

Work package 7: Science exploitation

Beyond PLANCK

Simone Paradiso

On behalf of WP7 and the BeyondPlanck collaboration

BeyondPlanck final review meeting, December 15th, 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

This WP aims at two main objectives:

- development of tools for the likelihood analysis of the improved maps, which are able to fully propagate the uncertainties from residual instrumental systematics and component separation all the way to the cosmological parameters
- perform the final cosmological analysis of the maps, either alone or with other cosmological datasets.

- A code for the analysis of BeyondPlanck CMB maps.
- A new set of CMB maps.
- A likelihood for extracting information on cosmological parameters.
- Cosmological parameter estimates with end-to-end error propagation, with a focus on the optical depth of reionisation.
- Scientific papers.

European Commission

These products have been provided in three deliverables

• 7.1 : Cosmological interpretation module for integration in the main pipeline.

- 7.2 : Scientific characterization of maps, including power spectra and cosmological parameter constraints.
- 7.3 : Scientific papers for publication in peerreview journals.

Developing the tools for BeyondPlanck's cosmological interpretation.

• Foreground cleaning

European Commission

- Power spectrum estimation
- Likelihood evaluation

Deliverable received on March 12^{th} , 2019 and approved on January 22^{nd} , 2020.

- Overall coverage of the multipoles from $\ell = 2$ up to $\ell = 600$ in TT spectrum.
- Information from polarization E modes, and cross-correlation TE, from multipoles in the range [2 – 8].

BeyondPlanck Likelihood

- Overall coverage of the multipoles from $\ell = 2$ up to $\ell = 600$ in TT spectrum.
- Information from polarization E modes, and cross-correlation TE, from multipoles in the range [2 – 8].

Low-ℓ pixel-based Likelihood on a KL compressed basis

European Commission

TT-TE-EE in $2 \le \ell \le 8$ $P(C_{\ell}|\hat{s}_{CMB}) \propto \frac{e^{-\frac{1}{2}\hat{s}^{t}} c_{MB}(S(C_{\ell})+N)^{-1} \hat{s}_{CMB}}{|S(C_{\ell})+N|^{\frac{1}{2}}}$

BeyondPlanck Likelihood

- Overall coverage of the multipoles from $\ell = 2$ up to $\ell = 600$ in TT spectrum.
- Information from polarization E modes, and cross-correlation TE, from multipoles in the range [2 – 8].

Low-ℓ pixel-based Likelihood on a KL compressed basis

European Commission

TT-TE-EE in $2 \le \ell \le 8$

 $P(C_{\ell}|\hat{s}_{CMB}) \propto \frac{e^{-\frac{1}{2}\,\hat{s}^t\,_{CMB}(S(C_{\ell})+N)^{-1}\,\hat{s}_{CMB}}}{|S(C_{\ell})+N|^{\frac{1}{2}}}$

High-ℓ likelihood based upon Gaussianized Blackwell-Rao estimator

TT only in $9 \le \ell \le 600$

European Commission

Beyond PLANCK

BP low-*l* likelihood results

European Commission

> 0.10 0.10 т $f_{
> m sky}^{
> m pol}$ ANALYSIS NAME DATA SETS τ $0.060^{+0.015}_{-0.013}$ BEYONDPLANCK, $\ell = 2-8$ LFI, WMAP Ka-V 0.36 BeyondPlanck, $\ell = 3-8$ LFI, WMAP Ka-V $0.061\substack{+0.015\\-0.014}$ 0.36 **BP** low- $\ell \ell \in [2, 8]$ BP low- $\ell \ell \in [3, 8]$ 10 000 20 0 00 30 0 00 40 0 00 Number of samples VMAP, Hinshaw et al. (2012) .FI+WMAP, Natale et al. (2020) 'lanck 2018 IFI, SROLL2 FI+HFI, NPIPE χ^2 = 0.16}P full-sky ЗP 0.06 0.12 0.14 0.02 0.04 0.08 0.10 0.10 0.05 τ Optical depth of reionization, au

