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Summary

Over the last century, cosmology has developed into a high-precision
science. For instance, cosmic microwave background (CMB) and
galaxy surveys have constrained the physics of the Universe at early
and late times, respectively, in great detail. However, periods like the
Epoch of Reionization and the Epoch of Galaxy Assembly remain data-
starved, and details about the physics governing these epochs are highly
uncertain. To fill this gap, the technique of line intensity mapping
(LIM) collects all light from bright and faint sources of some redshifted
emission line without resolving any individual sources, resulting in an
unbiased 3D map of the large-scale structure in the Universe up to high
redshifts. The Carbon monOxide Mapping Array Project (COMAP),
the main subject of this thesis, is currently in its Pathfinder stage
and is one of the leading LIM experiments. It is aiming to map the
Epoch of Galaxy Assembly (cosmic redshift z = 2–3) and Epoch of
Reionization (z = 6–8), using the rotational emission lines of carbon
monoxide (CO(1–0) and CO(2–1)), measured at 26–34 GHz.

This thesis contains work on two successive generations of the
COMAP data analysis pipeline, called COMAP Early Science (ES)
and Season 2 (S2). The work entails aspects of both the low-level
analysis of the raw time- and frequency-ordered data and the high-
level pipeline that computes power spectra to infer the physics around
cosmic noon.

In the first generation of the pipeline, developed for COMAP ES,
we filter out systematic effects from the data, such as continuum
foreground, 1/f gain fluctuations, ground pickup, and standing waves
in the telescope optics. Furthermore, we calibrate the data and bin
the time- and frequency-ordered data into maps. Subsequently, we
compute cross-power spectra between maps of different feeds and
elevations, each containing independent detector- and elevation-specific
systematic errors, to construct a robust and sensitive estimator for
the extragalactic CO(1–0) power spectrum. The resulting feed-feed
pseudo-cross-power spectra (FPXS), containing about a year’s worth
of data, are the first direct constraints on the CO(1–0) clustering power
spectrum found in the literature.

In the second-generation pipeline, we build on the lessons learned
from COMAP ES and introduce several new filters to mitigate new
systematic effects uncovered by integrating the increased data volume
of S2. Specifically, we find two new highly pointing- and frequency-
correlated systematic effects, coined the turn-around (TA) and start-
of-scan (SoS) effects, which likely originate in standing waves in the
optical path or electronics of the telescope. To address these new
systematic effects, we develop two new principal component analysis
(PCA) filters, one acting on the time-domain in each detector and the
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other in the map-domain. After filtering, the maps are consistent with
noise expectations, and the noise integrates down with additional data.

To increase the robustness against the TA and SoS, which seem
to correlate to specific groups of feeds, we modify the S2 power
spectrum methodology only to compute feed-group pseudo-cross-power
spectra (FGPXS). We improve the accuracy of our power spectrum
uncertainties by estimating the S2 power spectrum errors from the
power spectra of randomized half-difference maps that inherit all noise
properties and biases due to the low-level pipeline filters from the
data. Combining this with a set of 312 difference-map null tests and
new and improved transfer function estimators, we ensure that the
final data product of COMAP S2 is consistent with instrumental noise
expectations and is corrected for known biases. The COMAP S2 power
spectrum provides the world’s tightest direct constraints on the 3D
CO(1–0) clustering power spectrum at z = 2–3 at the time of writing.
The upper limits on the CO(1–0) power spectrum at 95 % confidence
are an order of magnitude deeper than those of COMAP ES and the
CO Power Spectrum Survey (COPSS; the only comparable CO(1–0)
LIM survey with published results). As such, we find that COMAP is
en route to secure the world’s first cosmic CO detection at the Epoch
of Galaxy Assembly.

Next, we consider some algorithmic improvements, developed
primarily for the BeyondPlanck and Cosmoglobe CMB projects, that
can be adapted in a future high-precision COMAP LIM pipeline. That
is, an iterative Bayesian approach is a more well-motivated framework
than the classic COMAP pipeline, as it can directly map out the
posterior probability space of all experimental parameters and reveal
non-trivial correlations between parameters. We show the power of
the Commander3 framework by using a set of simulations of the Planck
LFI 30 GHz data to validate the Commander3 global Bayesian Gibbs
sampler, including gain and correlated noise estimation as well as
mapmaking. The framework performs well and recovers all input
parameters as expected within the experimental uncertainties. It
also provides a detailed overview of all non-trivial uncertainties and
correlations of the system. Incorporating COMAP into the Commander
framework will be an important future goal.

Finally, in the last piece of work of this thesis, we propose
a maximum likelihood method that directly takes the Planck HFI
bolometer transfer function into account in the mapmaking stage
without having to use any deconvolution steps. This results in
an effective beam ellipticity and full-width-at-half-maximum that
are, respectively, 64 % and the 2.3 % decreased as compared to the
deconvolution performed by the original Planck HFI team. The main
contribution to this effort was to perform an independent validation
of the algorithm using simplified 1D toy models of the Planck HFI
143 GHz data.
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Samandrag

Gjennom det siste hundreåret har kosmologi utvikla seg til å bli
ei presisjonsvitskap. Til dømes har granskingar av den kosmiske
mikrobølgjebakgrunnen og kartlegging av galaksar auka kjennskapen
vår om fysikken i både det tidlege og seine universet. Men
periodar som reioniseringsepoken og galaksedanningstida er framleis
prega av lite data, og detaljar omkring fysikken som styrer desse
epokane er svært usikre. For å fylle dette hòlet nyttar teknikken
spektraldjupnekartleggjing (LIM) seg av alt ljos frå både ljossterke og
svake kjelder av ei bestemt raudforskuva utslippslinje utan å oppløyse
individuelle kjelder. Dette skapar eit forventingsrett 3D-kart over
storskalastrukturen i universet opp til høge raudforskuvingar. The
Carbon monOxide Mapping Array Project (COMAP), hovudtemaet i
denne avhandlinga, er for tida i sin Pathfinder-fase og er eit av dei
leiande LIM-eksperimenta. Målet er å kartleggje galaksedanningstida
(kosmisk raudforskuving z = 2–3) og reioniseringsepoken (z = 6–8)
gjennom bruk av rotasjonsutslippslinjene av karbonmonoksid (CO(1–
0) og CO(2–1)) målt ved 26–34 GHz.

Denne avhandlinga inneheld arbeid på to etterfølgande gen-
erasjonar av COMAP databehandlingssystemet, kalla COMAP Early
Science (ES) og Sesong 2 (S2). Det omfattar lågnivåanalysen av dei rå
tid- og frekvensordna dataa og høgnivåanalysen som reknar ut effek-
tspektra for å avgjere lovane til fysikken rundt tida av høgaste stjer-
neskaping.

I den fyrste generasjonen av databehandlinga, utvikla for COMAP
ES, filtrerer me bort systematiske effektar frå dataa, slik som kontin-
uumsframgrunn, 1/f -forsterkingsfluktuasjonar, jordplukk, og ståande
bølgjer i teleskopoptikken. Deretter kalibrerer me dataa, og projis-
erer dei frekvens- og tidordna dataa til kart på himmelen. So reknar
me ut krysseffektspektra mellom kart av ulike mottakarar og peke-
høgder, sidan dei kvar inneheld uavhengige detektor- og høgdespesi-
fikke systematiske feil. Med dette lagar me ein robust og kjenslevar
estimator for det utanomgalaktiske CO(1–0) effektspekteret. Dei re-
sulterande mottakar-mottakar pseudokrysseffektspektra (FPXS), som
inneheld om lag eit års data, er dei fyrste direkte avgrensingane på
CO(1–0) opphopingsspekteret i forskingslitteraturen.

I den andre generasjonen av databehandlinga byggjer me vidare på
erfaringane frå COMAP ES og innfører fleire nye filter for å dempe
nye systematiske effektar som kjem fram når me legg saman den
auka datamengda frå S2. Spesielt finn me to nye svært pekings-
og frekvenskorrelerte systematiske effektar, kalla vendingseffekten
(TA) og sveipbyrjingseffekten (SoS). Sannsynlegvis stammar dei
frå ståande bølgjer i optikken eller elektronikken til teleskopet.
For å handtere desse nye systematiske effektane, utviklar me to
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nye hovudkomponentanalyse filter (PCA-filter), eitt som verkar på
tidsdomenet i kvar detektor og det andre i kartdomenet. Etter filtrering
er karta konsistente med støyforventingar, og støyen integrerer ned med
meir data.

For å gjere oss meir motstandsdyktig mot TA- og SoS-effektane,
som ser ut til å korrelere med bestemte grupper av mottakarar,
modifiserer me metodologien for S2 effektspekter til å berre rekne
ut mottakar-gruppe pseudokrysseffektspektra (FGPXS). For å auke
grannsemda av effektspekterutryggleikane, estimerer me feila i S2
effektspekter ved hjelp av effektspekter av tilfeldige halv-differansekart,
som arvar alle dei rette støyeigenskapane og forventingsskeivskapane
frå lågnivåanalysefiltrene. Ved å kombinere dette med eit sett av
312 differansekartnulltestar, so vel som nye og betre estimatorar
av overføringsfunksjonane, sikrar me at dataproduktet frå S2 er
konsistent med instrumentale støyforventingar og er korrigert for
kjende skeivskapar. Det resulterande COMAP S2 effektspekteret gjev
strammaste direkte avgrensingar på 3D CO(1–0) opphopingsspekteret
i verda. Me får ein storleiksorden djupare øvre grenser på CO(1–0)
effektspekteret ved 95 % tryggleik enn dei frå COMAP ES og CO
Power Spectrum Survey (COPSS; den einaste samanliknbare CO(1–0)
LIM-granskinga med publiserte resultat). Dermed finn me at COMAP
er på veg til å sikre den fyrste kosmiske CO-målinga i verda frå
galaksedanningstida.

Vidare vurderer me nokre algoritmeforbetringar, utvikla for
BeyondPlanck og Cosmoglobe CMB-prosjekta, som kan tilpassast
ei framtidig høgpresisjons COMAP LIM-analyse. Det vil seie, ei
iterativ gjennomgåande Bayesiansk analyse er ein betre grunngitt
framgangsmåte enn den klassiske COMAP analysen. Den kartleggjer
direkte a-posteriori-sannsynfordelinga til eksperimentelle parametrar
og avdekkjer ikkje-openberre korrelasjonar mellom parametrar. Me
viser styrken til Commander3-koden ved å bruke eit sett med
simuleringar av Planck LFI 30 GHz data for å validere Commander3
Gibbs-prøvetakinga, inkludert forsterkings- og korrelert støyestimering
i tillegg til kartlaginga. Koden fungerer godt og attskapar alle
byrjingsverdiar som forventa innan eksperimentelle utryggleikar. Den
gjev i tillegg oversikt over alle ikkje- openberre utryggleikar og
korrelasjonar i systemet. Å innleme COMAP i Commander3-koden vil
vere eit viktig framtidig mål.

Til slutt, i det siste bidraget til denne avhandlinga føreslår
me å handtere Planck HFI bolometer-overføringsfunksjonen direkte
i ein optimal sannsynmaksimeringsmetode. Dette gjev ein effektiv
stråleelliptisiteten og full-bredde-ved-halv-maksimum som er høvevis
64 % og 2.3 % mindre i høve til den opphavelege Planck HFI metoden.
Hovudbidraget til dette arbeidet er å utføre ei uavhengig validering av
algoritmen ved hjelp av forenkla 1D modellar av Planck HFI 143 GHz
dataa.
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Chapter 1

Cosmology

Cosmology is the science of the Universe itself, its history and future, including
all its contents. Cosmology is concerned with the Universe at its largest scales, as
opposed to astrophysics, which tries to answer the questions of how the Universe
works locally on smaller and intermediate scales. However, while maturing into a
modern high-precision science, it became clear that to understand the Universe as
a whole, we also need to understand how it works locally on small scales as well.
That is, there might be yet poorly understood physics of the small-scale Universe
that couple to the very largest of scales.

Throughout this chapter, we will go through some of the history and concepts
of modern cosmology. Unless otherwise stated, the general information on the
cosmological formalism in the following is based on Dodelson (2003), Carroll (2019)
and Particle Data Group Collaboration (2022) (Ch. 22.-29.).

1.1 Modern cosmology

When describing the evolution and structure of the Universe, modern cosmology
relies on a few foundational principles. Under the assumption that the Universe
on the largest scales is isotropic (i.e., looks equivalent in any direction) and using
the Copernican principle, that the Universe has no special reference frame, we
obtain the Cosmological principle: the Universe on large scales is both isotropic
and homogeneous.

Combining this principle with the theory of general relativity (GR), derived
by Einstein (1915), we find that space-time and the matter-energy content of the
Universe interact with each other via the compact form

Gµν + Λgµν = 8πGTµν , (1.1)

where G and Λ are the gravitational and cosmological constants, respectively. Gµν

is the Einstein tensor, gµν is the metric tensor, and Tµν is the energy-momentum
tensor. The left- and right-hand sides of Eq. (1.1), respectively, describe the
geometry and energy-matter content of space-time.

Shortly after the derivation of GR, Edwin Hubble and Georges Lemaître
observed the recessional velocity of distant galaxies as a function of separation
distance and deduced that the Universe seemed to expand with time (Lemaître,
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Chapter 1. Cosmology

1927; Hubble, 1929). This expansion of the Universe can be parameterized by a
scale factor, a(t), as a function of time, t, by

a(t)
a0

= λobs

λem
= 1

1 + z
, (1.2)

where a0 = 1 is the scale factor today, z is the redshift of the light, and λobs and
λem the received and emitted wavelengths, respectively. Thus, when measuring
light that has traveled through space over cosmological distances, we can deduce
when it was emitted in the Universe’s history by measuring its redshift.

Assuming the Universe follows the Cosmological principle, Einstein’s field
equations can then be solved to obtain the time evolution of the scale factor a(t)
through its expansion rate H(t) = ȧ(t)

a(t) ;

H2 = H2
0

(
Ωγ,0

a4 + Ωc,0 + Ωb,0

a3 + ΩΛ,0

)
. (1.3)

This so-called Friedmann equation is parameterized by the expansion rate today,
the Hubble parameter, H0 ≈ 70 km/s/Mpc, as well as the energy-density
parameters Ωγ,0, Ωc,0, Ωb,0 and ΩΛ,0 of, respectively, photons (i.e., light), cold dark
matter (CDM), baryonic matter (i.e., “normal” matter) and dark energy (Λ) at
present time.

With this relatively simple equation, the evolution of the Universe on the very
largest scales can be predicted. Furthermore, if the Universe is expanding, it could
have started out with (near) infinite density from which all we know has emerged.
Throughout the 20th and 21st centuries, this so-called Big Bang theory has been
tested again and again by experimental evidence and has resulted in the current
cosmological standard model, the ΛCDM model (Planck Collaboration I., 2020).

Figure 1: Planck CMB temperature power spectrum (red) and the best-fit ΛCDM
prediction (blue). The power spectrum can be thought of as the variance of structures
in the CMB temperature map seen in Fig. 4 (y-axis) at different scales (given by the
multiples ℓ on the x-axis). See Sec. 3.6.1 for more on power spectra. Adapted from
Planck Collaboration I. (2020).

