersanelli Loris Colombo Cristian Franceschet Davide Maino Aniello Mennella Simone Paradiso

External collaborators

Brandon Hensley

Jeff Jewell

Reijo Keskitalo

Bruce Partridge

Martin Reinecke

Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

"BeyondPlanck"

COMPET-4 program

PI: Hans Kristian Eriksen

o Grant no.: 776282

Period: Mar 2018 to Nov 2020

Collaborating projects:

"bits2cosmology"

o ERC Consolidator Grant

PI: Hans Kristian Eriksen

Grant no: 772 253

o Period: April 2018 to March 2023

"Cosmoglobe"

ERC Consolidator Grant

o PI: Ingunn Wehus

o Grant no: 819 478

Period: June 2019 to May 2024

Beyond

Commander

