

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

EU-funded work effort overview per WP

WP	PM spent	PM budgeted	PM difference	Partner breakdown
1	30	25	5	Oslo = 28, Trieste = 2
2	13	13	0	Trieste = 13
3	18	18	0	Trieste = 17, Oslo = 1
4	8	10	-2	Helsinki = 8
5	8	6	2	Helsinki = 8
6	32.5	36	-3.5	Oslo = 32.5
7	62	58	4	Oslo = 15, Milano = 47
8	0.9	0	0.9	Milano = 0.9
9	59	58	1	Planetek = 59
10	4.5	3	1.5	Milano = 1.5, Helsinki = 2, Trieste = 1, Planetek = 1,
Total	234.9	227	7.9	

Table 2: Overview of EU-funded PM efforts spent per WP (second column), compared with the budget (third column). The fourth column shows the difference between the real and projected PM counts. The fifth column provides a breakdown of the spent PMs for the individual partners.

Work effort per institution and WP

	Os	lo	Mila	ano	Trie	este	Hels	sinki	Plan	etek	
WP	EU	Self	EU	Self	EU	Self	EU	Self	EU	Self	Sum
1	28				2						30
2					13	1					14
3	1	2			17	3					21
4							8				8
5							8				8
6	32.5	4.5									37
7	15	1.5	46.5	18							81
8			0.9	5.6							6.5
9									57		57
10		3	1.5	0.5	1		2		1		9
Sum	76.5	9	48.9	24.1	33	4	18		58		271.5

Table 3: Breakdown over PMs spent per institution, divided into EU and in-kind funding.

Consortium meetings etc.

meetings

Physical Meetings (PM)

Meeting issue	Status	Title	Location	Date	Minutes
PM1	Done	Kickoff Meeting	Oslo	Tuesday, March 6th, 2018	Agenda
PM2	Done	2nd Consortium Meeting	nd Consortium Meeting Helsinki		Meeting page
PM2	Done	3rd Consortium Meeting	Athens	Feb 11-15, 2019	Meeting page
	Done	1st Review Meeting	Brussels	Mar 28, 2019	Meeting page
PM3	Done	4th Consortium Meeting	Milano	Sept 16-20, 2019	Meeting page
	Done	2nd Review Meeting	Oslo	Nov 29, 2019	Meeting page
PM4	Postponed	5th Consortium Meeting	Trieste	March 30 - April 3, 2020	Meeting page
OM1	Done	Online Consortium Meeting	N/A	April 27-28, 2020	Meeting Page
FR	Upcoming	Final Review Meeting	N/A	December 10, 2020	Meeting Page

Release conference November 18-20

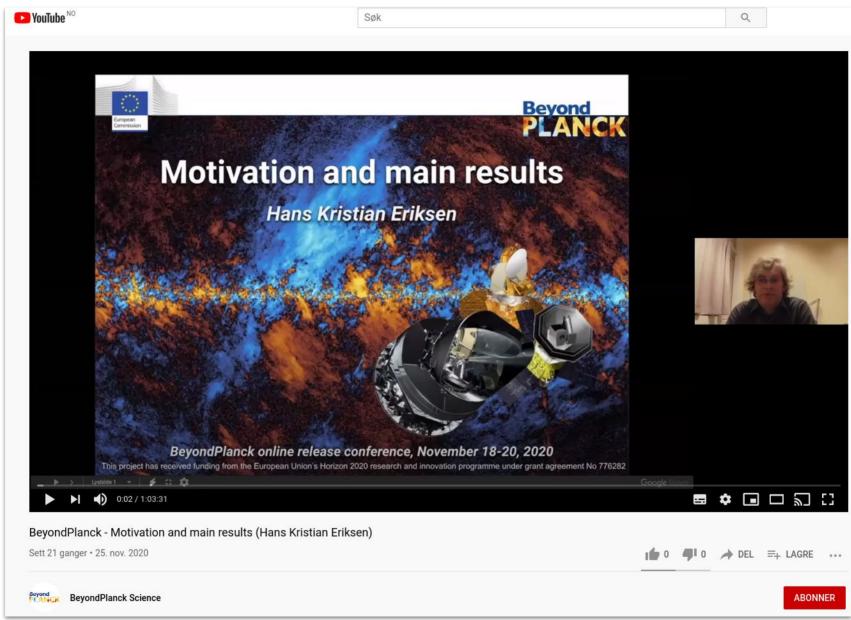
Schedule

Full program of the BeyondPlanck Release Conference. All times are expressed in CET (UTC+1).