The ΛCDM model has been immensely successful at describing the evolution of
the Universe across its ∼ 13.8 billion years of existence, and describes cosmological
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1.2. The history of the Universe in three acts

observations from Mpc to (particle) horizon scales (i.e., the distance a photon
could have traveled since the beginning of time) with only six free parameters
(Planck Collaboration I., 2020). An example of this striking agreement between the
model and observables is shown in Fig. 1, showing the Planck temperature power
spectrum (Planck Collaboration IV., 2020) and the best fit ΛCDM prediction.
It is characterized by a matter-energy budget at the present day dominated by
cold dark matter and a cosmological constant (dark energy). Together, these two
components comprise around 95 % of the energy in the Universe today (Planck
Collaboration I., 2020). The geometry of the ΛCDM model is spatially flat (i.e.,
parallel light rays forever remain parallel), while it is spatially expanding over
time.

With its six parameters constrained to percent level accuracy and the immense
explaining power and simplicity of the ΛCDM model, it has firmly cemented the
Big Bang paradigm as the leading theory of the Universe (Planck Collaboration I.,
2020). Despite its success, several big questions about the nature of our Universe
remain to be answered. As we will later discuss, this thesis is trying to aid in
filling this gap of knowledge by considering line intensity mapping to probe the
poorly understood epochs of the Universe. However, before we do this, we briefly
introduce the history of the Universe as we believe it to have happened.

Figure 2: Schematic of the history of the Universe from the Big Bang, through the
Epochs of Recombination, the Dark Ages, Reionization, Galaxy Assembly, until the
present. Image credit: NAOJ

1.2 The history of the Universe in three acts

We can divide the evolution of the Universe into three main acts: the Universe at
primordial times, the Universe at recombination, and the Universe from the Dark
Ages to today. Figure 2 shows a schematic of the timeline of the Universe through
its 13.8 billion-year existence. As context for our later discussion on line intensity
mapping in Ch. 2, we will in the following briefly summarize the Universe’s history
in its three main parts. For a review of the history of the Universe, see Dodelson
(2003), Schneider (2015) and Particle Data Group Collaboration (2022; Ch. 22.–
29.).
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Chapter 1. Cosmology

1.2.1 The Universe at primordial times

As discussed earlier, we know that the Universe is expanding. This suggests that
when going back to primordial times, the Universe must have been near infinitely
hot and dense as the scale factor a → 0. We do not know much about out
Universe’s origin as our current physical theories break down at those energy scales,
nevertheless, we call this initial moment the Big Bang (Carroll, 2019; Particle Data
Group Collaboration, 2022, Ch. 22).

We know from observations of the cosmic microwave background (CMB) that
the Universe at early times was very hot, dense, and smooth, with density and
temperature fluctuations from the mean of only δ ∼ 10−5 (Planck Collaboration
I., 2020). However, this poses an interesting question: Why are there small
fluctuations rather than a completely smooth universe, and what seeded these
anisotropies?

It turns out that these problems can all be solved by a brief yet extremely
rapid period of expansion at early times (see Vazquez et al., 2018; Achúcarro et al.,
2022; Particle Data Group Collaboration, 2022, Ch. 23., for reviews). This phase
of exponential expansion right after the Big Bang, first proposed by Guth (1981),
is called inflation and is currently one of the most active areas of CMB research.
The cause of inflation is still a highly debated topic in cosmology. One hypothesis
is that inflation was caused by a scalar field, the inflaton field, which caused the
exponential expansion of the Universe and eventually decayed into the standard
model particles of quantum physics, marking the end of cosmic inflation (Linde,
1982; Albrecht & Steinhardt, 1982; Kofman et al., 1994). As a consequence, it could
blow up quantum fluctuations to cosmological scales and thus could be the very
mechanism that gave rise to the anisotropies observed in the CMB (Mukhanov &
Chibisov, 1981, 1982; Hawking, 1982; Guth & Pi, 1982; Starobinsky, 1982; Bardeen
et al., 1983; Mukhanov, 1985).

Such an expansion phase would result in points at very large distances being
causally connected, thereby solving the so-called horizon problem. The horizon
problem arose when it was observed that scales larger than ∼ 0.5◦ had the same
temperature, despite the large distance implying they should not have had time
to interact and come to thermal equilibrium within the age of the Universe.
Additionally, the Universe could start with any spatial geometry as a short inflation
period would straighten out any curvature (just like the wrinkles in a deflated
balloon disappear when inflating it). This thus solves the so-called flatness problem
of cosmology where very special initial conditions would otherwise be required
to explain the observed spatial flatness of the Universe. Cosmic inflation as a
solution to the horizon and flatness problems was initially proposed by Guth
(1981) Linde (1982), Albrecht & Steinhardt (1982), Kazanas (1980) and Sato
(1981). Current estimates suggest that an expansion of 50–60 e-foldings (i.e.,
an expansion of ex) over a fraction of a second would be enough to be consistent
with observations (Komatsu et al., 2009; Planck Collaboration X., 2020; Particle
Data Group Collaboration, 2022, Ch. 23.).

At the end of inflation, after the first particles and anti-particles had formed,
the Universe was still hot and dense, and particles, anti-particles, and photons
would be in an equilibrium of annihilation and creation. Not until the temperature
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Figure 3: Three main CMB satellite missions to date with 10◦ × 10◦ sections of their
respective full-sky CMB maps. Image credit: NASA/JPL-Caltech/ESA.

of the Universe was below about kBT ∼ 1 MeV was it cold enough for neutrinos
to decouple and free stream. Atomic nuclei could not form until the temperature
of the expanding Universe had reached kBT ∼ 0.1 MeV. This epoch is known
as Big Bang nucleosynthesis (BBN), and the predicted relative abundances of
light elements such as hydrogen, deuterium, and lithium, and predicted mass
fractions of baryons‚ are additional great successes of the Big Bang theory (Planck
Collaboration I., 2020; Particle Data Group Collaboration, 2022, Ch. 24.).

1.2.2 Recombination and the cosmic microwave background

In the second act of the Universe’s evolution, we focus on its transition from a
hot plasma to a neutral state. A telltale sign of a Big Bang universe that initially
was much denser and warmer is an isotropic background radiation that follows a
thermal blackbody spectrum. In such a model, the Universe would, shortly after
the Big Bang, consist of a hot photon-matter plasma of photons scattering off
free electrons. However, due to the Universe’s expansion, the primordial plasma’s
temperature decreased until it was cold enough for the free electrons to bond with
atomic nuclei, forming neutral atoms. This point, roughly 380.000 years after the
Big Bang, is called recombination. The photons initially trapped by scattering on
the free electrons could now freely travel through the Universe. Thus, any observer
in the Universe will see a shell of cosmic photons of radius corresponding to the
distance the light has traveled since recombination. This shell is often referred
to as the last scattering surface (LSS). This radiation from the afterglow of the
Big Bang was first discovered accidentally by Penzias & Wilson (1965) in the
microwave spectrum as an anomalous ∼ 3 K excess in antenna temperature. We
refer the interested reader to Ch. 22. and 29. of Particle Data Group Collaboration
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(2022) for an extensive review on recombination. Today, about half a century later,
we have several high-precision satellite measurements of the CMB. Starting with
the Cosmic Background Explorer (COBE; Mather et al., 1990, 1994), launched in
1989 into a low-Earth orbit, it was shown with exquisite sensitivity that the CMB
is an almost perfect blackbody (Fixsen et al., 1996) and that the CMB is very
smooth with fluctuations of only δ ∼ 10−5 from the mean (Smoot et al., 1992;
Bennett et al., 1994, 1996).

Although COBE measured the CMB anisotropies, its angular resolution was
relatively poor. This was improved by the Wilkinson Microwave Anisotropy
Probe (WMAP) in 2001 (Bennett et al., 2003) and the Planck satellite in 2009
(Planck Collaboration I., 2011). They were both launched to the second Sun-Earth
Lagrange point and produced two important legacy CMB anisotropy maps. The
progress in CMB maps from COBE, WMAP to Planck, and the full-sky CMB
map of the Planck DR3 release (Planck Collaboration VI., 2020), can be seen in
Figs. 3 and 4. Although the CMB anisotropies are mere ∼ 10−5 fluctuations from
the mean temperature, they are thought to be the very seeds from which more
advanced structures like galaxies and galaxy clusters formed.

As CMB experiments like Planck and WMAP have measured the temperature
fluctuations in great detail, the focus of current and future CMB surveys has
transitioned to more subtle effects such as CMB polarization. The CMB
polarization can be broken down into two components, the E- and B-mode
polarization, see Fig. 5. The E-mode pattern has already been measured by
Planck (Planck Collaboration I., 2020). It is caused by the scattering of photons
in local temperature quadrupoles due to pressure waves in the photon-baryon
plasma at recombination. One of the predictions of the epoch of cosmic inflation
we discussed in Sec. 1.2.1 is the existence of primordial gravitational waves. These
are currently one of the only primordial physical mechanisms that would form a
B-mode polarization pattern in the CMB(Hu & White, 1997; Zaldarriaga & Seljak,
1997; Dodelson, 2003; Kamionkowski & Kovetz, 2016). As such, B-modes could be
a direct window back to inflation and help probe the Universe at its very earliest
moments (Seljak & Zaldarriaga, 1997; Kamionkowski et al., 1997; Kamionkowski
& Kovetz, 2016). Additionally, inflation predicts the existence of a non-Gaussian
distribution of anisotropies in the CMB and subsequent structures that formed
from it (see Planck Collaboration IX., 2020, for Planck constraints on CMB non-
Gaussianities).

1.2.3 The maturing Universe – from recombination to structure
formation

We have reached the third and longest (in terms of cosmic time) act of the history
of the Universe. It starts with recombination and progresses to the current age. In
the following, we summarize the highlights of this phase of the Universe’s history
(for more details, see, for instance, textbooks Dodelson (2003), Schneider (2015)
and (Carroll, 2019), as well as reviews Ch. 22., 25. and 29. of (Particle Data
Group Collaboration, 2022)).

At recombination, when the temperature of the photon-baryon plasma dropped
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Figure 4: Full-sky CMB temperature anisotropy full-sky map from the Planck DR3
Commander pipeline (Planck Collaboration IV., 2020). The figure is adapted from
Planck Collaboration IV. (2020).

below the ionization energy of hydrogen, about 13.6 eV, breaking the coupling
between baryons and photons as neutral atoms formed. Once the neutral atoms
form, the photons can free-stream through the Universe, and the baryons are free
to clump together. The dark matter is theorized to have decoupled from the
photon bath much earlier than the regular matter and, as such, is able to clump
much earlier. This provides the necessary gravitational wells to allow the baryonic
matter to clump and form the structure we see today. This provides some of the
best evidence for dark matter that we have today (Dodelson, 2003; Carroll, 2019).

For several hundred million years, during the so-called Dark Ages, the Universe
was filled with cold neutral gas, with the only emitted radiation being from the
21 cm hydrogen line. The cold neutral gas eventually clumped together enough to
form the first stars and galaxies (see, e.g., Hashimoto et al., 2018; Willis et al.,
2020). This period called the Cosmic Dawn, marked the beginning of the Epoch
of Reionization (EoR) in which the radiation of stars and galaxies heated the
previously cold neutral Universe to once again become ionized. Observations of
spectra of distant quasars1 (e.g., Gunn & Peterson, 1965; Becker et al., 2001) and
estimates of the optical depth to reionization by Planck (Planck Collaboration I.,
2020) suggest this transition happened around redshift z ∼ 6− 10 (see Eq. (1.2)),
and at z ∼ 6 the Universe was entirely ionized. Though current evidence suggests
that reionization occurred fast and late and was initially driven by high-mass
stars in small galaxies, there are significant uncertainties regarding the details of
reionization, and it remains an active field of research (Planck Collaboration I.,
2020; Kovetz et al., 2017).

1Quasar stands for “quasi-stellar object” (QSO). They are active galactic nuclei that glow
bright due to the accretion of matter onto a supermassive black hole. See Schneider (2015).
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Figure 5: Examples of E- and B-mode polarization patterns (top and bottom,
respectively). The figure is taken from Rahimi & Reichardt (2024).

In surveys of the galaxy distribution on large scales, it can be seen that matter
clumped to form structure on some characteristic scales corresponding to roughly
150 cMpc (Eisenstein et al., 2005; Cole et al., 2005). This preferential clustering is
caused by the so-called baryonic acoustic oscillations (BAO). The scale at which
BAOs occur corresponds to the distance a photon-baryon pressure wave could have
traveled up until they decoupled. The baryonic structure was frozen in place while
the photons traveled onward. Hence, BAOs form an important standard ruler
that can be calibrated from the first acoustic peak of the CMB power spectrum
seen in Fig. 1 to measure cosmological distances and the cosmic expansion history
(Dodelson, 2003; Particle Data Group Collaboration, 2022, Ch. 22.).

From redshift z ∼ 8 to 3, the star formation rate steadily grew until it peaked
somewhere around z ∼ 2, after which it again declined until the present day.
During the epoch of peak cosmic star formation, around z ∼ 2, also referred to
by the Epoch of Galaxy Assembly (EoGA) or Cosmic Noon, the star formation
rate density (SFRD) was around ten times larger than at the present (see Madau
& Dickinson, 2014, and references therein, for extensive review of the cosmic star
formation history).

The galaxies that formed during these times up until today collectively emit a
glowing cosmic background (CB) of electromagnetic radiation, not too dissimilar
from the CMB. This radiation, the extragalactic background light (EBL), can be
decomposed into different components such as the cosmic infrared, optical, and
line emission background (CIB, COB, and CLB, respectively), the latter of which
we will discuss more in Ch. 2 about mapping the CLB with line intensity mapping.
As we will discuss later in Ch. 3, mapping the cosmic carbon monoxide (CO) line
emission fluctuations is the primary goal of the COMAP experiment, the main
subject of this thesis. The CMB was emitted during a relatively short amount of
cosmic time and hence appears to us as a 2D projected last scattering surface. In
contrast, the EBL is the product of all cumulative emissions from the 3D structure
of stars and galaxies in the Universe since they started to form at Cosmic Dawn
until today (see Lagache et al., 2005; Hill et al., 2018; Mashian et al., 2016, for
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more information about EBL).
Going further through cosmic time, we eventually reach the present. This

epoch is characterized by an exponential expansion of the Universe, as directly
observed by measuring the distance to distant galaxies using supernovae type Ia
used as standard(izable) candles (Riess et al., 1998; Perlmutter et al., 1999; Riess
et al., 2022a,b), but which can also be inferred from Planck observations of the
CMB power spectrum (Planck Collaboration I., 2020). The exponential expansion
is thought to be caused by some negative pressure component with constant energy
density, often called dark energy or cosmological constant. Though we do not know
precisely what the cosmological constant is, it is a phenomenological component
needed to explain this expansion in the standard ΛCDM model mentioned in Sec.
1.1.

