

BeyondPlanck WP4: Map-making Elina Keihänen

Beyond PLANCK

Final Review, December 15, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

WP4: Map-making

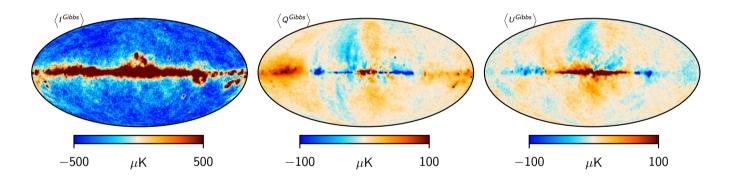
Purpose:

European Commission

Implement the map-making step in BeyondPlanck pipeline

- Main responsibility: University of Helsinki
- Coordinator: Elina Keihänen
- People involved: Anna-Stiina Suur-Uski

Deliverables:

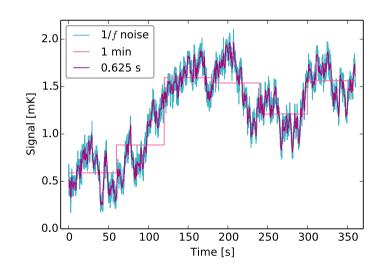

- 4.1. Prototype MADAM module
- 4.2. Tuned MADAM module
- 4.3. 4D map interface

What is map-making?

• Map-making:

- O One (heavy) processing step in conventional CMB processing
- O Input: Calibrated time-ordered data (TOI)
- Output: Frequency maps of in temperature and polarization (CMB+foregrounds)

- Provides input to next processing steps (component separation, cosmological parameters)
- Removal of correlated noise

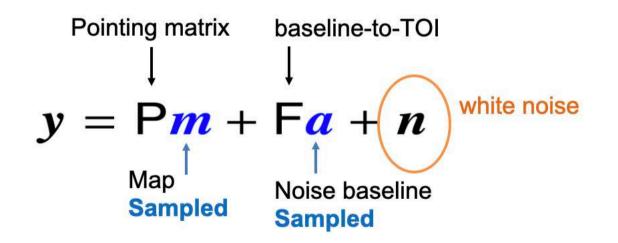


- Traditional map-making methods fall into two categories:
 - Maximum-likelihood (GLS) methods
 - Destriping methods

• GLS
$$\boldsymbol{m} = (\boldsymbol{\mathsf{P}}^T \boldsymbol{\mathsf{C}}^{-1} \boldsymbol{\mathsf{P}})^{-1} \boldsymbol{P}^T \boldsymbol{\mathsf{C}}^{-1} \boldsymbol{y}$$

• Destriping:

- Correlated noise modelled as a sequence of offsets, "baselines"
- Baseline length as parameter


- LFI DPC uses Madam destriper for map-making
 - Baseline lengths 0.25-1.0 sec

- New: map-making through Gibbs sampling
- Make correlated noise a Gibbs variable

European Commission

• Formalism borrowed from destriping

Gibbs sampling procedure

• Draw samples from conditional likelihoods

$$m' \leftarrow P(m \mid a; y, C_w)$$

$$a' \leftarrow P(a \mid m; y, C_w, C_a)$$

- Map-making is broken into two manageable steps
 - 1) Map binning:

European Commission

$$m' = (P^T C_w^{-1} P)^{-1} [P^T C_w^{-1} (y - Fa) + C_w^{-1/2} \omega_1]$$

2) Correlated noise:

white noise

$$\boldsymbol{b} = \mathbf{C}_w^{-1}(\boldsymbol{y} - \mathbf{P}\boldsymbol{m}') + \mathbf{C}_w^{-1/2}\boldsymbol{\omega}_2 + \mathbf{C}_a^{-1/2}\boldsymbol{\omega}_3$$

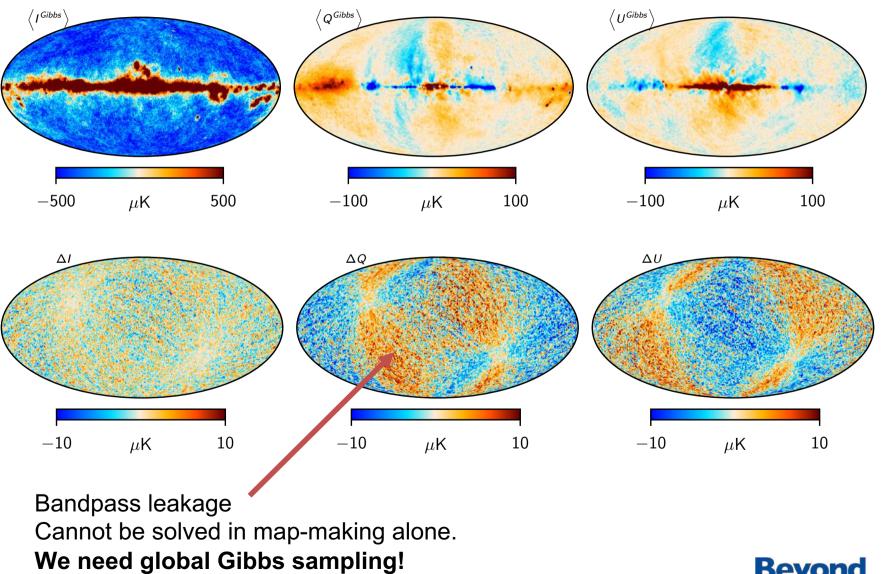
$$a' = (\mathbf{C}_w^{-1} + \mathbf{C}_a^{-1})^{-1} \boldsymbol{b}$$