Day 1 - 1	Wednesday, 18 Nov		
14:45	Zoom connection opens		
15:00	BeyondPlanck: Motivation and main results (Hans Kristian Eriksen)	Slides	Video
16:00	Planck overview (Charles Lawrence)	Slides	Video
	Break		
17:30	The Planck LFI instrument (Marco Bersanelli)	Slides	Video
18:05	Planck LFI DPC processing and final status (Samuele Galeotta)	Slides	Video
18:40	NPIPE (Reijo Keskitalo)	Slides	Video
19:10	CMB mapmaking by Gibbs sampling (Elina Keihänen)	Slides	Video

Day 2 -	Thursday, 19 Nov		
14:45	Zoom connection opens		
15:00	Noise estimation (Håvard Tveit Ihle)	Slides	Video
15:35	Calibration (Eirik Gjerløw)	Slides	Video
16:05	Sidelobes (Mathew Galloway)	Slides	Video
16:20	Leakage corrections (Trygve Leithe Svalheim)	Slides	Video
	Break		
17:00	Commander and computational aspects (Mathew Galloway)	Slides	Video
17:20	BeyondPlanck frequency maps (Anna-Stiina Suur-Uski)	Slides	Video
17:55	CMB constraints (Loris Colombo)	Slides	Video
18:25	Cosmological parameters (Simone Paradiso)	Slides	Video

ay 3 - I	Friday, 20 Nov		
14:45	Zoom connection opens		
15:00	LiteBIRD (Masashi Hazumi)		Video
15:30	Polarization foregrounds (Trygve Leithe Svalheim)	Slides	Video
16:00	Intensity foregrounds (Kristian Joten Andersen)	Slides	Video
16:25	Preliminary analysis of external data sets (Duncan Watts)	Slides	Video
	Break		
17:15	BeyondPlanck and LiteBIRD (Ragnhild Aurlien)	Slides	Video
17:40	Cosmoglobe (Ingunn Kathrine Wehus)	Slides	Video
18:05	Planck products and PLA (Marcos López-Caniego)	Slides	Video
18:25	Summary and questions (Bruce Partridge)	Slides	Video


More than 180 attendees on opening talk, and more than 110 attendees on last day!

Great interest expressed from many participants

Release conference November 18-20

Talks are available online at Youtube; see project home page for links

Release conference November 18-20

Tutorial November 23-24

Schedule

Day 1 -	Monday, 23 Nov	
14:45	Zoom connection opens	
15:00	Introduction and BeyondPlanck data model (Hans Kristian Eriksen)	
15:30	BeyondPlanck products (Anna-Stiina Suur-Uski)	Slides
16:00	Jupyter I (Ragnhild Aurlien, Trygve Leithe Svalheim)	
16:30	Jupyter II (Ragnhild Aurlien, Trygve Leithe Svalheim)	
17:00	Break	
17:30	Jupyter III (Ragnhild Aurlien, Trygve Leithe Svalheim)	
18:00	The Commander parameter file (Kristian Joten Andersen)	Slides
18:30	Installing Commander and download data set (Maksym Brilenkov)	
19:00	Installing Commander and download data set (Maksym Brilenkov)	

Day 2 -	Day 2 - Tuesday, 24 Nov					
14:45	Zoom connection opens					
15:00	Commander walkthrough (Eirik Gjerløw)					
15:30	Commander walkthrough (Eirik Gjerløw)					
16:00	c3pp and postprocessing (Trygve Leithe Svalheim)					
16:30	Adding external sky maps (Daniel Herman)					
17:00	Break					
17:30	Adding external time-ordered data (Mathew Galloway, Duncan Watts)					
18:00	Adding external time-ordered data (Mathew Galloway, Duncan Watts)					
18:30	Cosmoglobe (Ingunn Kathrine Wehus, Duncan Watts, Metin San)					
19:00	Q&A					

Very popular hands-on tutorial had 70 attendees on the first day, and 50 on the second day.