Figure 6: Slice through the large-scale structure as mapped by the 2dF Galaxy Redshift
Survey (2dFGRS). Each blue dot represents a galaxy. Image credit: 2dFGRS.

The physics of structure formation at late times is highly complex as
matter perturbations have collapsed into highly nonlinear structures governed by
complicated interactions. Most of our direct knowledge about galaxies and the
large-scale structure at low redshift has been obtained through galaxy surveys
like the Sloan Digital Sky Survey (SDSS; Eisenstein et al., 2005; Alam et al.,
2021; Abdurro’uf et al., 2022), 2dF Galaxy Redshift Survey (2dFGRS; Colless
et al., 2001; Cole et al., 2005), the 6dF Galaxy Survey (6dFGS; Jones et al.,
2009; Beutler et al., 2011), and the WiggleZ Dark Energy Survey (Drinkwater
et al., 2010; Blake et al., 2012). These have mapped the large-scale structure
by measuring the position and brightness of large numbers of individual galaxies
and quasars, as shown in Fig. 6, which shows an example of a 2dFGRS large-
scale structure survey. However, as we will discuss in the next chapter, galaxy
surveys have their limitations, and many unanswered questions about the nature
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of astrophysics and cosmology remain to be answered by future surveys (such as
COMAP and other line intensity mappers).
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Chapter 2

Line Intensity Mapping: generalizing
a CMB survey to map 3D volumes

As discussed in the previous chapter, we know a lot about the evolution and
contents of the Universe from, e.g., CMB and galaxy surveys. However, there
are still many questions to which we do not know the answers. In particular, the
periods between recombination and the present, i.e., the Dark Ages, Cosmic Dawn,
EoR and the EoGA (see Fig. 2), are data-starved research fields. To overcome this
lack of knowledge, a promising and relatively new field called line intensity mapping
(LIM) has been developed over the last decades and is starting to gather data. As
a contribution to this field, the work presented in the Papers I-V are important
milestones. COMAP is one of the leading LIM experiments and will be discussed
further in Ch. 3. In this chapter, we will explore what LIM is, some of its scientific
goals, and experiments that contribute to the field.

Most of the information presented in this chapter is based on the reviews of
Kovetz et al. (2017) and Bernal & Kovetz (2022), and we refer the interested reader
to their work, as well as references therein, for more details on the field in general.

2.1 Line intensity mapping

Line intensity mapping is a field within observational astrophysics and cosmology
designed to fill the gap of detailed direct observations of the EoR (Madau et al.,
1997; Battye et al., 2004; Peterson et al., 2006; Loeb & Wyithe, 2008). It aims to
map the Universe volumetrically from the current era back to recombination when
the Universe becomes opaque.

To do this, a LIM survey will collect all photons of some atomic or molecular
emission line from a given volume of the Universe, whether emitted from a bright
point source like a galaxy cluster or diffuse gas and dwarf galaxies. Furthermore,
by measuring the frequency of the received light, we can infer the cosmic redshift
and, hence, the line-of-sight look-back distance the photons have traveled.

An example of a simulated LIM survey in a CO rotational and the [C II]
ionized carbon emission lines can be seen in Fig. 7. As mentioned in Ch. 1,
the 3D large-scale structure has historically been systematically probed by galaxy
redshift surveys. They do this by probing only the brightest point sources of the
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Figure 7: Simulated comparison between mapping large-scale structure with galaxy
and line intensity mapping surveys. From left to right, the panels show a simulated
galaxy distribution at redshift z = 5, the galaxies as observed by galaxy surveys, and
respectively an unbiased CO and [C II] line intensity mapping survey. Adapted from
Bernal & Kovetz (2022).

structure, represented by the yellow dots seen in the two left panels of Fig. 7,
and hence provide a biased view of the large-scale structure. That is, there might
be a significant amount of faint and diffuse matter below the detection threshold
of a galaxy survey. Meanwhile, LIM surveys trade resolution power for a direct
measurement of the large-scale structure, as seen in the two right panels of Fig. 7.
This is achieved by collecting more photons in the same amount of integration
time but from a larger area. As such, galaxy surveys are better suited to explore
the physics within galaxies, while LIM’s unbiased maps of cosmic structures are
superior at measuring the statistical properties of the probed field. Line intensity
surveys are, therefore, both quicker and cheaper at mapping out the matter in the
Universe as compared to galaxy surveys.

Intensity mapping maps the cosmic line emission background (CLB)
fluctuations in 3D space by using the spectral information of different emission
lines. This is unlike a CMB or EBL survey, which can only observe the 2D
projected intensity. In other words, one can think of LIM as a CMB survey with
a high-resolution spectrometer attached to it. Many of the current line intensity
mapping experiments build on the expertise of the CMB community because the
observational techniques and data analysis of LIM are very similar to that of a
classic cosmic background experiment.

Although LIM will greatly complement existing cosmology and astrophysics
experiments, it is important to note that it also has its challenges. Firstly, as
mentioned earlier, LIM cannot resolve individual galaxies and, therefore, cannot
give detailed insight into individual galaxies, their morphology, etc. Secondly,
emission lines from a different spectral line can be redshifted into the experimental
bandpass. This is known as the interloper problem, illustrated in Fig. 8. Some
proposed solutions to this problem (as summarized by Kovetz et al., 2017) are
cross-correlations between different LIM surveys targeting the same redshift with
different emission lines and bandpasses (Visbal & Loeb, 2010; Gong et al., 2012,
2014; Roy et al., 2024; Fronenberg & Liu, 2024), targeted masking of bright known
foreground sources (Visbal et al., 2011; Gong et al., 2014; Breysse et al., 2015; Silva
et al., 2013, 2015, 2021; Sun et al., 2018), as well as using the Alcock-Paczyński
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Figure 8: Overview of several CO(J → J–1) rotational lines, and the 158 µm [C II] line
as a function of redshift and observed frequency. Experiment pass-bands are shown as
shaded regions.

effect to separate dominant foreground interlopers at the wrong redshift (Lidz &
Taylor, 2016; Cheng et al., 2016). Lastly, LIM requires a high dynamic range as the
target signal is extremely weak, while the foregrounds and systematics are orders
of magnitude brighter. Thus, LIM observations are relatively easy to perform
due to the fast mapping speed and lack of angular resolution but challenging in
post-processing due to the dynamic range problem (see more discussion on LIM’s
advantages and challenges in the review by Kovetz et al., 2017).

2.2 Science goals and experiments

As mentioned, LIM, as originally proposed, was mainly focused on mapping the
Universe in the 21 cm neutral hydrogen line to infer the physics of the EoR
and Cosmic Dawn. However, since those early days of LIM numerous different
emission lines, such as CO rotation lines, the [C II] fine structure line, Lyα, Hα,
Hβ, [O II] and [O III], have been proposed to probe a wide range of scales, physical
environments and epochs (Kewley et al., 2019). Today, numerous LIM experiments
are ongoing, funded, or are being proposed. In Fig. 10, we show an overview of
the survey area of the most important proposed or ongoing experiments grouped
by their line of interest.

We can divide the LIM science goals and the corresponding experiments into
roughly three groups (with some overlap): the EoR, the EoGA, and large-scale
structure and cosmology. In the following, we will summarize the main aspects of
the three main LIM science regimes and mention some experiments within each
group.
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Figure 9: Interplay between different emission lines in the IGM and ISM around the EoR.
The neutral IGM (in blue) is traced by the hydrogen 21 cm line, while CO traces star-
forming galaxy clusters (bright yellow) and [CII]. The clusters create ionization bubbles
(diffuse yellow-white) traced by the Lyα line.

2.2.1 Epoch of Reionization and the Dark Ages

As mentioned earlier in Ch. 1, we know that the Universe transitioned from neutral
to ionized around redshift z ≈ 6–15. For instance, evidence for this period is
the smoothing of the CMB anisotropies due to CMB photons scattering off free
electrons at reionization (Planck Collaboration VI., 2020). We also observe a
Gunn-Peterson trough in the spectra of distant quasars (see, e.g., Becker et al.,
2001; Bouwens et al., 2015) suggesting the inter-galactic medium went from a
neutral to ionized hydrogen state. Currently, it is thought that the Universe was
reionized relatively late and fully ionized by z ∼ 6, by massive low-metallicity
stars in small galaxies (Robertson et al., 2013, 2015). However, details about the
exact processes that ionized the Universe are largely unknown. Was reionization
primarily driven by massive population III stars1, supernova feedback, or quasars
in large or small galaxies? How long did reionization last? What does the topology
of the reionization bubbles in the Universe look like?

Line intensity mapping aims to answer these questions by making maps of
the large-scale structure from Cosmic Dawn to the end of the EoR. In fact, most
initial efforts of LIM pertained to the study of the EoR (Morales & Wyithe, 2010;
Furlanetto et al., 2006). Because of the unbiased nature of LIM, the effect of all
emitters on reionization is captured, both from bright large galaxies and quasars,
as well as smaller dwarf galaxies. Using the neutral 21 cm (H I) line, the neutral

1Population III stars refer to the first generation of massive and ultra metal-poor stars. For
comparison, the Sun is a Population I star, while the oldest detected metal-poor stars are called
Population II stars. See, e.g., Bodenheimer (2011); Schneider (2015).
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intergalactic and interstellar media (IGM and ISM, respectively) can be mapped
through the EoR and potentially back to the CMB. The reionization bubbles
around ionizing UV emitters will appear as dark imprints in the H I map (Kovetz
et al., 2017). In addition, the CO rotational lines and the [C II] fine structure
158 µm line of ionized carbon map the molecular clouds and dusty star-forming
medium within galaxy clusters. These CO and [C II] maps will trace the center
of the ionization bubbles. The bubbles themselves are traced by ionizing UV
radiation and can be mapped using the Lyα hydrogen line.

This interplay between the different emission lines, as illustrated in Fig. 9, is a
powerful probe of the physics of reionization on a wide range of scales. Measuring
the same cosmic volumes with two or more different emission lines can provide an
effective way to cancel systematic effects and noise of different surveys and help
to confirm or rule out any falsely claimed detections (Kovetz et al., 2017).

Examples of surveys that work on mapping the EoR and Cosmic Dawn in
H I are the interferometric experiments HERA (Abdurashidova et al., 2022) and
SKA-LOW (Santos et al., 2015) at, respectively, z ∼ 5–27 and z ∼ 3–7. The
ground based single-dish experiments CCAT-Prime/FYST (z ∼ 3.3–9.3, CCAT-
Prime Collaboration et al., 2023), TIME (z ∼ 5–9, Staniszewski et al., 2014) and
CONCERTO (z ∼ 4.3–8.5, Fasano et al., 2024; Van Cuyck et al., 2023) target
[C II] and the future COMAP-EoR survey (Cleary et al., 2022; Breysse et al.,
2022) targets CO (z ∼ 5–8) to constrain how star formation drove reionization.
Lastly, the recently launched satellite mission SPHEREx, targeting the Lyα line
at redshifts of z ∼ 5.2–8, will provide measurements of the ionized IGM and star
formation during reionization (Doré et al., 2018). As seen in Fig. 8, the [C II]
surveys generally also have several CO rotational lines as interloper foregrounds
and can thus also perform LIM on the EoGA. An overview of some of the survey
areas on the sky is shown in Fig. 10.

2.2.2 Epoch of Galaxy Assembly

Around half of today’s stellar mass was formed at high redshifts z ≳ 1.3 in the
EoGA, and just about 1 % of the stars were formed during the EoR (Madau &
Dickinson, 2014). Consequently, to understand star formation processes, it is
important to observe the star-forming galaxies at the EoGA z ∼ 2–5.

Our knowledge about high-redshift star formation stems primarily from bright
individual galaxies, like the ones detected by Huynh et al. (2017), usually observed
in UV, optical, or IR by galaxy surveys (Kovetz et al., 2017). Meanwhile, much of
the star formation takes place in faint and cold molecular clouds in small galaxies.
It is traced by CO rotational lines and the [C II] 158 µm fine structure line, which
become exceedingly difficult to observe individually at high redshift (Hollenbach &
Tielens, 1999; Kovetz et al., 2017; Lagache et al., 2018). Line intensity mapping,
which collects the aggregate emission from all faint sources, is ideally suited for
this task and can probe the star formation history without high-luminosity bias.
Using empirical scaling relations, one can then connect the, e.g., CO, emission to
the cosmic star formation rate density (SFRD) across cosmic time (see, e.g., Li
et al., 2016; Chung et al., 2022a). We will present some more examples of this
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later in Sec. 3.6.5.
Among the experiments targeting the EoGA we have the single-dish surveys

COMAP-Pathfinder (the main subject of this thesis, discussed in greater detail
later in Ch. 3) mapping CO(1-0) at z ∼ 2–3 (Cleary et al., 2022) and the upcoming
SPT-SLIM, which will map several CO rotational lines in the range z ∼ 0.5–2
(Karkare et al., 2022). We also have the interferometric CO Power Spectrum
Survey (COPSS) at z − 2.3–3.3 (Keating et al., 2015, 2016) and mmIME z ∼ 1–
5 (Keating et al., 2020). Other experiments are the balloon-borne experiments
EXCLAIM (Ade et al., 2020; Switzer et al., 2021) and TIM (previously called
STARFIRE Vieira et al., 2020) that both target [C II] at, respectively, z ∼ 0–3.5
and z ∼ 0.52–1.67. The previously mentioned satellite mission SPHEREx will
target Hα, Hβ, [O II] and [O III] during the EoGA at z ∼ 0.1–5 to constrain star
formation (Doré et al., 2018). The HETDEX experiment, originally designed as a
Lyα galaxy survey targeting z ∼ 1.88–3.52, can also be used as a LIM survey
(Kovetz et al., 2017; Gebhardt et al., 2021). In Fig. 10, we see an overview
of the conducted or planned survey areas on the sky. The small patch sizes of
many EoGA surveys indicate that the experiments are in their pathfinder phase
to demonstrate the first detections of their respective targeted lines before the field
sizes are increased to cover more large-scale modes in the sky.

2.2.3 Large-scale structure and cosmology

Line intensity mapping can also be used as a powerful probe of cosmology by
mapping the large-scale structure at low redshifts. As the fluctuations in the CMB
are the very seeds for structure formation in later epochs of the Universe, one can
access much of the same cosmological information at a later time by mapping out
large linear scales (Kovetz et al., 2017).

For instance, one of the problems of research fields, such as primordial non-
Gaussianities, is cosmic variance. That is, for each scale, there is only a limited
number of possible ways to arrange structures. This gives rise to an intrinsic
sample variance, called cosmic variance, that becomes larger for large-scale modes.
When looking for primordial non-Gaussianities in the CMB, we are limited by the
intrinsic uncertainty of cosmic variance due to having access to only a limited
number of modes on a 2D projected surface. Meanwhile, a LIM survey will
produce tomographic maps of large-scale structures that were seeded by the same
fluctuations observed in the CMB. In such a 3D map, the cosmic variance is lower
because there is access to more modes (Knox, 1995; Oxholm & Switzer, 2021). As
such, fields like inflationary cosmology can greatly benefit from large-scale LIM
surveys.