- Solved by pointing period. Baseline length down to to 1 sample!
- Maximum-likelihood mode or sampling mode

BEYOND PLANCK II. CMB map-making through Gibbs sampling

BP II

E. Keihänen^{3*}, A.-S. Suur-Uski^{3,7}, K. J. Andersen¹¹, R. Aurlien¹¹, R. Banerji¹¹, M. Bersanelli^{4,9,10}, S. Bertocco⁸, M. Brilenkov¹¹, M. Carbone¹⁴, L. P. L. Colombo⁴, H. K. Eriksen¹¹, M. K. Foss¹¹, C. Franceschet^{4,10}, U. Fuskeland¹¹, S. Galeotta⁸, M. Galloway¹¹, S. Gerakakis¹⁴, E. Gjerløw¹¹, B. Hensley², D. Herman¹¹, M. Iacobellis¹⁴, M. Ieronymaki¹⁴, H. T. Ihle¹¹, J. B. Jewell¹¹, A. Karakci¹¹, R. Keskitalo¹, G. Maggio⁸, D. Maino^{4,9,10}, M. Maris⁸, A. Mennella^{4,9,10}, S. Paradiso^{4,10}, B. Partridge⁶, M. Reinecke¹³, T. L. Svalheim¹¹, D. Tavagnacco^{8,5}, H. Thommesen¹¹, M. Tomasi^{4,9}, D. J. Watts¹¹, I. K. Wehus¹¹, and A. Zacchei⁸


- Paper available online: http://arxiv.org/abs/2011.06024
 - O Theoretical background for the map-making algorithm of BeyondPlanck
 - O Results based on simulations

Gibbs map

Gibbs map = mean of the Gibbs chain

European Commission

Beyond PLANCK

4.1: Prototype MADAM module

Deliverable 4.1. Prototype MADAM module

- Install the MADAM map-making code (3.8.3) on the Oslo cluster. Test on simulated data.
- Delivered: September 20th 2018
- Accepted: January 22nd 2020

.1:
.1:
3 Y 5 F 1 Y 4 Y 3 X 3 L 2 F 5
Anna-Stiina Suur-Uski Elina Keihänen
September 21st, 2018
WP4 - Map making [xxx-xxx-xxx]
planetek

4.2: Tuned MADAM module

Deliverable 4.2. Tuned MADAM module

- Interface the MADAM map-making code with BeyondPlanck data model.
- New Madam version 3.9.0
- Delivered: February 28. 2019
- Accepted: January 22. 2020

European Commission	Rel Angl/2019/1370652-28102019 HOBU 2020			
Beyond PLANCK				
Deliverab Tuned MADAM				
Authors Date Work Package Docld	Anna-Stiina Suur-Uski Elina Keihänen February 26th, 2019 WP4 - Map making [xxx-xxx-xxx]			
	Planetek			

4.3: Commander 4D map interface

Deliverable 4.3. Commander 4D map interface

- Submitted: November 30. 2020
- Beam-deconvolution module (WP5) takes as input 4D map data objects:
 4D map = compressed TOI, or enhanched Healpix maps with information on beam orientation.
- "4D" refers to four parameters: pointing (theta,phi), beam orientation (psi), and time (pointing ID).
- Same objects serve as input for a number of auxiliary tools, for instance construction of partial sky maps.
- Commander3 outputs the required information as HDF5 data objects per core.
 HDF5to4Dmap tool (python) converts this into the standard FITS file

PM overview

Participant	EU-funded person months	In-kind person months
Helsinki	8	0
Total	8	0
Budgeted	10	
Deviation	-2	

Work

Overview of work done within WP4:

- Madam map-making code was installed on Oslo cluster and interfaced with the data model -> deliverables 4.1 and 4.2
- HDF5to4Dmap tool for conversion of Commander outputs into 4D map format
 -> deliverable 4.3
- A new way of constructing sky maps as part of Gibbs procedure, was proposed and tested with an external test code.

Based on Gibbs sampling of the correlated noise component

-> BP II

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

- *"BeyondPlanck"*
 - COMPET-4 program
 - PI: Hans
 Kristian Eriksen
 - Grant no.: 776282
 - Period:
 2020

Mar 2018 to Nov

Collaborating projects:

0

- "bits2cosmology"
 - ERC Consolidator Grant
 - PI: Hans Kristian Eriksen
 - Grant no: 772 253
 - Period: April 2018 to March 2023

- "Cosmoglobe"
 - ERC Consolidator Grant
 - **PI**:

- Ingunn Wehus
- Grant no: 819 478
- \circ $\$ Period: $\$ June 2019 to May 2024

