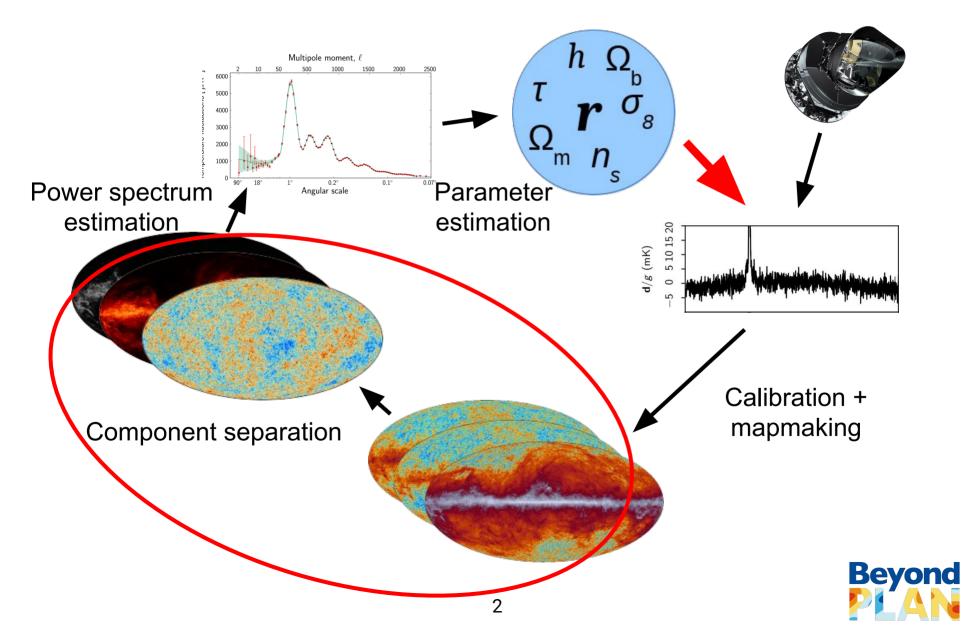


# Final review WP6: Component Separation Trygve Leithe Svalheim


**Beyond PLANCK** 

BeyondPlanck online release conference, November 18-20, 2020

## WP6 Objective

European Commission

#### **Objectives Produce astrophysical component maps from frequency maps**



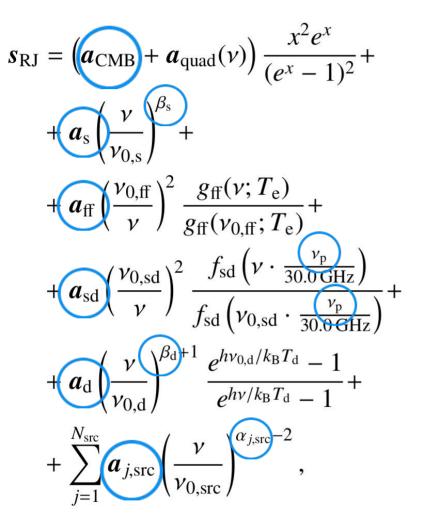
## Accounting for the interplay between foregrounds and systematics by sampling jointly

$$g \leftarrow P(g \mid d, \qquad \xi_n, \Delta_{bp}, a, \beta, C_{\ell})$$

$$n_{corr} \leftarrow P(n_{corr} \mid d, g, \qquad \xi_n, \Delta_{bp}, a, \beta, C_{\ell})$$

$$\xi_n \leftarrow P(\xi_n \mid d, g, n_{corr}, \ \Delta_{bp}, a, \beta, C_{\ell})$$

$$\Delta_{bp} \leftarrow P(\Delta_{bp} \mid d, g, n_{corr}, \xi_n, \ a, \beta, C_{\ell})$$
This 
$$\begin{cases} a \leftarrow P(a \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, \ \beta, C_{\ell}) \\ \beta \leftarrow P(\beta \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, a, \ C_{\ell}) \end{cases}$$


$$C_{\ell} \leftarrow P(C_{\ell} \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, a, \beta, \ )$$