Other areas of interest within cosmology in which LIM can be highly
complementary are, for instance, constraining the nature of dark matter and dark
energy, modifications of standard ΛCDM, and general relativity. For example,
LIM can map the evolution of large-scale structures across the transition from
matter to dark energy domination. This is thus a powerful probe of the nature of
dark energy (Kovetz et al., 2017).

In addition, LIM can be used to obtain accurate BAO measurements across
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cosmic time. With continuous standard ruler measurements from BAOs across
time, we can get accurate information about the cosmic expansion history
and angular diameter distance estimates up to high redshift. As such, LIM
might provide a pathway to alleviate the tension between high- and low-redshift
estimates of H0 from, respectively, the CMB and supernova type Ia surveys (see
Kamionkowski & Riess, 2023, for review on Hubble tension).

Among LIM surveys probing cosmology by mapping large-scale structure, we
find experiments such as CHIME (Amiri et al., 2024; CHIME Collaboration et al.,
2022), HIRAX (Crichton et al., 2022), SKA-MID and its precursor MeerKAT (Paul
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Figure 10: Overview of line intensity mapping fields across the sky from the literature:
COMAP (Cleary et al., 2022), COPSS I/II (Keating et al., 2015, 2016), mmIME
(Keating et al., 2020), EXCLAIM (Switzer et al., 2021), CCAT-Prime/FYST (CCAT-
Prime Collaboration et al., 2023), CONCERTO (Fasano et al., 2024; Van Cuyck et al.,
2023), TIM (Vieira et al., 2020; Agrawal et al., 2024), HETDEX (Gebhardt et al.,
2021), SPHEREx (Doré et al., 2018), CHIME (Amiri et al., 2024; CHIME Collaboration
et al., 2022), BINGO (Wuensche et al., 2021), MeerKAT (Paul et al., 2023; Cunnington
et al., 2023; Mauch et al., 2020), HERA (Abdurashidova et al., 2022), HIRAX (Crichton
et al., 2022), TIME (Staniszewski et al., 2014; Crites & Lau, 2024) and SPT-SLIM
(Karkare et al., 2022; Zebrowski & Stover, 2024). The COMAP-Wide and LOFAR fields,
which are completely overlapping due to the collaborative effort of the two surveys, are
preliminary. Fields below 5◦ in radial size are plotted as 5◦ markers to make them visible
on the plot. The experiments are grouped according to their emission lines of interest.
The background shows the Planck LFI 30 GHz frequency map from the Planck Legacy
Archive2(Planck Collaboration I., 2020).

2Planck Legacy Archive: https://pla.esac.esa.int/pla/#maps
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et al., 2023; Cunnington et al., 2023; Mauch et al., 2020), and BINGO (Wuensche
et al., 2021). These target the H I line at redshifts of z ∼ 0.8–2.5 (CHIME and
HIRAX), z ∼ 0–3 (SKA-MID) and z ∼ 0.13−0.48 (BINGO) (Kovetz et al., 2017).
In Fig. 10, we can see the survey areas of the different experiments. Note how
interferometric 21 cm experiments targeting large-scale structures at low redshifts
probe larger fields on the sky than typical single-dish surveys mapping the EoR
and EoGA with other lines.
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Chapter 3

The Carbon monOxide Mapping Ar-
ray Project

Now that we have laid down the broader context of cosmology and how line
intensity mapping can complement it, we can introduce the Carbon monOxide
Mapping Array Project (COMAP). The COMAP experiment is the main focus of
Papers I-V and, therefore, most of the work presented in this thesis. Specifically,
the work presented in these papers can further be divided into the Early Science
results (ES) (Papers I-II) and the Season 2 (S2) Results (Papers III-V). These
contain the work of two successive data releases, one from 2022 presenting the
state-of-the-art LIM pipeline and results and the other from 2024 with updated
and significantly improved methodology and results.

We start with introducing the survey and instrument itself and subsequently
go through the data model, systematics effects, and data analysis presented in
Papers I-V roughly in the same order as the data are processed in the pipeline
(i.e., low- and high-level analysis, and then modeling and inference).

3.1 The COMAP experiment

The COMAP experiment is a LIM experiment that aims to map the large-scale
distribution of diffuse star-forming environment in the EoR and EoGA (Cleary
et al., 2022). This is done by measuring the well-studied rotational lines of CO,
the second most abundant molecule after H2, that directly traces the molecular
clouds in which stars form (Schulz, 2012). These emit (sub-)millimeter radiation
at equally spaced frequencies of 115.27 GHz when jumping between rotational
states and are therefore often called the CO emission ladder (Demtroder, 2010).
The COMAP survey is built to utilize this fact and designed so that multiple
CO rotational lines can be measured with the same experimental bandpass.
Specifically, the survey will be conducted in several phases briefly summarized in
the following, and in Fig. 11 showing the frequency-redshift coverage of COMAP
and its phases together with two overlapping surveys COMAP will work within
cross-correlation.
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Figure 11: Frequency-redshift ranges covered by the COMAP-Pathfinder, COMAP-EoR,
and COMAP-Wide phases of the experiment, across both the 30 GHz Ka- and 18 GHz
Ku-bands. The redshift ranges of the overlapping LOFAR H I and HETDEX Lyα surveys
are shown as gray bands. Redshifted CO(J→ J− 1) are indicated as black lines. Above
the red dotted line at z ∼ 8, there is expected to be a diminishing amount of cosmic
CO (Barkana & Loeb, 2001), and therefore, we hatch corresponding COMAP CO-line
overlap regions.

3.1.1 The COMAP-Pathfinder instrument

The ongoing five-year COMAP-Pathfinder, the main subject of this thesis, is the
first phase of the COMAP survey. The Pathfinder aims to map the CO(1–0)
115.27 GHz and CO(2–1) 230.54 GHz (as well as possibly CO(3–2) 345.81 GHz)
lines at frequencies between 26–34 GHz. These correspond, respectively, to
redshifts z = 2.4–3.4 shortly before peak cosmic star formation at the EoGA,
and z = 6–8 (and z = 10–12) in the EoR (see Fig. 11, though note that there is
not expected to be much cosmic CO emission beyond z ∼ 8; Barkana & Loeb,
2001). By mapping 12 deg2 on the sky, the COMAP-Pathfinder is the first survey
that is able to place direct constraints on the 3D clustering of CO(1–0) and is
hence ideally suited to constrain global properties of the star-forming galaxies at
the EoGA. The COMAP-Pathfinder is thus a test bed for technology and will
demonstrate the possibility of CO line intensity mapping at the clustering scale
(Cleary et al., 2022).

In fact, the COMAP-Pathfinder has already demonstrated two key milestones:
the Early Science (ES) series of seven papers (of which Papers I and II of this
thesis correspond to ES papers III and IV) and the Season 2 Results series of
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Figure 12: COMAP-Pathfinder telescope from two different angles and times of day, with
some humans in the foreground as a reference scale. Private photo.

three papers (where all are included in this work; Papers III-V). The ES papers
presented the COMAP-Pathfinder instrument and showed that the systematics
can be removed down to below the white noise level and that the data integrated
down according to white noise expectations. As a result, we provide the first direct
3D LIM constraints of the cosmic CO(1–0) clustering (Paper II). The S2 results in
Papers III–V continue on this path by significantly improving the ES data analysis,
driving the upper limits on cosmic CO down another order of magnitude. We will
return to the specifics of the data analysis of ES and S2 presented in the papers
of this work in later sections.

The COMAP-Pathfinder fields a 10.4 m Cassegrain telescope, with a 1.1 m
secondary mirror, (Leighton, 1977) at the Owens Valley Radio Observatory
(OVRO), seen in Fig. 12. This corresponds to a full-width-half-maximum of the
telescope beam of about 4.5′ at 30 GHz. The telescope receiver has a 20-feed
single-polarized detector focal plane array, one of which is blind and only used
for diagnostics. Each detector has an independent electronics chain. To cool the
detector array, the feeds themselves are located in a cryostat and kept at a system
temperature of 30− 60 K.

The receiver is sensitive to frequencies in the Ka-band, corresponding to 26–
34 GHz. The 26–34 GHz signal is passed through a series of two down-converter
modules (DCM1 and DCM2), located on the exterior of the receiver cryostat
(internally, coined “saddlebags” for their visual appearance, see Fig. 13 right
panel) and the telescope side cabin, respectively. The signal is then split into 4096
∼ 2 MHz frequency channels by a ROACH2 spectrometer, distributed across two
4 GHz bands. Band A extends from 26 − 30 GHz and band B from 30 − 34 GHz.
Bands A and B are divided into sidebands of width 2 GHz. The signal at all
frequencies is boosted by the same low-noise amplifier (LNA) for a given feed to
increase the signal-to-noise ratio (S/N) of the extragalactic CO. The instrument
captures a spectrum every 20 ms and stores the resulting raw time-ordered data
(TOD) on site before it is transferred to Oslo for data analysis. To calibrate the
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Figure 13: Left: COMAP-Pathfinder receiver array with the calibration vane, weather
windows, and cryostat weather cover as fielded on the telescope. Private annotated
photo. Right: Detector down-converter module (DCM1 or “Saddlebags”) assignment
inside the receiver backend. Courtesy of James Lamb.

data (this is shown later in Sec. 3.4), an ambient temperature-absorbing calibration
vane, with temperature sensors, can be rotated in front of the detector array
to create a reference load (see the left panel of Fig. 13). This overview of the
instrument compiles some of the information presented by Cleary et al. (2022)
and Lamb et al. (2022), and we refer the interested reader to their work for more
details on the receiver.

3.1.2 Future COMAP phases

There are several planned future expansions to the COMAP-Pathfinder survey.
The first of these is the recently funded COMAP-Wide, which will survey a
400 deg2 area in the HETDEX spring field. It will overlap with the Low-Frequency
Array AARTFAAC-12 (LOFAR A12) H I survey (van Haarlem et al., 2013) and
the HETDEX galaxy survey (Gebhardt et al., 2021). Note that the field location,
see Figs. 10 and 15, and the exact survey design are somewhat uncertain (and
obtained through private communication) at the time of writing. During the four-
year survey, two and a half years will be spent collecting around 5000 hours of
observations using a duplicate of the 26–34 GHz COMAP-Pathfinder instrument.
The primary goal of the survey is to place 30 times tighter constraints on the
CO×HI power spectrum at z ∼ 7 than would be possible with the state-of-the-art
CO (COMAP; Papers III-V) and H I (HERA; (HERA Collaboration et al., 2023))
experiments individually in cross-correlation between the COMAP-Wide 400 deg2

survey and the LOFAR A12 surveys. As the survey field will overlap with the
HETDEX spring field, COMAP-Wide will also perform a cross-correlation between
the HETDEX Lyα emitter (LAE) survey at z ∼ 3.

To explore star formation at the EoR the COMAP-EoR and COMAP-ERA
(extended reionization array) will map CO(1–0) at z = 6–8 using a 19-feed Ku-
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Figure 14: (Top) Section of the COMAP Galactic Plane Survey (Rennie et al., 2022)
compared to the (bottom) Planck LFI 30 GHz map (Planck Collaboration II., 2020;
Planck Collaboration IV., 2020) in the same patch.

band receiver on an 18 m new generation Very Large Array (ngVLA) prototype
dish, as well as several copies of the COMAP-Pathfinder instrument (see previous
subsection) sensitive to CO(2–1) from the same EoR redshifts (see Fig. 11). The
observations in the Ka- and Ku-bands can then also be used to separate the CO(1–
0) and CO(2–1) lines from the two redshift intervals. For more details on the future
COMAP phases, we refer the interested reader to Cleary et al. (2022) and Breysse
et al. (2022).

3.1.3 COMAP survey fields and scanning strategy

CO science fields and auxiliary Galactic plane survey

As described in Paper I, COMAP targets three main fields, Fields 1-3. For the field
locations, see Figs. 10 and 15, are chosen to avoid bright point source foreground
emission at 30 GHz (see backgrounds in Figs. 10 and 15 for Planck LFI 30 GHz
map; Planck Collaboration I., 2020). To maximize observation efficiency, the fields
are spread across right ascension. Additionally, to allow for cross-correlations with
external galaxy catalogs (see, e.g., Chung et al., 2019, 2022a; Silva et al., 2021;
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Breysse et al., 2019, for more details), the fields overlap (as seen in Fig. 15) with
the Hobby-Eberly Telescope Dark Energy eXperiment (HETDEX) galaxy survey
targeting LAEs at z = 1.88 – 3.52 (Gebhardt et al., 2021), the Spitzer/HETDEX
Exploratory Large-Area (SHELA) survey area (Papovich et al., 2016), as well as
the Sloan Digital Sky Survey (SDSS) Stripe 82 (Abazajian et al., 2009; Annis et al.,
2014).

When the CO science fields are unavailable, COMAP conducts a Galactic plane
survey (GPS) to measure the spectral energy distribution (SED) of anomalous
microwave emission (AME; Rennie et al., 2022). The COMAP GPS has mapped
the Galactic plane between 20◦ < ℓ < 40◦ and |b| < 1◦.5 and conducted some
detailed studies of, for instance, the λ-Orionis H II region (Rennie et al., 2022;
Harper et al., 2025). Figure 14 shows part of the COMAP GPS of Rennie et al.
(2022) together with the previous state-of-the-art 30 GHz GPS map by Planck
LFI 30 GHz (Planck Collaboration II., 2020; Planck Collaboration IV., 2020). At
30 arcmin the Planck LFI 30 GHz beam is about 6.5 times as large as that of
COMAP, giving COMAP a much higher spatial resolution as seen in Fig. 14.
Additionally, due to COMAP’s unique frequency resolution at 30 GHz, COMAP
is ideally suited to perform high-resolution (both spatially and spectrally) surveys
of the Galactic foregrounds and the region around the AME turnover in the
continuum foreground SED. For examples of such measurements, we refer the
interested reader to Rennie et al. (2022) and Harper et al. (2025).

Scanning strategy

When observing one of the main CO science fields (Fields 1–3 in Fig. 15),
the data are divided into different observations, typically about one hour long,
each associated with its own observation ID (obsID). During an observation, the
telescope will point to the leading edge of the field and perform scans around
a fixed azimuth (Az) and elevation (El) point while the field drifts across the
sky. Subsequently, when the field has completely drifted past, the telescope is
again repointed to the leading edge of the field, and a new scan is performed.
Each observation is divided into several of these scans. This scanning strategy
is illustrated in Fig. 16, both as seen from the horizontal telescope (Az-El)
coordinates and as seen from equatorial coordinates where the field is stationary.