Papers

Beyond	Home	Project +	Products	Publications	Documentation	Dissemination +	Cosmoglobe
PLANCK		,					o com o g.o.o

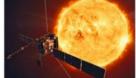
BEYONDPLANCK PUBLICATIONS

Label	Title	Reference
BP I	Global Bayesian analysis of the Planck Low Frequency Instrument data	BeyondPlanck Collabor (2020)
BP II	CMB map-making through Gibbs sampling	Keihänen et al. (2020)
BP III	Computational Infrastructure and Commander	Galloway et al. (2020a)
BP IV	Time-ordered data simulations	Brilenkov et al. (2020)
BP V	Open Science and reproducibility	Gerakakis et al. (2020)
BP VI	Noise characterization and modelling	Ihle et al. (2020)
BP VII	Bayesian estimation of gain and absolute calibration for CMB experiments	Gjerløw et al. (2020)
BP VIII	Sidelobe corrections	Galloway et al. (2020b)
BP IX	Bandpass and Beam Leakage Corrections	Svalheim et al. (2020a)
BP X	LFI frequency map posteriors	Suur-Uski et al. (2020)
BP XI	CMB constraints	Colombo et al. (2020)
BP XII	Cosmological parameter estimation with end-to-end error propagation	Paradiso et al. (2020)
BP XIII	Intensity foregrounds, degeneracies and priors	Andersen et al. (2020)
BP XIV	Polarized foreground emission between 30 and 70GHz	Svalheim et al. (2020)
BP XV	Limits on Polarized Anomalous Microwave Emission	Herman et al. (2020)
BP XVI	Application to simulated LiteBIRD observations	Aurlien et al. (2020)
BP XVII	Application to WMAP	Watts et al. (2020)
BP XVIII	End-to-end validation of BeyondPlanck	Galeotta et al. (2020)
	Constraints on the spectral index of polarized synchrotron emission from WMAP and Faraday-corrected S-PASS data	Fuskeland et al. (2019)
	Planck intermediate results. LVII. Joint Planck LFI and HFI data processing	Planck Collaboration (2
	A Monte Carlo comparison between template-based and Wiener-filter CMB dipole estimators	Thommesen et al. (201

Astronomy and Astrophysics Special Issue

Astronomy & Astrophysics (A&A): Special issues

Parker Solar Probe: Ushering a new frontier in space exploration



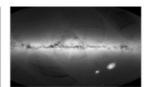
The Solar Orbiter mission (open issue)

Gaia Data Release 2

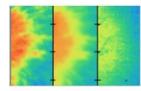
Planck 2018 results

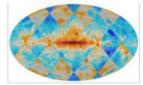
LOFAR Surveys: a new window on the Universe

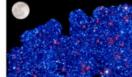
Rosetta mission full comet phase results

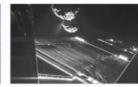

The XXL Survey: second series

H.E.S.S. phase-I observations of the plane of the Milky Way


The MUSE Hubble Ultra Deep Field
Survey

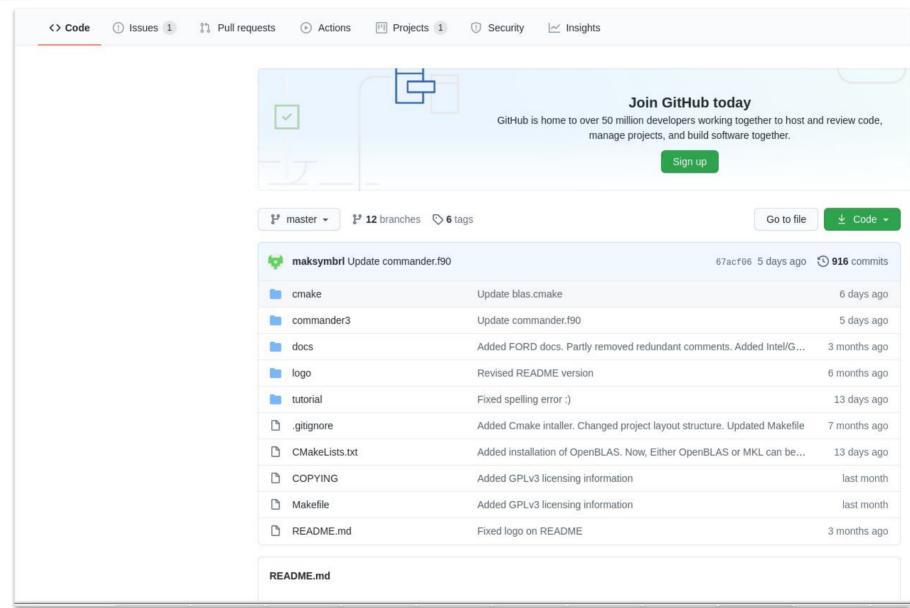

Gaia Data Release 1


The VLA-COSMOS 3 GHz Large Project


GREGOR first results

Planck 2015 results

The XXL Survey: First results



Rosetta mission results preperihelion

Commander source code

Data products

Beyond PLANCK	Home	Project +	Products	Publications	Documentation	Dissemination +	Cosmoglobe	Contact
------------------	------	-----------	----------	--------------	---------------	-----------------	------------	---------