European Commission

Stable parameter estimates up to $\ell = 600$

	BEYONDPLANCK GBR		
Parameter	$\ell_{\rm max} = 400$	$\ell_{\rm max} = 600$	Δ
$\overline{\Omega_b h^2}$	0.0229 ± 0.0018	0.0227 ± 0.0013	0.1σ
$\Omega_c h^2$	0.129 ± 0.028	0.116 ± 0.018	0.5σ
$100\theta_{MC}$	1.049 ± 0.011	1.041 ± 0.006	0.7σ
$A_s e^{-2\tau}$	2.01 ± 0.26	1.85 ± 0.15	0.6σ
n_s	1.011 ± 0.054	0.980 ± 0.036	0.6 <i>o</i>

BP high-*l***ikelihood results**

European Commission

BeyondPlanck BeyondPlanck + Planck 2018 High-*l* BEYONDPLANCK PARAMETER $\ell \leq 600$ +Planck $\ell > 600$ 0.20 0.16 Ω^Cμ² $\Omega_{
m b} h^2$ 0.02202 ± 0.00091 0.02224 ± 0.00022 $\Omega_{
m c}h^2$ 0.115 ± 0.017 0.1224 ± 0.0025 0.12 $\Omega_{\Lambda} \ \ldots \ldots \ldots \ldots$ $\begin{matrix}1.06\\900\\1.05\\1.04\end{matrix}$ $100\theta_{MC}$ 1.0390 ± 0.0049 1.04061 ± 0.00048 0.066 ± 0.016 0.074 ± 0.015 τ $10^9\Delta_R^2$ 1.03 $\ln(10^{10}A_{\rm s})$ 3.035 ± 0.080 3.087 ± 0.029 0.960 ± 0.020 0.9632 ± 0.0060 $n_{\rm s}$ 0.10 H 0.05 اn(10¹⁰As) د ۲۶ 1.05 ہ 1.00 ت 0.95 0.021 0.025 3.0 3.2 0.96 0.12 0.18 1.04 1.06 0.05 0.10 1.04 $\Omega_b h^2$ $\Omega_c h^2$ $\ln(10^{10}A_s)$ $100\theta_{MC}$ τ n_s

	BEYONDPLANCK		Planck 2018		WMAP	
Parameter	$\ell \le 600$	+Planck $\ell > 600$	Estimate	$\Delta(\sigma)$	Estimate	$\Delta(\sigma)$
$\overline{\Omega_{ m b}h^2}$	0.02202 ± 0.00091	0.02224 ± 0.00022	0.02237 ± 0.00015	-0.4	0.02243 ± 0.00050	-0.5
$\Omega_{\rm c} h^2$	0.115 ± 0.017	0.1224 ± 0.0025	0.1200 ± 0.0012	-0.3	0.1147 ± 0.0051	0
Ω_{Λ}	• • •	(* * int)		•••	0.721 ± 0.025	
$100\theta_{MC}$	1.0390 ± 0.0049	1.04061 ± 0.00048	1.04092 ± 0.00031	-0.4		
τ	0.066 ± 0.016	0.074 ± 0.015	0.054 ± 0.007	0.8	0.089 ± 0.0014	-1.5
$10^9\Delta_{\mathcal{R}}^2$	•••			•••	2.41 ± 0.10	• • •
$\ln(10^{10}A_s)$	3.035 ± 0.080	3.087 ± 0.029	3.044 ± 0.014	-0.1		
$n_{\rm s}$	0.960 ± 0.020	0.9632 ± 0.0060	0.9649 ± 0.0042	-0.3	0.972 ± 0.013	-0.6