The scanning motion between repointings can be performed in several different
ways, as shown in Fig. 17. The two panels of Fig. 17, respectively, show a Lissajous
and constant elevation scanning (CES) type. The two scanning patterns can both
be described as a harmonic motion of the form

az(t) = A sin(at + ϕ) + az0 (3.1)
el(t) = B sin(bt) + el0, (3.2)

where the telescope pointing will oscillate around a fixed point (az, el) = (az0, el0)
with angular amplitude given by the parameters A and B. The phase shift between
oscillations in azimuth and elevation is given by ϕ and the shape of the scanning
trajectory is defined by a/b. Lissajous scans are characterized by two phase-shifted
oscillations, while CES scans only move across azimuth (i.e., B = 0). A scan
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Figure 15: Zoom-in on the COMAP field locations seen in Fig. 10. The overlapping fields
of HETDEX (Gebhardt et al., 2021), SHELA (Papovich et al., 2016) and SDSS Stripe
82 (Abazajian et al., 2009; Annis et al., 2014) are also shown for reference. Note that
the COMAP-Wide and LOFAR A12 field position and extent are highly preliminary.
The background shows the Planck LFI 30 GHz frequency map from the Planck Legacy
Archive (Planck Collaboration I., 2020).

usually lasts between 3–10 min with an azimuthal scanning period of around 10–
20 s (Paper I).

In the COMAP ES papers (Papers I and II), one of the main objectives
was to test both scanning strategies as they each have their own advantages
and disadvantages. Although generally superior in cross-linking and scanning
speed, Lissajous is more prone to systematic errors, such as atmospheric and
ground pickup due to elevation changes, as compared to CES scans (more on
these systematics in Sec. 3.2). Indeed, one of the conclusions of the ES papers
(Papers I and II) is that the Lissajous scans are challenging to clean properly, and
thus, only CES scans are used in S2 of COMAP (Papers III–V).

Furthermore, in the ES papers elevations from about 30◦–75◦ are used, while we
limited our range to 35◦–65◦ in elevation in the S2 papers because evidence for far-
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Figure 16: Example of COMAP scanning strategy as seen in local Az-El coordinates
at OVRO (left) and in equatorial coordinates (right). In the left panel, hit contours
of feed 1 are shown and are colored according to the field position in Az-El as time
progresses in relation to the constant elevation scan pointing of the telescope (in black).
The repointing between scans is colored in red. For readability, the field position is only
shown for about every second scan. In the right panel, the hit contours of feed 1 are
shown in relation to the pointing of two individual scans with two different azimuth
speeds and are colored according to the progression of time.

sidelobe pickup at high and low elevations was found in the ES papers. Specifically,
at high and low elevations, one or more sidelobes transition from hitting the sky
to the mountains at OVRO. This causes sharp gradients in the signal that are
difficult to remove in data analysis. Another change to the scanning strategy that
happened about midway through the second season of observations was a reduction
in the azimuth speed of the telescope drive due to wear in the mount drives. As
seen in Fig. 16, showing examples of the two scanning strategies in equatorial
coordinates, this resulted in the effective field footprint increasing somewhat and
accumulating more hits at the edges of the field where the telescope now spends
more time. We can also see how the telescope performs a lower number of sweeps
in roughly the same amount of time.

3.2 The COMAP data model

As discussed in Sec. 3.1, the COMAP experiment aims to isolate the large-scale
extragalactic CO signal in the data. To do so, we start by introducing the
COMAP data model and illustrate how the data look like (Papers I and III),
before continuing with an overview of the data analysis pipeline that aims to
extract the CO emission in the next sections (Papers I–V). We will be somewhat
brief when describing the low-level aspects of the data and the analysis thereof, as
our main contributions to the COMAP analysis have been to higher levels of the
analysis pipeline, such as mapmaking and power spectrum estimation.

The power output of the telescope at a given frequency channel ν, time t and
detector i can, as explained in Paper I and III, be written as

Ptνi = kB∆νGtνiT
tνi
sys , (3.3)
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Figure 17: Example of telescope pointing in Az-El coordinates of two observations of
Field 1, respectively, with a Lissajous (top) and constant elevation (bottom) scanning
strategy. The two observations each have several scans, i.e., scanning periods between
repointings. Courtesy of Jonas Lunde, see Paper I.

where the Boltzmann constant is given as kB, the channel width as ∆ν, the time
and frequency dependent gain by Gtνi and the system temperature as T tνi

sys .
The system temperature, seen as a function of frequency in Fig. 18, quantifies

all contributions to the signal and noise in the system and can be expanded into

Tsys =Treceiver + Tatmosphere + Tground + TCMB

+Tforegrounds + TCO. (3.4)

The system temperature, which ranges from 30–70 K with a mean of around 44 K
(see appendix Paper I for distribution), is thus a sum of the effective receiver
noise temperature Treceiver, the contribution to the signal from the atmosphere
Tatmosphere, the ground pickup Tground, foreground continuum emission Tforeground,
the CMB temperature monopole TCMB, as well as the extragalactic CO emission
we want to detect TCO.

We can write Eq. (3.3) on a more explicit form as

dtνi = ⟨dtνi⟩(1 + δgti)
[
1 + Pcel

ti Bνi

(
∆scont + ∆sCO

ν

)
+ Ptel

ti Bνi∆sground + sSW
tvi + nw

tνi + ncorr
ti

]
, (3.5)

where the time averaged-data ⟨dtνi⟩ is a normalization factor corresponding
approximately to the product of the time-averaged gain system temperatures,
gνi ≡ ⟨Gtνi⟩ and Tνi ≡ ⟨T sys

tνi ⟩ (absorbing the constants of Eq. (3.3) into gνi).
The shape of this term is illustrated in Fig. 19. In other words, the full gain
Gtνi is decomposed into a frequency and time-dependent part, gνi and (1 + δgti)
respectively. The gain fluctuations δgti are common for all frequencies at any
given time and feed as the same LNAs process all channels. The sky signals from
foregrounds and extragalactic CO, ∆scont and ∆sCO, are projected from celestial
coordinates into the time stream by the pointing matrix Pcel

ti (see Sec. 3.1.3 for
pointing) after being smoothed by the beam Bνi. The beam-convolved ground
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Figure 18: Typical time-averaged system temperature of Feed 1 over the experimental
frequency bandpass. Courtesy of Håvard Ihle, see Paper I.

pickup map Bνi∆sground (e.g., Fig. 22) is mapped into the time domain by the
horizontal coordinate pointing matrix Ptel

ti . Note that the beam operator Bνi (see
Fig. 20 for illustration) is absorbed into the signal sky and ground signal maps
∆sCO

ν , ∆scont and ∆sground in Paper I, but we explicitly include it here for clarity.
We let sSW

tvi denote time-, frequency- and feed-dependent standing waves (SW)
in the data. Lastly, the terms nw

tν and ncorr
t describe respectively the white and

correlated noise. The instrumental noise is drawn from a zero-centered Gaussian
distribution

ntνi ∼ N
(

0,
Tνi√
∆ν∆t

)
, (3.6)

with a standard deviation following the radiometer equation, σw
tν = Tνi√

∆ν∆t
. As

we can see, the noise level of σνi is determined by the integration time ∆t, which
means that the noise level decreases as more data are collected and combined. The
correlated temperature noise ncorr

tνi of the COMAP telescope is mostly caused by
atmospheric fluctuations and time-dependent standing waves, with a 1/f spectrum

P (f) = σw
tν

[
1 +

(
f

fknee

)α]
, (3.7)

where the knee frequency fknee and slope α determine the shape of the 1/f
component. However, note that the gain fluctuations δgti are an additional and
dominant source of 1/f noise.

In the following, we will summarize each of the temperature contributions in
δTtνi, contributing to the data model in Eq. (3.5), in terms of their brightness and
stability.
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Figure 19: Typical time-averaged unfiltered and uncalibrated raw data per frequency for
some detector of the COMAP telescope. The coloring marks the four different 2 GHz
sidebands of the data. Courtesy of Jonas Lunde, see Paper I.
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Figure 20: Simulation of COMAP beam in units of decibel (dB) at 30 GHz made with
TICRA Tools by Lamb et al. (2022). The right panel shows an inset of the inner 20◦×20◦

of the beam in the left panel.

3.2.1 Receiver noise

The receiver temperature is the largest contribution to the noise in the system due
to the finite temperature of the cryostat that causes thermal noise. It contributes
about 10–30 K to the system temperature and is very stable due to the HEMT
LNAs used by COMAP (Lamb et al., 2022). In the left panel of Fig. 21, an example
is shown in which the raw data are dominated by instrumental noise.

3.2.2 Atmospheric signal

The atmosphere’s temperature contributes an overall 15–20 K to the system
temperature. The atmospheric signal is highly dependent on the local environment
at OVRO and can vary with weather and pointing (the latter of which we will
return to in Sec. 3.4.2). It is correlated on time scales of several seconds but behaves
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Figure 21: Examples of raw data time-streams taken during different observing conditions
for each feed and averaged over frequencies. The observation used in the left panel is
taken under good conditions and dominated by instrumental noise. Each “step” in
the “staircase” represents a constant elevation scan between repointings. In the right
panel, an observation is shown where there are clear signs of bad weather contamination
correlating across feeds.

as uncorrelated noise on time scales of hours or longer. Atmospheric temperature
fluctuations represent one of the sources of 1/f noise in the system. Due to
different feeds looking through the same atmosphere, the atmosphere pickup is
highly correlated across feeds and frequencies, as can be seen in the right panel of
Fig. 21, showing some strong weather spikes in all feeds.

3.2.3 Ground pickup signal

Radiation from the ground will be picked up by the telescope as spillover that
diffracts around the secondary mirror, as well as from reflections off the secondary
mirror support legs, hitting the detector array. The latter is highly pointing
dependent and causes far-sidelobe pickup from the landscape at OVRO as well
as potentially the sun and moon at certain times. A TICRA Tools1 simulation,
made by Lamb et al. (2022), is seen in Fig. 20. It shows the telescope beam
with its ∼ 65◦ far-sidelobes at 30 GHz. The far-sidelobe contribution can cause
sharp transitions in the signal pickup, which can be challenging to remove in the
data analysis. Therefore, certain elevation ranges and proximity to the Sun and
Moon are avoided (see earlier Sec. 3.1.3). In Fig. 22, the OVRO ground profile,
convolved with the COMAP beam model, shows the approximate level of ground
pickup expected, as well as the sharp gradients seen in certain elevation ranges.
Overall, the ground signal makes up about 5–6K of the total system temperature.

1See https://www.ticra.com/software/grasp/

30

https://www.ticra.com/software/grasp/


3.2. The COMAP data model

0 50 100 150 200 250 300 350
Azimuth [degrees]

0

20

40

60

80

El
ev

at
io

n 
[d

eg
re

es
]

Field 1
Field 2
Field 3

0

2

4

6

8

Gr
ou

nd
 p

ick
up

 [K
el

vi
n]

Figure 22: Ground profile at OVRO convolved with the COMAP beam model, showing
the approximate expected scale of the ground pickup signal. The three COMAP field
trajectories are overplotted, in addition to the elevation range used for CO-science in
COMAP S2. Courtesy of Jonas Lunde, see Paper III.

3.2.4 Continuum emission

The telescope will pick up radiation from continuum sources such as synchrotron,
free-free, thermal, and spinning dust emissions from the Galactic foreground.
These are static in time but not isotropic on the sky and make up about 1 mK
of the total signal. The CMB, which, due to its cosmological nature, is static
and isotropic, contributes 2.7 K to the system temperature. Lastly, there can be
some extragalactic continuum foregrounds, which we, however, treat on the same
footing as the Galactic foregrounds. The level of continuum emission within and
around our fields can be seen in Figs. 15 and 10, showing the Planck LFI 30 GHz
map (Planck Collaboration I., 2020) around our Field locations.

The Galactic foregrounds and CMB signals have in common that they are
spectrally smooth and behave approximately (to first order) as a flat monopole in
our degree-scale COMAP fields in the angular direction. This is in sharp contrast
to extragalactic CO, which rapidly varies in frequency and, as we will see later in
Sec. 3.4 makes it easier to separate the two.

3.2.5 Standing waves

Reflections in the telescope optics or between the ends of cables in the electronics
give rise to standing electromagnetic waves in the COMAP data. Because most
of these cavity lengths will be constant in time, so will the standing wave signal.
This can then be easily subtracted by removing a static signal. However, time
dependence in the cavity length, e.g., from mechanical vibrations or stretched
cables (which can be different from detector chain to detector chain), can lead to
non-trivial standing wave contamination of the data. Indeed, as we will discuss in
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Sec. 3.4, this is one of the most challenging systematics to handle in the COMAP
data analysis as standing waves can be highly correlated with both frequency and
pointing at the same time. As such, they behave similarly to a static sky signal.
The standing wave signal usually has an amplitude of around 10–300 mK.

3.2.6 Extragalactic CO

The targeted extragalactic CO emission is highly subdominant in amplitude to the
other signal contribution with only the order of a few µK. This illustrates why
LIM (in general and) with CO is a dynamic range problem that tries to isolate
fluctuations of the order ≲ 10−6 compared to the instrument noise, systematics,
and foregrounds. As mentioned, the CO emission fluctuations are expected to
vary rapidly along the line of sight and can thus be separated from the continuum
emission. Additionally, as a cosmic background, the CO emission is static and
isotropic in the sky.

3.3 COMAP seasons and differences between them

As mentioned earlier, the work done for this thesis covers two rounds of COMAP
publications; Early Science (or S1), and S2. We summarize the duration and
observation time in each season, as well as some key notes, in Table 1. In sum,
the raw data volume in S2 is about 3.4 times that of Season 1.

However, not only did the amount of observational time in each season
change, but also several other aspects of the observational strategy, instrumental
parameters, and the pipeline. Some of these changes are motivated by lessons
learned during the Early Science analysis, while others were necessitated by new
discoveries or events. Although more details on the analysis pipeline and data
selection will follow in later sections (3.4 and 3.5), the following overview will
condense some of the largest points of change throughout the analysis mentioned
in Papers I–IV:

Observing

• To avoid strong gradients in the ground pickup from far-sidelobes seen
in Fig. 22, the allowed elevations at which to observe were changed from
30◦ − 75◦ in ES (i.e., Papers I and II) to 35◦ − 65◦ in S2 (i.e., Papers III-V;
see Fig. 22). This was done because the higher and lower elevations showed
hints of residual sidelobe pickup in the ES data, resulting in these data being
removed from the ES analysis.

• Because Lissajous scans showed evidence for residual systematic effects after
cleaning the data from changes in elevation, one of the key conclusions from
Papers I and II is to abandon Lissajous scans in favor of only using only
constant elevation scans.

• About halfway through the second season of observations, the maximum
allowed scanning speed of the azimuth motors was halved because of signs
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of wear and tear. The fast- and slow-moving parts of S2 are referred to as
Season 2a and Season 2b in Paper III; see Table 1).

• About the same time as the drive speed reduction, the spectrometer clock
frequency was changed from 4.000 GHz to 4.250 GHz to widen Bands A and
B slightly by raising the spectrometer’s Nyquist frequency. By widening the
band’s frequency samples with high aliasing power fall outside the bandpass
of interest for COMAP (26–30 GHz for Band A and 30–34 GHz for Band B),
resulting in a lower number of discarded frequency channels from aliasing
cuts within the 26–30 GHz bandpass. Thus, data captured before and after
S2b are spaced on, respectively, a 1.953 MHz and 2.075 MHz channelization.