BEYONDPLANCK PRODUCTS

Parameter Files

Filename	Content	Filesize	Format specification
BP_param_c0001.txt	Main Commander parameter file	69 kB	Commander parameter file documentation
BP_param_Tresamp_v1.txt	Commander parameter file for high-resolution CMB TT resampling	69 kB	Commander parameter file documentation
BP_param_resamp_c0001.txt	Commander parameter file for low-resolution CMB polarization resampling	x kB	Commander parameter file documentation

Chain Files

Filename	Content	Filesize	Format specification
BP_c000x_v1.h5 (1, 2, 3, 4, 5, 6)	Main chain files	329 GB each	File Formats
BP_c000x_Tresamp_v1.h5 (1, 2, 3, 4, 5, 6)	High-res CMB T resamp chain files	(2.3, 1.5, 1.7, 1.6, 1.5, 1.7) GB	File Formats
BP_c000x_Presamp_v1.h5 (1, 2, 3, 4, 5, 6)	Low-res CMB P resamp chain files	(437, 437, 437, 376, 397, 392) MB	File Formats

Frequency Maps

Filename	Content	Filesize Format specification	
BP_030_IQU_n0512_v1.fits	LFI 30 GHz frequency map	108 MB	
BP_044_IQU_n0512_v1.fits	LFI 44 GHz frequency map	108 MB	
BP 070 IOU n1024 v1 fits	I FI 70 GHz frequency map	432 MB	

Popular science articles

Home > News > Horizon 2020 funded project BeyondPlanck takes a global approach to understanding the Big Bang

NEWS | 23 November 2020 | Brussels, Belgium | Research Executive Agency

Horizon 2020 funded project BeyondPlanck takes a global approach to understanding the Big Bang

During the last two-and-a-half years, the REA-managed <u>BeyondPlanck</u> project has developed a radically new approach to detecting faint signals in the cosmic microwave background (CMB), an echo from the Big Bang. During a highly attended <u>conference</u> 2 on 18-20 November, the project consortium released and discussed its ground-breaking results on the one single global parametric model for CMB analysis.

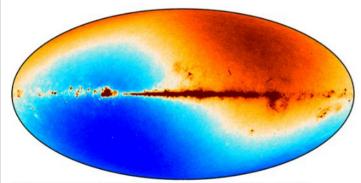
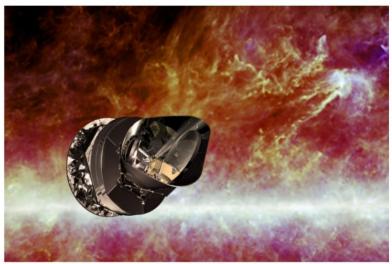



Figure: The microwave sky as observed by ESA's Planck satellite at 30 GHz and reprocessed by the global BeyondPlanck framework

The <u>BeyondPlanck</u> Project was funded under the <u>H2020-COMPET-2017</u> call, under the 'Scientific data exploitation' topic. The project, which started in March 2018, set out to develop the world's first integrated end-to-end data analysis pipeline for CMB observations, and apply this to data collected by the <u>European Space Agency</u> C's (ESA) <u>Planck satellite mission</u> C's. These observations provide a unique window into the early universe and the physics of the Big Bang.

Romteleskopet Planck har samlet data om den kosmiske bakgrunnsstrålingen. UIO-forskere har brukt dataene til å utvikle metoder som kan gi svar på spørsmålet om hvordan universet oposto, om mørk materie og om mørk energi. Illustrasion: ESA

Nå er forskerne klare til å ta imot gravitasjonsbølger fra The Big Bang

De kaller det et epokegjørende gjennombrudd i analyser av gravitasjonsbølger. Nå venter de bare på neste generasjons måleinstrumenter.

Av Eivind Torgersen

Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

"BeyondPlanck"

COMPET-4 program

PI: Hans Kristian Eriksen

o Grant no.: 776282

Period: Mar 2018 to Nov 2020

Collaborating projects:

"bits2cosmology"

ERC Consolidator Grant

PI: Hans Kristian Eriksen

Grant no: 772 253

o Period: April 2018 to March 2023

"Cosmoglobe"

ERC Consolidator Grant

o PI: Ingunn Wehus

o Grant no: 819 478

Period: June 2019 to May 2024