#### Data model and external data

European Commission

#### Free parameters



CMB

# Synchrotron

Free-free

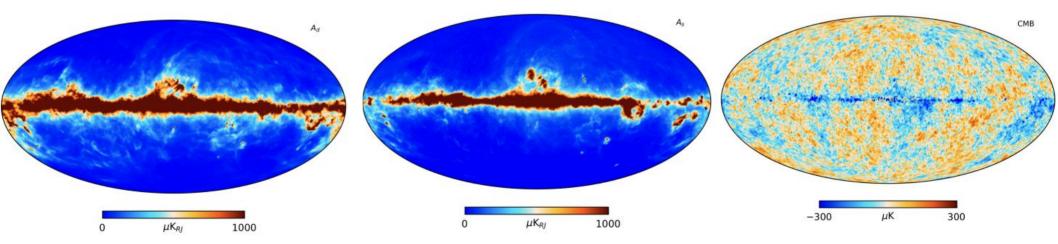
AME / Spinning dust

**Thermal dust** 

Point sources

Not: Sunyaev-Zeldovich effect, zodiacal light, cosmic infrared background




- First iteration of astrophysical sky maps, needed for initialization. Based on existing Commander sky model.
   a. Approved 22 January, 2020
- 2. Modularized Commander code, suitable for insertion into main Gibbs sampler
  - a. Approved 22 January, 2020

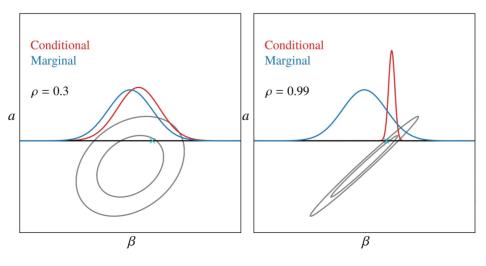
- 3. First end-to-end astrophysical sky maps (CMB, synchrotron, free-free and spinning dust in temperature, and CMB and synchrotron in polarization) from new Gibbs sampler
  - a. Approved 22 January, 2020
- 4. Final release candidate maps
  - a. Submitted 30 Nov 2020



# First iteration of astrophysical sky maps, needed for initialization. Based on existing Commander sky model.

Used NPIPE to create a sky model to initialize on.



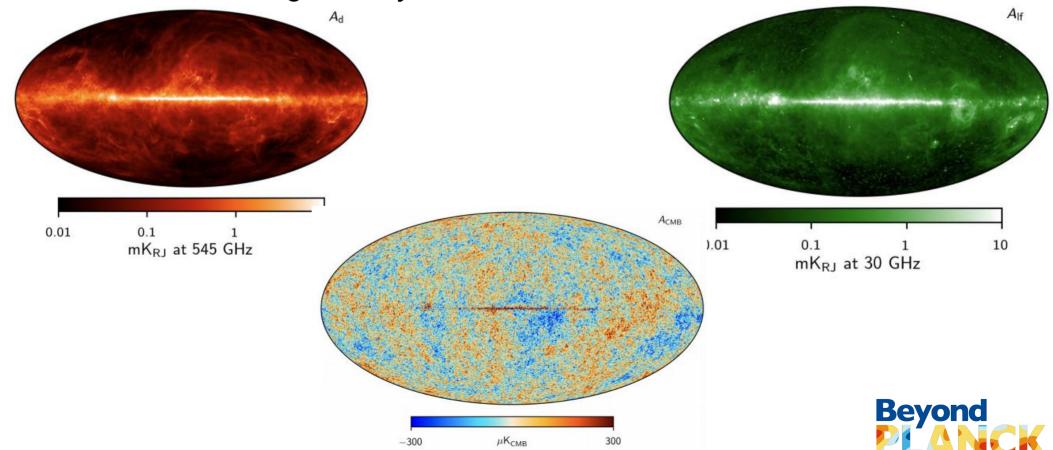



## Modularized Commander code, suitable for insertion into main Gibbs sampler

Code is missing spectral index sampling procedures

• Temperature

- Marginal sampler for efficient sampling over narrow spectral index distributions implemented in "comm\_nonlin\_mod.f90"
- Polarization
  - Metropolis hastings sampler for non-linear spectral index sampling in "comm\_nonlin\_mod.f90".






European Commission

First end-to-end astrophysical sky maps (CMB, synchrotron, free-free and spinning dust in temperature, and CMB and synchrotron in polarization) from new Gibbs sampler

First high resolution component maps with new NPIPE data. Constructing the sky model with state of the art observations