Pipeline

• The analysis pipeline used for the S2 release (Papers III-IV) is for the most
part a Python/C++ reimplementation of the Early Science (Papers I and
II) FORTRAN pipeline, although it remains algorithmically very similar.
This was done to increase development speed, maintainability, and optimize
pipeline runtime performance.

• Several steps in the pipeline were either added or changed to mitigate newly
discovered systematics or improve existing algorithms, as will be explained
further in the next sections. Among these are the additions of a per-feed
PCA filter, a map-PCA filter, and some modifications to the power spectrum
methodology and null tests between the two publication series.

• Data selection, which will be described more in Sec. 3.5, was changed
significantly between S1 and S2, tightening some and loosening other data
cuts, and results in an increase from 6.8% to 21.6% of the theoretical
maximum achievable power spectrum sensitivity.

3.4 The low-level analysis pipeline

Now that we have introduced the COMAP data model and highlighted some major
changes between the COMAP-Pathfinder seasons, we continue introducing the
data analysis pipeline. The main goal of the analysis pipeline is to clean and
calibrate the data, leaving only noise and extragalactic CO emission, to construct
the world’s first large-scale CO-LIM map from which we can constrain the physical
properties of the star-forming Universe.

Note that the current iteration of the COMAP analysis pipeline is a so-called
classical linear pipeline, which takes in data, filters it, and provides some final
cleaned data product. This is a good first approach while trying to understand
the data. However, there are more well-motivated Bayesian analysis frameworks,
though these usually also become computationally more challenging with large
datasets like that of COMAP. Nevertheless, we will later in Ch. 4 consider the
Commander3 framework as a possible future improvement of the COMAP pipeline.
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Season Time span Observing
time [h]

Notes

Season 1 05/2019 – 08/2020 5, 200 Employed 50/50 Lissajous
and CES type scans. Before
azimuth slow-down (Fast
Az).

Season 2a 11/2020 – 05/2022 7, 900 Only CES type scanning.
Before azimuth slow-down
(Fast Az).

Season 2b 05/2022 – 11/2023 4, 400 After azimuth slow-down
(Slow Az) and spectrometer
sample frequency change.

Table 1: Observational seasons of the COMAP-Pathfinder, showing the period over which
each season was observed and how much observation time they contain. For more details
on changes between the seasons see Sec. 3.3. The table is adapted from Paper III,
courtesy of Jonas Lunde. Note the terminology of Paper IV refers to Seasons 1 and 2a
together as “Fast Azimuth”, and Season 2b as the “Slow Azimuth” data.

In the following, we will go through the steps in the low-level analysis pipeline,
as schematically drawn in Fig. 23, and describe how the filters affect the data as
we go. The details of the COMAP low-level pipeline are found in Papers I and
III, respectively, for the COMAP ES and S2 releases.

3.4.1 Level 1 data and data segmentation

The raw data from the telescope are stored in the so-called level 1 format at
OVRO before being sent over to Oslo for data analysis. It contains both the raw
time-ordered data (TOD) for all frequencies and feeds and needed housekeeping
data for all scans captured during one obsID. The very first step of the pipeline
is to iterate over all obsIDs in the level 1 files in the scan_detect code, split up
all obsIDs into their constituent scans, and build a database over all observations.
The observation database and level 1 files are subsequently processed by the level
2 generator (l2gen) code.

3.4.2 Level 2 data – time-domain filtering and calibration

The level 2 files, which are produced by the l2gen code for each 3–10 minutes
scan, contain the cleaned and calibrated TODs for each feed and frequency, as
well as all housekeeping data for later data selection. In the following, we will
summarize each step in l2gen, which are also schematically illustrated in a flow-
chart in Fig. 23, and we refer the interested reader to Papers I and III for more
details than are mentioned in the following.
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Figure 23: Flow-chart showing the COMAP pipeline. The chart is a compromise between
the ones shown in respectively Papers I and III, showing all steps (dark ellipses) in both
the ES and S2 pipelines and how the data products (light squares) flow through each
pipeline step. The “flow” of the main data products is indicated by thick arrows, while
thin arrows indicate auxiliary data flow. As the l2gen step in itself contains numerous
individual steps, a flow chart of the filtering steps is included as an inset. For a full
explanation of each step, see the main text of Sec. 3.4.

Normalization

As discussed in Sec. 3.2, the raw data are dominated by the experimental bandpass.
However, this bandpass shape is simply a normalization constant that causes the
noise properties of the raw data in each channel and feed to be different. We need
to flatten out the bandpass seen in Fig. 19, so each channel has the same noise
properties before any further pipeline steps are applied.

To do so we divide the raw data by the mean and subtract one so that

dnorm
tνi = dtνi

⟨dtνi⟩
− 1, (3.8)

where the normalized TOD dnorm
tνi now fluctuates around zero with the same noise

level everywhere. This is illustrated in the transition between the left and right
panels of Fig. 24. The data are dominated by the frequency-dependent gain
fluctuations prior to normalization, and the (frequency-)common mode 1/f gain
fluctuations are visible after filtering.

Specifically, we want to allow ⟨dtνi⟩ to drift slowly in time as there could be
slowly varying modes in the temperature-gain product ⟨GtνiT

sys
tνi ⟩. The slowly

varying temperature-gain fluctuations over the bandpass are found by computing
the running mean of the raw data:

⟨dtνi⟩ = F−1{F{dtνi}W}, (3.9)

where F denotes Fourier transforms and the Butterworth filter kernel W is given
by

W =
1 +

(
f

fknee

)−α
−1

. (3.10)
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Figure 24: Effect of normalization and 1/f filtering for a single scan and feed. The
raw TOD as a time-frequency waterfall (left) is dominated by the gain variations of
the experimental bandpass in frequency (see Fig. 19). The normalized data (middle) is
dominated by 1/f gain fluctuations that are highly correlated across frequency channels.
After the polyfilter (right), the 1/f fluctuations are removed, and the data are dominated
by white noise. Courtesy of Jonas Lunde, see Paper III.

The slope and knee frequency parameters are set, respectively, to α = 4 and
fknee = 0.01 Hz to remove all temporal modes longer than about 100 s. In Fig. 25,
an example is shown that more clearly illustrates the removal of slowly varying
temporal modes in the TOD for a given frequency channel and feed. Thus, this
filtering step also removes any monopoles of the COMAP field. After filtering, the
data dnorm

tνi have the same noise level on all frequency channels.

Pointing template removal

After normalizing the experimental bandpass, we can remove the signal that is
correlated to the telescope pointing in horizontal coordinates at OVRO. In general,
we can model the pointing template as

dpointing
tνi = γνi

sin elti
+ ανiazti + c, (3.11)

where azimuth and elevation at any given time t, and detector i, are denoted as azti

and elti. The free parameters γνi and ανi are fit for by χ2 minimization separately
per frequency and feed. The parameter c denotes a constant offset, which can be
removed by subtracting the average of the template. Note that the first term of
Eq. (3.11) corresponds to the optical depth τ(el) = τ0/ sin(el), where we assume
that the atmosphere can be modeled as a flat slab with optical depth at zenith
given by τ0. The second term, meanwhile, is linear in azimuth and can pick up
azimuth-correlated signals, such as the sidelobe signal from the ground. As such,
only the azimuthal template is subtracted when performing a CES scan because
there are no changes in elevation, that is, γ = 0. Meanwhile, in a Lissajous scan,
both azimuth and elevation templates are subtracted. Therefore, since the second
season of COMAP (Papers III–V) only employs CES scans, only the azimuth
template is applied.

By subtracting the pointing template from the normalized data:

d
az/el
tνi = dnorm

t,νi −
γνi

sin elti
− ανiazti −

〈
γνi

sin elti
− ανiazti

〉
, (3.12)

36



3.4. The low-level analysis pipeline

the horizontal coordinate pointing correlations are removed. The average of the
template is subtracted to explicitly ensure a zero mean of the data (although
note that this is only explicitly done in Papers I and II). In the second-season
publications (Papers III-V) this filter was performed independently for west- and
east-moving sweeps, while the Early Science version of the filter (Papers I and
II) performed this fit jointly. This change was included to handle directionally
dependent systematic effects observed in the S2 data.

The effect of this filter on a Lissajous scan is shown in the second row of Fig. 25,
where we clearly can see the sinusoidal atmospheric contribution of the atmosphere
due to elevation changes being removed by the pointing template.

Polynomial filter

Now that the effects of the experimental bandpass and pointing correlated
atmospheric correlations are taken into account, we can consider the contributions
to the correlated noise and continuum emission in the data. As mentioned earlier in
Sec. 3.2, the 1/f correlated noise fluctuations are shared across frequency channels
in a given feed and sideband due to common LNAs and a highly feed-frequency
correlated atmospheric fluctuation pickup. This is illustrated in the middle panel
of Fig. 24.

Additionally, the continuum emission present in the data, from Galactic
foregrounds or the CMB, all behaves approximately as a smooth low-ordered
polynomial in frequency. Meanwhile, the targeted fluctuations of extragalactic
CO are expected to be sharply peaked at certain frequencies corresponding to
density fluctuations along the line-of-sight.

Therefore, we can remove both the correlated 1/f noise and continuum emission
in our data by simply fitting and removing a low-order polynomial

dpoly
tνi = d

az/el
tνi − (ct,0 + ct,1ν + ct,2ν

2 + · · · ) (3.13)

from the data in every time-step t. The free parameters ci are independently fit
for each time step t, and for each sideband and detector (with shared electronics).
Although this filter is fully linear, it constitutes one of the most aggressive filters
of the low-level analysis pipeline because of the large number of free parameters.
In both ES and S2 publications (Papers I and III) a first-order polynomial is used.

In the right panel of Fig. 24 we see an example of the data after removing
the correlated noise fluctuations using this polynomial (polyfilter). In addition,
in Fig. 25 one can see an example of how the polyfilter also removes some of the
noise at a frequency slice of the data.

Time-domain principal component analysis

The final filter that is applied in the time-domain is the principal component
analysis (PCA; first developed by Pearson, 1901) filter. The purpose of the PCA
filter is to remove residual systematic effects that the other filters have not managed
to remove and that correlate across multiple frequencies and feeds.
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Figure 25: Time-ordered data at some given frequency and feed at different stages of
filtering. The two columns, respectively, show the data before and after each filtering
step in l2gen (one per row), where the red graph in the left column represents the
components to be subtracted from the data. Courtesy of Jonas Lunde, see Paper I.

Moreover, there are several ways to think about a PCA, some more general
than others. To start with, we introduce the PCA filter as we describe it in Paper
I. The TOD over all frequencies can be written in matrix form as

D =


d11 · · · d1ntime
... . . . ...

dnfreq−feed1 · · · dnfreq−feedntime

 , (3.14)

where we let ntime denote the number of time samples in a scan, and nfreq−feed
is either the number of frequency channels or frequency channels and feeds,
depending on whether to perform the analysis on all feeds jointly or individual
feeds. The corresponding principal components of the data dtν can then be defined
as the eigenvectors wk

t of the covariance matrix C = DT D. The basis of eigenvectors
is ordered by the corresponding eigenvalues λk, such that the eigenvector with the
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highest eigenvalue describes the direction in data space of the highest explained
variance.

To find the corresponding frequency vector ak
ν we can project the eigenvector

back onto the data for each frequency and feed

ak
ν =

ntime∑
t=1

dtνwk
t , (3.15)

where dtν denotes the data after the previously described filter steps.2 To filter
the data we can then remove the outer product of the time and frequency vectors
for each principal component k:

dPCA
tν = dpoly

tν −
ncomp∑

k

wk
t ak

ν , (3.16)

with the number of removed principal components ncomp. In Paper I we subtract
a static number ncomp = 4, while in Paper III a dynamic number of components
is subtracted based on known approximations for a noise matrix.

Meanwhile, we can also define the PCA problem as done in Paper III where
we want to find principal components wk

t and ak
ν such that the quantity

∑
t,ν

(
dtν −

ncomp∑
k=1

wk
t ak

ν

)2

(3.17)

is minimized. Although completely equivalent to the earlier notation in this
section, this way of formulating the problem allows for an easier generalization of
the standard PCA when including noise weights on the data (see later Sec. 3.4.4.

The PCA will find a data reconstruction

dtν ≈
ncomp∑
k=1

wk
t ak

ν (3.18)

that will perfectly describe the data if the entire set of principal components is used.
Specifically, the principal components that explain most of the total variance of the
data (largest eigenvalues λk) will also contain most of the information in the data.
Principal component analysis is therefore often used to perform dimensionality
reduction by removing the lowest principal components of a dataset that tend to
contain only noise (see, e.g., Jia et al., 2022; Greenacre et al., 2022, for reviews).
However, in the COMAP dataset we assume that systematic effects are orders of
magnitude larger in amplitude than the extragalactic CO. Hence, the systematic
effects will usually be well decomposed by the first couple of principal components
while leaving the signal untouched. Furthermore, systematic effects like standing
waves are usually well described by an outer product (seen for instance in the

2Equivalently, one can find the principal component basis of the data matrix by performing
a singular value decomposition of the data; D = UΣWT . In that case, the data will be described
by a basis of frequency and time vectors corresponding to the columns of U and W , as well as
singular values σk along the diagonal of Σ corresponding to the square root of the eigenvalues
λk.
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Figure 26: First principal component reconstruction of scan 3354205 using the all-feed
PCA filter. The waterfall plot is the reconstruction of the TOD as captured by feed 6
and formed by the outer product of the time vector w0

t common to all feeds (lower) and
the corresponding frequency vector of feed 6 a0

ν (right). The color range of the waterfall
plot is ±5 · 10−4 in normalized TOD units. Courtesy of Jonas Lunde, see Paper III.

Taylor expansion of Eq. 2.2 by Chung, 2022b, around small electromagnetic cavity
lengths) in time and frequency (or, as we shall see later in Sec. 3.4.4, celestial
coordinates and frequency). Standing waves are, therefore, well modeled by only
a few leading principal component vectors. The CO signal, meanwhile, is more
complicated and requires more principal components to be modeled, which builds
a further safeguard against signal loss.

As hinted earlier in this section, there are two versions of this PCA filter: the
all-feed which is first included in the ES pipeline shown in Paper I, and the new
per-feed PCA filter which is added to the S2 pipeline in Paper III. Both versions are
algorithmically equivalent and can be described by the same equations as above.
As their name indicates, the all-feed and per-feed PCA are, respectively, performed
on a data matrix of all feeds jointly (shape (nfreqnfeed, ntime)) and separately on
the data matrices for each feed (shape (nfreq, ntime)). For the per-feed PCA, we
also found that down-sampling the data in frequency (letting nfreq → nfreq/16
through standard inverse noise weighting) increases the effectiveness of the filter in
identifying large-scale systematic modes. As shown in l2gen flow-chart of Fig. 23
the all-feed filter is performed before the per-feed PCA. Treating all feeds jointly
will target feed-correlated systematics, like a common-mode residual atmosphere
or standing waves in the shared optics. Meanwhile, the per-feed PCA is meant
to target components that are specific to each feed, such as standing waves in the
independent detector electronics chain. As such, the filters will only target CO
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Figure 27: Example from Paper I showing the correlation between the feeds and
frequencies of a typical scan before (left) and after (right) the all-feed PCA time domain
filter. We note that feeds 4 and 7 are masked in this particular scan. Courtesy of Håvard
Ihle, see Paper I.

signal modes that span the entire survey volume, mostly leaving it unaffected.
In Fig. 26, we show an example from Paper III of the first principal component

reconstruction and the basis vectors that form it. Figure 27 shows a feed-frequency
correlation matrix before and after subtracting the four leading modes of the all-
feed PCA filter. This removes most of the correlations, and the result is left without
significant off-diagonal correlation structures, indicating a successful removal of the
common mode signal.