	- 76
European	
Commission	

	BEYONDPLANCK		Planck 2018		WMAP	
Parameter	$\ell \le 600$	+Planck $\ell > 600$	Estimate	$\Delta(\sigma)$	Estimate	$\Delta(\sigma)$
$\overline{\Omega_{\rm b} h^2}$	0.02202 ± 0.00091	0.02224 ± 0.00022	0.02237 ± 0.00015	-0.4	0.02243 ± 0.00050	-0.5
$\Omega_{\rm c} h^2$	0.115 ± 0.017	0.1224 ± 0.0025	0.1200 ± 0.0012	-0.3	0.1147 ± 0.0051	0
Ω_{Λ}		(* *:)*()		•••	0.721 ± 0.025	
$100\theta_{MC}$	1.0390 ± 0.0049	1.04061 ± 0.00048	1.04092 ± 0.00031	-0.4		• • •
τ	0.066 ± 0.016	0.074 ± 0.015	0.054 ± 0.007	0.8	0.089 ± 0.0014	-1.5
$10^9\Delta_{\mathcal{R}}^2$	••• •			• • •	2.41 ± 0.10	• • •
$\ln(10^{10}A_s)$	3.035 ± 0.080	3.087 ± 0.029	3.044 ± 0.014	-0.1		•:•:•
$n_{\rm s}$	0.960 ± 0.020	0.9632 ± 0.0060	0.9649 ± 0.0042	-0.3	0.972 ± 0.013	-0.6

Only LFI and WMAP \rightarrow major contribution to larger uncertainties

	BEYONDPLANCK		Planck 2018		WMAP	
Parameter	$\ell \le 600$	+Planck $\ell > 600$	Estimate	$\Delta(\sigma)$	Estimate	$\Delta(\sigma)$
$ \frac{\Omega_{\rm b}h^2}{\Omega_{\rm c}h^2} \dots \dots$	$\begin{array}{c} 0.02202 \pm 0.00091 \\ 0.115 \pm 0.017 \\ & \\ 1.0390 \pm 0.0049 \\ 0.066 \pm 0.016 \\ & \\ 3.035 \pm 0.080 \\ 0.960 \pm 0.020 \end{array}$	$\begin{array}{c} 0.02224 = 0.00022\\ 0.1224 = 0.0025\\ & .\\ 1.04061 = 0.00048\\ 0.074 = 0.015\\ & .\\ 3.087 = 0.029\\ 0.9632 = 0.0060\end{array}$	$\begin{array}{c} 0.02237 \pm 0.00015 \\ 0.1200 \pm 0.0012 \\ \dots \\ 1.04092 \pm 0.00031 \\ 0.054 \pm 0.007 \\ \dots \\ 3.044 \pm 0.014 \\ 0.9649 \pm 0.0042 \end{array}$	-0.4 -0.3 -0.4 0.8 -0.1 -0.3	$\begin{array}{c} 0.02243 \pm 0.00050 \\ 0.1147 \pm 0.0051 \\ 0.721 \pm 0.025 \\ \dots \\ 0.089 \pm 0.0014 \\ 2.41 \pm 0.10 \\ \dots \\ 0.972 \pm 0.013 \end{array}$	-0.5 0 -1.5

BeyondPlanck + Planck 2018 + Lensing + BAO

European Commission

BeyondPlanck

BeyondPlanck + Planck 2018 High-*l*

BeyondPlanck + Planck 2018 High-*l* + Lensing + BAO

End-to-end error propagation

Propagating uncertainties through the whole processing up to cosmological parameter estimation

End-to-end error propagation

End-to-end error propagation

These results are summarised and being published in BeyondPlanck collaboration, 2020.

European Commission

A more in depth discussion will be presented in upcoming papers.

All the papers are being published on A&A, and gathered on BeyondPlanck webpage:

https://beyondplanck.science/products/publications/

Person month effort

Name	EU funded	In Kind
University of Milan	46.5	18
University of Oslo	15	1.5
TOTAL	61.50	19.50
BUDGETED	60.00	
DEVIATION	1.5	

Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

• *"BeyondPlanck"*

- COMPET-4 program
- PI: Hans
 Kristian Eriksen
- Grant no.: 776282
- Period:
 2020

Mar 2018 to Nov

Collaborating projects:

0

- "bits2cosmology"
 - ERC Consolidator Grant
 - PI: Hans Kristian Eriksen
 - Grant no: 772 253
 - Period: April 2018 to March 2023

- "Cosmoglobe"
 - ERC Consolidator Grant
 - **PI**:

- Ingunn Wehus
- Grant no: 819 478
- Period: June 2019 to May 2024