European Commission

#### **Final release candidate maps** Temperature analysis

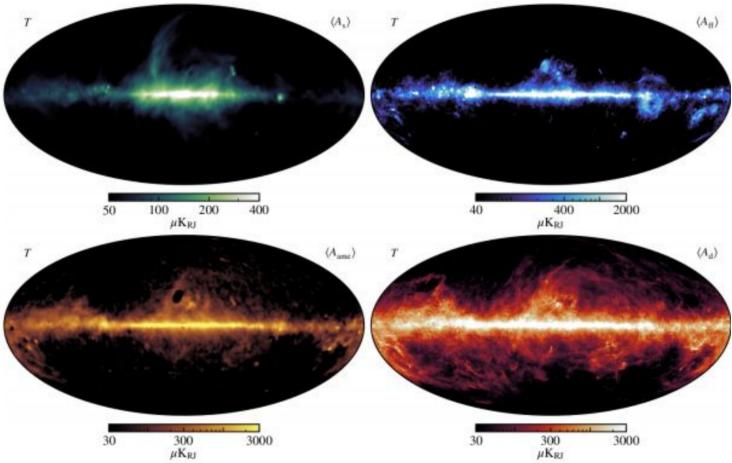
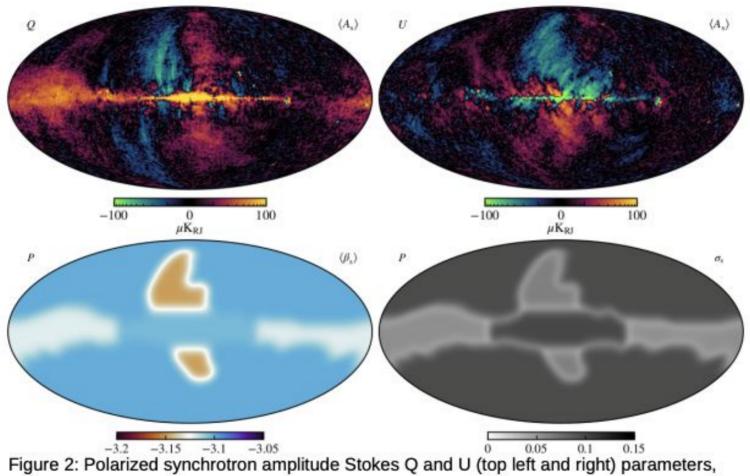
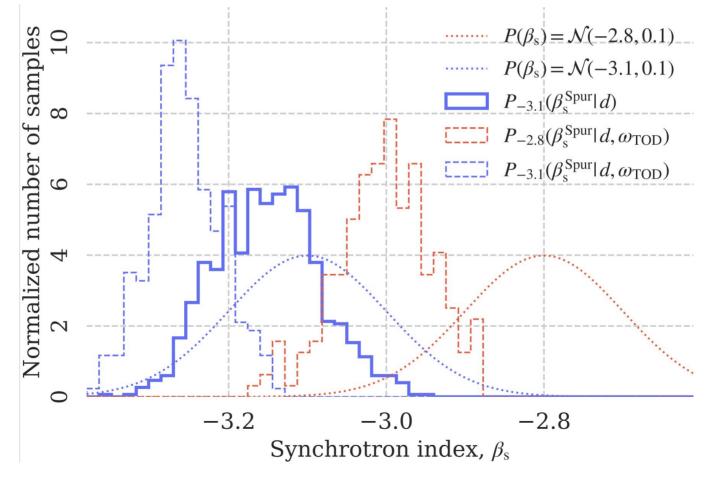




Figure 1: Foreground amplitude intensity maps as estimated with the BeyondPlanck pipeline. From top to bottom and left to right, the four panels show 1) synchrotron, 2) free-free, 3) AME, and 4) thermal dust emission.



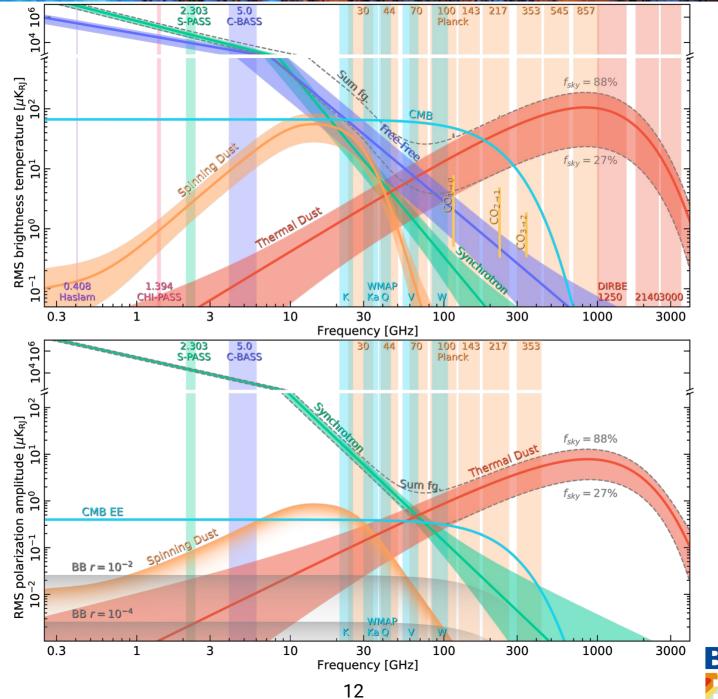
European Commission

#### **Final release candidate maps** Polarization analysis




and spectral index and its uncertainty (bottom left and right), as estimated with the BeyondPlanck pipeline.