Masking

In the COMAP pipeline, there are two basic frequency masking procedures. The
first mask removes frequency channels with known problems at the very beginning
of the pipeline before any filters are applied. For example, we mask the edges of
each frequency band due to aliasing, which can induce correlations of the order
10 %. Furthermore, in the ES pipeline (Paper I), channels with system temperature
higher than 80 K were masked, while we in the S2 pipeline (Paper III) introduce a
dynamical approach. Specifically, we remove channels with a system temperature
greater than 5 K over its running median. Lastly, some channels are manually
flagged if they are known to correlate with systematic effects.

Secondly, we mask channels that show signs of significant residual systematic
correlations between frequency channels after applying the poly- and time-domain
PCA filters to the data. Specifically, a χ2 test is applied to boxes and stripes along
the frequency-frequency correlation matrix. Boxes or stripes with correlations
larger than 5σ above the expected correlation between Gaussian random variables
and the expected channel-channel correlations within each sideband induced by
the polyfilter are masked out. Additionally, we also mask channels that do not
conform to the noise properties predicted by the radiometer equation in Eq. (3.6).
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Figure 28: Reference load signal at the beginning and end of an observation introduced
by rotating the calibration vane, seen in Fig. 13, in front of the detector array. Courtesy
of Jonas Lunde, see Paper I.

After identifying bad channels, the mask is reapplied to the data before the
poly- and time-domain PCA filters, and the filters are repeated (see loop-back in
Fig. 23). In this way, we ensure that the identified channels do not affect the poly-
and time-domain PCA filters and further analysis.

Calibration and system temperature measurement

After filtering and masking, the data are still in dimensionless normalized units.
However, to perform physical inference with our data, they must be in calibrated
brightness units.

Specifically, we want the TOD to be in units of the system temperature, Tsys,
such that the changes in the data directly reflect the changes in the sky signal
strength:

∆Tsys = ∆Tsignal. (3.19)
The first step in this calibration is to find the system temperature at any given time.
We do this by comparing the cold load power Pcold, measured at any given time
during an observation of the sky, to a reference signal Phot of known temperature
Thot. This reference hot load is measured twice for every observation by rotating
the calibration vane (seen in Fig. 13) in front of the detector array. Figure 28 shows
two such hot load measurements at the beginning and end of an observation. With
the two calibration points at the beginning and end of any obsID, we can account
(linearly) for changes in the ambient conditions around the telescope that can lead
to drift in the system temperature.

From the cold and hot loads, Pcold and Pcold, we can obtain a Tsys measurement

Tsys = Thot − TCMB
Phot
Pcold
− 1

, (3.20)

where TCMB is the CMB temperature and Thot is the ambient temperature
measured at the calibration vane. As only two hot loads are taken per observation,
we obtain a Tsys estimate at any scan in-between by linear interpolation.
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The data are then calibrated by multiplying the filtered and masked data
dtνi, at time t, channel ν and detector i, by the corresponding average system
temperature during the scan

dKelvin
tνi = dtνi⟨T sys

tνi ⟩. (3.21)

For more details and derivations of the calibration, see Penzias & Burrus (1973),
Lamb et al. (2022), and Paper I.

Downgrading

After filtering, masking, and calibration of the TOD, the data dKelvin
tνi have the

native 2 MHz frequency resolution of the spectrometer. However, it is not strictly
necessary to have such high-frequency resolution to perform inference on the data
at a later stage. Additionally, the large data volume required for native 2 MHz
resolution demands a lot of disk space system and processing time. We can,
therefore, reduce the number of high-resolution channels nhigh−res

ν by coadding
neighboring channels of the data dhigh

ν so that the decimated data are given by

dlow
ν′ =

∑
ν∈ν′ wνdhigh

ν∑
ν∈ν′ wν

, (3.22)

where we typically sum over 16 high-resolution channels ν that are contained
within a low-resolution channel ν ′. The weights wν are given by the inverse variance
wν = 1/σ2

wn,ν , where we compute the white noise level σwn at any given channel
by

σ2
wn = Var(dt − dt−1)

2 . (3.23)

The resulting data dlow
ν′ is now sampled on a 31.25 MHz grid instead of the previous

2 MHz spacing.

3.4.3 Mapmaking

Up until now, all analysis has been performed in the time domain. However, using
the entire time-ordered dataset to perform physical inference would be unfeasible
due to its enormous volume. We can, therefore, first bin the TOD data into maps,
compressing the data from several hundreds of terabytes to only a few tens of
gigabytes per map.

Generally, to get a map estimate m̂ from some time ordered data d with noise
properties characterized by covariance N, and given the pointing matrix P we must
solve the mapmaking equation (see Tegmark, 1997, for extensive explanation of
mapmaking)

PT N−1Pm̂ = PT N−1d. (3.24)
Assuming that the data are close to white noise after filtering, Eq. (3.24) can
simplified by inserting a diagonal covariance matrix Nii = σ2

wn,i. Equation (3.24)
then reduces to a simple inverse noise-weighted binning

m̂p =
∑

t∈p dtσ
−2
wn,t∑

t∈p σ−2
wn,t

, (3.25)
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where all the time samples t that hit a pixel p are accumulated. This is done
individually for each frequency and feed and produces a 3D map with dimensions
corresponding to right ascension, declination, and spectrometer frequency. Each
element in the map, a so-called voxel or, in the corresponding cosmological units,
a spaxel, is then made up of an (angular) pixel and a spectral channel. The
corresponding uncertainty of the pixels in the map is then simply given by

σwn,p =
√√√√ 1∑

t∈p σ−2
wn,t

. (3.26)

Figure 29 shows an example of the three main COMAP Fields 1-3 as mapped
out at the time of the COMAP ES results presented in Paper I. One can see
that the central regions of the maps, which are observed more infrequently than
the edges, are less noisy. This follows the prediction of the radiometer equation
and Eqs. (3.25) and 3.26. Additionally, we can see from the maps, as well as
the histograms over their uncertainty-normalized 3D voxels, that the ES maps
appear to be dominated by white noise and follow a standard Gaussian N (0, 1)
distribution.

3.4.4 New systematics discovered in COMAP S2 and the map-
domain PCA filter

While the COMAP ES maps were found to be dominated by white noise, as we
can see in Fig. 29, a series of new systematic effects manifested in the S2 maps
due to a much higher sensitivity (more details of the increased data volume and
data selection in Sec. 3.5). Specifically, we can divide the new systematics into
two categories, which were dubbed the turn-around and the start-of-scan effects.
Both of these effects are strongly correlated with both the pointing and frequency
observed and are, as such, challenging to deal with. In the following, we will
summarize these effects, show some examples thereof, and how we can filter them
out as done in Paper III.

The turn-around effect

The turn-around effect manifests itself in the map as bright stripes at the
declination edges of the map. Here, the telescope is at the edge of each CES
sweep in azimuth, as illustrated in Fig. 16. In the frequency dimension, the excess
seems to be slowly oscillating. In addition to the sharp excess at the edges of each
scan, there are diffuse patterns that are roughly constant along fixed declinations
in the middle of the fields. However, note that the diffuse contribution could also
simply be explained by ringing when filtering the data with sharp peaks at the
turn-around edges. The leading hypothesis for the origin of the turn-around effect
is mechanical vibrations during the scanning motion of the telescope. This seems
to be supported by the fact that the effect was apparently somewhat dampened
after the scanning speed of the telescope was reduced about mid-way through S2
(named Season 2b in Paper III).
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3.4. The low-level analysis pipeline

In the first and third row of Fig. 30, we show some examples of the turn-
around effect in the S2 Field 2 map of different feeds and frequencies. Note that
the systematic effects seen in Fig. 30 appear twice for every map because the field
is observed both while it is rising and setting on the sky, giving slightly different
line-of-sights each time.

(a)

(b)

(c)

Figure 29: Single 31.25 MHz frequency channel and feed-coadded map from COMAP
Early Science (Paper I) at 29.9 GHz of the three fields 1-3 (a-c). Note that regions with
high noise, σwn > 1000 µK, are masked from the plot. A histogram of the uncertainty-
normalized voxel values of each entire 3D map is shown next to the map frequency slice
along with a standard normal N (0, 1) distribution.
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Figure 30: Season 2 maps of Field 2 at different feeds and frequencies in units of their
voxel uncertainty. The maps show, respectively from top to bottom, the turn-around
effect, the start of scan effect, both of the latter at the same time, or neither effect. The
left and right columns show the maps before and after the map-PCA filter subtracts the
leading five modes. Courtesy of Jonas Lunde, see Paper III.
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The start-of-scan effect

The start-of-scan effect, as the name suggests, is a systematic effect that appears
at the beginning of scans. Specifically, it appears to behave like a standing wave in
frequency but has an exponential decay in time of 19 s on average. Consequently,
the effect always appears as a bright excess (with the sign depending on the
frequency considered) at the lower RA of the maps. This coincides with where
the telescope points at the beginning of each scan, both when the field rises and
sets in the sky. The start-of-scan effect is illustrated in the second and third rows
of Fig. 30, and we can see from Fig. 16 how a scan always starts at lower RA. Note
that when going towards increasing RA the sign of the start of scan amplitude
seems to flip. This is due to the ringing of the normalization step described in
Sec. 3.4.2.

The fact that the effect manifests only at the start of a scan suggests that the
cause for the observed decaying standing wave is the settling time of mechanical
vibrations in the telescope after repointing itself between scans. Additionally, the
start-of-scan effect is primarily observed in feeds 6, 14, 15, 16, and 17, which all
share the same DCM1 (DCM1-2; see Table 3), meaning that a likely culprit causing
this common mode signal would be common local oscillator cables shared within
DCM1-2.

The map-PCA filter

Because the turn-around and start-of-scan effects appear to be fairly weak in
strength, they appear only after combining several significant months of data.
It is, therefore, difficult to model and remove in the time domain, where the S/N
of the effect is very low. However, the effects are orders of magnitude stronger than
the extragalactic CO in the maps and are well modeled by a standing wave. In such
a case, where we have a hard-to-model and dominant signal that is decomposable
into an outer product of a few standing wave modes, a PCA approach is well suited.
Meanwhile, the extragalactic signal is weak and not easily separable into an outer
product, which is an additional safeguard against signal loss. Methods based on
PCA or other blind PCA-like techniques have also been used previously by the
H I LIM community to remove Galactic continuum foreground emission from their
maps (Chang et al., 2010; Masui et al., 2013; Wolz et al., 2017; Anderson et al.,
2018; Cunnington et al., 2021).

Specifically, we can write down a similar PCA minimization problem as
previously shown in Eq. (3.17). Only this time it is applied to the map mpν ,
with n2

pixel pixel p, instead of the TOD dtν at time t. Additionally, we want to use
weights so the PCA does not simply pick up the inherently noisy regions of the
map. We thus must minimize

∑
p,ν

(mpν − w0
pa0

ν)2

σ2
pν

, (3.27)

where σpν is the voxel dependent noise level. To find the vectors w0
p and a0

ν that
explain most of the variance inside the map data matrix mpν . Note that the
minimization in Eq. (3.27) differs somewhat from the previous PCA shown in
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Eq. (3.17) because the weights applied are not separable as an outer product
themselves. Thus, the problem of minimizing Eq. (3.27) technically becomes a
modified PCA that is not directly equivalent to applying a PCA to the weighted
map mpν/σpν (this is explained in detail in Appendix B of Paper III).

After finding the map-PCA components w0
p and a0

ν we can filter the map by

mmPCA
pν = mpν − w0

pa0
ν . (3.28)

To remove further map-PCA components, we simply iterate over the minimization
and subtractions shown in Eqs. 3.27 and (3.28). Typically, most feeds seem to
require only 3–5 of the 256 possible PCA modes subtracted to suppress systematic
errors below the noise level. In the S2 results (Papers III–V), we subtract the
five leading components of each map. Figure 30 shows the maps before and after
subtracting the five leading map-PCA modes. We see that the strong systematic
effects observed before filtering are now no longer visible above the noise level. See
Paper III for more results on the map-PCA’s effect on the data.

Because we see quite different systematic effects in different feeds, the filter is
applied individually to each detector map. We also perform the map-PCA filter
independently on the maps of the fast- and slow-moving azimuth scans because
the mechanical vibrations, and hence the systematic effects they cause, can be
different.

Lastly, we note that because a PCA is a nonlinear operation it can affect the
signal in the map in unpredictable ways that are hard to quantify. However, as
long as the CO signals of interest are well below some critical S/N , the map-PCA
behaves approximately linearly with respect to the signal. We show this using
simulations with varying S/N and compute the signal loss transfer function (more
on this later in Sec. 3.6.3) after applying the map-PCA. The result, seen in Fig. 31,
indicates that the critical S/N in our case is at about 0.02 for an average map-
voxel. This is about an order of magnitude higher S/N than currently achieved
by COMAP S2 (blue line), putting us firmly in the linear signal regime of the
map-PCA.

3.5 Data selection

An additional step used to prevent systematic effects from affecting final data
products is data selection. That is, if data with significant residual systematic
effects are identified and removed, they cannot negatively affect further data
analysis. Therefore, data selection is most effective when performed in the earliest
possible stage. However, in the earlier pipeline stages, identifying bad data can be
harder since the S/N ratio is low when individual scans are considered separately.
To get the best of both worlds, we can perform data selection in several stages
of increasing S/N : when observing, in time- and map-domain analysis, and when
computing power spectra. For each data selection step, we can then estimate the
data retention (that is, how much of the full data are kept in the analysis). The
data retention from COMAP ES and S2 can be found in Table 2 (from Paper III)
and has improved significantly in the latest publications. In the following, we will
briefly summarize the data selection steps.
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Figure 31: Signal transfer function T (k) of the map-PCA filter resulting from filtering
simulated signal maps as a function of varying average voxel signal-to-noise ratio (x-axis)
and at different scales k (color scale). For each S/N the signal strength with respect to
the fiducial CO model by Chung et al. (2022a) (marked as a blue line at unity boost)
is shown in the upper x-axis. The average transfer function, T̄ (k) ≈ 0.96, at the noise-
dominated low-S/N range is marked as a green line. Scales, k, beyond the range of
interest for the S2 publications (Paper III-V) show dashed lines for T (k). The figure is
taken from Paper III.