#### **Foreground results**

# Demonstrated benefits of joint analysis by robust error propagation in component separation





**Foreground results** 





## All data available online

European Commission

|                                           | Beyond<br>PLANCK    | Home                                | Project -  | Products       | Publications                      | Documentation     | Dissemination -      | Cosmoglobe   | Contact |
|-------------------------------------------|---------------------|-------------------------------------|------------|----------------|-----------------------------------|-------------------|----------------------|--------------|---------|
|                                           | BP_c000x_Tresamp_v1 | .h5 (1, 2, 3                        | , 4, 5, 6) | High-res CMI   | B T resamp chain file             | es (2.3, 1.5, 1.7 | 7, 1.6, 1.5, 1.7) GB | File Formats |         |
| BP_c000x_Presamp_v1.h5 (1, 2, 3, 4, 5, 6) |                     | Low-res CMB P resamp chain files (4 |            | s (437, 437, 4 | (437, 437, 437, 376, 397, 392) MB |                   |                      |              |         |

#### Frequency Maps

| Filename                 | Content                  | Filesize | Format specification |
|--------------------------|--------------------------|----------|----------------------|
| BP_030_IQU_n0512_v1.fits | LFI 30 GHz frequency map | 108 MB   |                      |
| BP_044_IQU_n0512_v1.fits | LFI 44 GHz frequency map | 108 MB   |                      |
| BP_070_IQU_n1024_v1.fits | LFI 70 GHz frequency map | 432 MB   |                      |

#### **Astrophysical Component Maps**

| Filename                    | Content                   | Filesize | Format specification |
|-----------------------------|---------------------------|----------|----------------------|
| BP_ame_l_n1024_v1.fits      | AME (spinning dust) map   | 193 MB   |                      |
| BP_dust_IQU_n1024_v1.fits   | Thermal dust emission map | 769 MB   |                      |
| BP_freefree_I_n1024_v1.fits | Free-free emission map    | 193 MB   |                      |
| BP_synch_IQU_n1024_v1.fits  | Synchrotron map           | 577 MB   |                      |

#### **CMB Maps**

| Filename                      | Content                              | Filesize | Format specification |
|-------------------------------|--------------------------------------|----------|----------------------|
| BP_cmb_resamp_I_n1024_v1.fits | CMB posterior mean temperature map   | 96 MB    |                      |
| BP_CMB_I_map_n1024_v1.fits    | A single constrained CMB realisation | 96 MB    |                      |
| BP_CMB_QU_map_n8_v1.fits      | CMB posterior mean polarization map  | 28 KB    |                      |



## Time reporting

|                 | EU funded | In Kind |
|-----------------|-----------|---------|
| Oslo            | 32.5      | 4.5     |
| Sum             | 32.5      | 4.5     |
| Budgeted        | 36        | 0       |
| Deviation total | -3.5      | 4.5     |



#### **The BeyondPlanck collaboration**

#### EU-funded institutions



European Commission

> Kristian Joten Andersen **Ragnhild Aurlien** Ranajoy Banerji Maksym Brilenkov Hans Kristian Eriksen Johannes Røsok Eskilt Marie Kristine Foss Unni Fuskeland Eirik Gjerløw Mathew Galloway Daniel Herman Ata Karakci Håvard Tveit Ihle Metin San **Trygve Leithe Svalheim** Harald Thommesen **Duncan Watts** Ingunn Kathrine Wehus



Marco Bersanelli Loris Colombo **Cristian Franceschet Davide Maino** Aniello Mennella Simone Paradiso



Sara Bertocco Samuele Galeotta Gianmarco Maggio Michele Maris Daniele Tavagnacco Andrea Zacchei

#### Elina Keihänen Anna-Stiina Suur-Uski

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINK



**Stelios Bollanos** Stratos Gerakakis Maria leoronymaki Ilias Ioannou

#### External collaborators



**Brandon Hensley** 

Jeff Jewell



Reijo Keskitalo



**Bruce Partridge** 



Martin Reinecke



15

#### Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282



## "BeyondPlanck"

Ο

- COMPET-4 program
  - PI: Hans Kristian Eriksen
- Grant no.: 776282
- Period: Mar 2018 to Nov 2020

Collaborating projects:

- "bits2cosmology"
  - ERC Consolidator Grant
  - PI: Hans Kristian Eriksen
  - Grant no: 772 253
  - Period: April 2018 to March 2023

- "Cosmoglobe"
  - ERC Consolidator Grant
  - PI: Ingunn Wehus
  - Grant no: 819 478
  - Period: June 2019 to May 2024



#### **Questions?**

European Commission

# Beyond PLANCK

# Commander







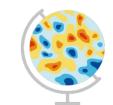


HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI





JPL














Cosmoglobe Beyond

17