Observational cuts

The earliest stage of data selection is performed when the sky is observed. As
mentioned earlier, the scans of Season 1 that used a Lissajous scanning strategy
were found to contain residual excesses and were therefore rejected from the
analysis. Learning from this lesson, S2 only employed the CES scanning strategy.
Furthermore, there were several feeds that did not function as intended or that
were used for engineering tests in Season 1, whereas all feeds were functional
and included in S2. Lastly, as mentioned earlier, the elevation range at which to
observe was slightly reduced in S2 to avoid areas with sharp ground pickup signal
gradients. Therefore, as seen in the upper third of Table 2, the data retention from
these three cuts was Eobs = 0.318 = 0.50 · 0.842 · 0.755 in Season 1 and increased
to 100 % in S2.

Time- and map-domain cuts

Several data selection cuts are also performed in the time- and map-domain.
The first of these, frequency masking in l2gen, was already described in detail
in Sec. 3.4. Data retention from frequency masking Efreq has remained fairly
constant between Season 1 and S2, even though the frequency masks were changed.
Although the data of S2 with an increased spectrometer sampling frequency have
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Season 1 Season 2 Explanation
Escan 50.0% 100.0% Retained scans (CESs)
Efeed 84.2% 100.0% Functional feeds
Eel 75.6% 100.0% Inside good elevation range
Eobs 31.8% 100.0% Observational data retention
Efreq 72.8% 74.3% Frequency masking in l2gen.
Estats 57.4% 33.6% Cuts on accept-mod statistics
Eχ2

P (k)
72.2% 100.0% Per-scan auto-PS χ2 test

Ecuts 30.1% 24.9% Map-level data retention
Eχ2

C(k)
52.4% 100.0% Cross-spectrum χ2 test

EC(k) 94.7% 75.0% Cross-spectrum auto combinations
EPS 49.6% 75.0% Retained data at PS-level
Stot 6.8% 21.6% Final PS-domain sensitivity, calculated

as Stot =
√

E2
obsE

2
cutsEPS

Table 2: Overview of data retained at different stages of the analysis pipeline, for both
S1 (ES; Papers I and II) and S2 (Papers III-V). The table is divided into three. From
top to bottom, we find the data retention for the observational, time- and map-domain
analysis, and power spectrum data selection. Each individual step has its associated
data retention fraction Ei, and the last row of each sub-table contains the combined
product of the data efficiencies, Eobs, Ecuts and EPS. The very last row shows the total
data efficiency, Stot, as a fraction of the theoretical maximum. The table is taken from
Paper III, courtesy of Jonas Lunde.

no aliasing cut at the edge of each band, several more frequency channels that
showed evidence of systematic effects were manually removed. This balances out
the data volume gained from loosening the aliasing cuts.

After filtering and calibrating the data in l2gen, but before mapmaking, several
more time-domain data selection steps are performed in the accept_mod code.
First, accept_mod takes in all scans of a field and makes a database of diagnostics
for each scan, feed, and sideband. The database contains both statistics (about
60–70 depending on the COMAP release) related to the scanning strategy (e.g.,
mean elevation and azimuth, whether the moon or sun is in one of the sidelobes),
the telescope environment (e.g., weather, humidity or wind speed), and pipeline
variables (e.g., the number of PCA modes subtracted, the fknee of the polyfilter
coefficients ci of Eq. (3.13) in each time sample). Using the scan database, we can
then reject scans, feeds, or sidebands with diagnostics outside of some predefined
range. The data retention from this stage is referred to as Estats in Table 2. Because
the scan diagnostics data selection in S2 was significantly stricter, in order to pass
later power spectrum null tests (see Sec. 3.6.4, the data retention Estats dropped
between the two seasons.

Among the diagnostics computed by accept_mod, there are several χ2 statistics
computed from 2D and 3D auto power spectra of low-resolution maps of the data.
These are meant to detect excesses from the expected white-noise behavior in each
scan. However, the method requires us to adjust the power spectrum by a transfer
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function to account for the filter-induced bias on the noise, which proved hard to
quantify for individual scans, fields, and scanning speeds due to very different hit
patterns. Additionally, while working on the S2 results in Papers III and V, it
seemed as if these cuts had little effect on the data, and therefore, we deemed it
unlikely that they identified any significant and dangerous systematic effects. As
a result, the data retention Eχ2

P(k)
from these cuts are at 100 % in S2, while only

72.2 % in Early Science.
In total, scan-based data selection leaves us with data retention Ecuts = 30.1 %

in the Season 1 analysis, while the stricter scan diagnostics cuts in S2 dropped
Ecuts to 24.9 %.

Power spectrum data cuts

The final data selection stage is performed at the power spectrum level. As
will be described later in Sec. 3.6, the COMAP power spectrum methodology
is based on computing cross-power spectra between feeds (in Paper II), or feed
groups (Paper IV), and scan elevations. Before combining all feed-elevation cross-
spectrum combinations into an average CO power spectrum estimator, a χ2 test
can be performed on each combination. Subsequently, we reject cross-spectra that
are more than 5σ away from the expectation value of zero. However, this cut was
removed in S2 in favor of a more robust null test framework and more strict data
cuts at the scan level. This essentially doubled the retention of the data Eχ2

C(k)
seen in Table 2.

In Seasons 1 and 2 we computed, respectively, average cross-power spectra
from feeds and groups of feeds, where auto-detector combinations are excluded
from the average. Therefore, we lost 19 of the 361 possible cross-spectra in Season
1. In contrast, the S2 feed-group cross-spectra result in 16 total combinations, of
which four auto-combinations are rejected. This gives an inherent data retention
EC(k) = 94.7 % and 75 % of the two methods (and seasons). Combining the two
power spectrum cuts the power spectrum level data retention EPS is 49.6% and
75 % in the two COMAP seasons, respectively.

Fraction of maximum possible sensitivity

If we want to combine the data retentions Ei of Table 2 into a final number to
determine how much more sensitive the power spectrum of S2 is compared to that
of S1, we cannot simply multiply all individual data retentions. This is because
the power spectrum sensitivity scales linearly with the raw data volume while it
scales as the square root of the number of combined power spectra. We thus get
a total fraction of the maximally achievable sensitivity Stot =

√
E2

obsE
2
cutsEPS.

As seen in Table 2, the number of loosened cuts and the optimization of the
COMAP observational strategy has dramatically increased the total sensitivity
fraction Stot from 6.8 % to 21.6 %, despite some cuts being tightened. In other
words, there is a factor of roughly 2.2 increase in maximum power spectrum
sensitivity retention. Combining this with the 3.4 times increased raw data volume
in the combined analysis of the Season 1 and 2 data, the power spectrum sensitivity
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based on the data volume and data selection is expected to be around 7 times
higher than only the Season 1 power spectrum we present in Paper II.

3.6 The high-level analysis pipeline

A key goal of any cosmological and astrophysical survey is to constrain the physics
of the mapped environment. To perform inference, we must find out how the signal
in the maps reacts to changes in the underlying physics. This can be done by first
constructing a summary statistic that is sensitive to the statistical information
stored in the map and then performing inference on the summary statistic of the
map.

A popular summary statistic, often used by CMB and large-scale structure
surveys, is the power spectrum3. Power spectra encode all statistical information
in the signal if it is Gaussian randomly distributed and isotropic. However, LIM
surveys probe a wide range of physical scales and environments, from large linear
scales to small nonlinear scales where Gaussianity no longer holds. In cases where
the probed field is no longer Gaussian, the power spectrum can be complemented
with higher-order statistics such as the bi- and trispectrum (Yoshiura et al., 2015;
Shimabukuro et al., 2016; Planck Collaboration IX., 2020; Planck Collaboration
X., 2020), or one-point statistics like the voxel intensity distribution (VID; Breysse
et al., 2017; Ihle et al., 2019) and the deconvolved distribution estimator (DDE;
Breysse et al., 2023; Chung et al., 2023). Another high-level analysis technique
that can be used in inference is to obtain the average LIM signal from stacking on
galaxy positions from an external galaxy catalog (Dunne et al., 2024, 2025).

Nevertheless, there are not yet any robust auto-correlation LIM detections.
Therefore, supplementing the power spectrum with other summary statistics
becomes somewhat moot. In this section, we summarize and tie together the
work presented in Papers II, IV, and V, respectively covering the power spectrum
methodology and results of COMAP ES, COMAP S2, as well as the physical
inference of COMAP S2. Helping to develop and further improve the COMAP
power spectrum methodology constitutes the largest contribution to the combined
work presented in this thesis.

3.6.1 Power spectrum analysis

We can divide power spectra into two types. The first of these, the auto-power
spectrum, is equivalent to the variance of the Fourier coefficients in a map. We
can write the auto-power spectrum as

P (k) = Vvox

Nvox
⟨|F{m}(k)|2⟩ = Vvox

Nvox
⟨|f(k)|2⟩, (3.29)

where the voxel volume and number of voxels are given by Vvox and Nvox, and the
Fourier coefficients f(k) are given by the Fourier transform of the map F{m}(k).
Because the COMAP maps m are a function of a three-dimensional position in

3The Fourier equivalent of the real-space two-point correlation function.
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DCM1 (feed group) Feeds
1 . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 4, 5, 12, 13
2 . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 14, 15, 16, 17,
3 . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 7, 18, 19
4 . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 8, 9, 10, 11

Table 3: “Feed groups” and their associated first down-converter module (DCM1). See
Fig. 13 for a visual representation of which feeds belong to a certain DCM1.

(real-)space (often measured in comoving Mpc), the power spectrum must be a
three-dimensional function of the wavenumber vector k (in units Mpc−1).

By virtue of being the variance of the map’s Fourier coefficients, all sources of
variance in the map will contribute to the auto-spectrum

⟨P (k)⟩ = PCO(k) + Psyst + Pnoise(k), (3.30)

as the sum of the signal, systematic effects, and noise power spectra.
Similarly, we can also define the so-called cross-power spectrum as the

covariance between Fourier coefficients fi(k) and fj(k) of two maps mi and mj.
This is then written as

C(k) = Vvox

Nvox
⟨Re{f ∗

i (k)fj(k)}⟩, (3.31)

where “∗” denotes complex conjugation. We see that this reduces to the auto-
power spectrum P (k) in Eq. (3.30) if the two maps mi = mj.

In contrast to the auto-power spectrum P (k), the cross-spectrum C(k) will
only be sensitive to common contributions to the maps mi and mj. This means
that if the two maps have both independent noise and systematic effects but share
the same CO signal, the cross-spectrum of the maps can be written as

⟨C(k)⟩ = PCO(k). (3.32)

Meanwhile, to obtain the same signal estimate through an auto-power spectrum
like in Eq. (3.30) we need to model both the systematic effects and noise to a high
precision to not bias the signal estimate PCO(k). It is still important to know
the systematic effects and noise properties of the maps when estimating a cross-
spectrum as in Eq. (3.31), but only to obtain accurate uncertainty estimates and
not to obtain the correct expectation value.

In practice, because our maps have highly nonuniform noise properties, we need
to weigh the maps prior to computing Fourier transforms to prevent the power
spectrum from being dominated by high-noise regions of the map. The resulting
pseudo-power spectra will be a biased estimator of the signal power spectrum as
different Fourier modes are coupled through the applied weights (see more on this
mode-mixing in Hivon et al., 2002; Leung et al., 2022, and Appendix D of Paper
II).
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Figure 32: (Left column) Cylindrically averaged power spectra of the full COMAP Early
Science data (Paper II) for each of the three COMAP fields (first three rows) as well as
coadded over fields (last row). (Middle column) Corresponding uncertainty estimates and
(right column) the ratio between power spectra and their uncertainties. Green contours
indicate k-bin edges of the spherically averaged power spectrum seen in Fig. 43.

3.6.2 From feed-feed to feed group pseudo-cross-power spectra

The sensitivity and robustness against systematic effects and noise assumptions
make the cross-spectrum an ideal starting point for the COMAP power spectrum
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methodology, as described in Papers II and IV. Specifically, the methodology builds
on cross-correlating different feeds or feed groups and elevation maps to eliminate
the noise bias and systematic contamination from the final CO power spectrum
estimate (as shown in Eq. (3.31)). This is done in the comap2fpxs step of the
COMAP pipeline in Fig. 23.

Because each feed has a (largely) independent detector chain and associated
electronics, they also have independent noise and (largely independent) systematic
effects. A worrisome systematic effect for COMAP is pointing-correlated far-
sidelobe ground pickup from the mountainous horizon at Owens Valley, which
may not average down with more data due to the repeated motion of the telescope
across the sky. To avoid ground pickup, we also want to cross-correlate between
maps of only high- and low-elevation scans, each with different ground pickup, as
we can see from Fig. 22.

This leads us to the feed-feed pseudo-cross-power spectrum (FPXS; described
in detail in Paper II), as well as the feed group pseudo-cross-power spectrum
(FGPXS; see Paper IV). Both cross-correlate data across detectors and elevations
to cancel the noise bias, as well as detector- and elevation-specific systematic errors.
The only difference between the two methods is that the FPXS cross-correlates
between individual feeds, while the FGPXS relies on cross-spectra between certain
feed configurations that share systematic effects of the type seen in Sec. 3.4.4.
Otherwise, the FPXS and FGPXS remain completely analogous. Specifically, feeds
with a common DMC1, as shown in Table 3 and Fig. 13, are grouped together
to avoid cross-correlating feeds with shared systematic effects. Additionally, the
larger cross-map footprint of feed group maps can help prevent larger mode
mixing and, therefore, leakage of large-scale systematics effects into the small and
intermediate scales of interest.

We can, therefore write both methods algorithmically as follows:

1. Divide the data into two halves A and B. As mentioned in Papers II and
IV, we chose to split the data into high- and low-elevation scans to isolate
different ground signals.

2. For each individually processed half A and B make feed (group) maps and
let them be denoted as, e.g., mA2 for maps of elevation A and feed (group)
2.

3. Compute all possible (pseudo-)cross-spectrum combinations CAiBj
(K)

between maps mAi
and mBj

.

4. Combine all Nfeedgroup(Nfeedgroup − 1) computed cross-spectra, CAiBj
(K), for

which A ̸= B and i ̸= j so that

C(k) =

∑
i ̸=j,A̸=B

CAiBj
(k)

σ2
AiBj

(k)∑
i ̸=j,A̸=B

1
σ2

AiBj
(k)

, (3.33)

to obtain the mean feed-feed or feed group pseudo-power spectrum (FPXS
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and FGPXS).4 Depending on whether FPXS or FGPXS are computed,
Nfeedgroup = 19 or Nfeedgroup = 4.

Using Eq. (3.33) we can compute combined CO power spectrum estimates for
each separately processed field. In Figs. 32 and 33, we see an example of the
main cylindrically averaged FPXS and FGPXS results adapted from Papers II
and IV. These contain the CES data of Season 1 and (cumulatively) S2. As one
can see, the noise on small and large scales is blown up. This is due to the pipeline
filters, voxel windows, and beam transfer functions, which we will return to in
Sec. 3.6.3. The main goal of the ES results was to show that the COMAP analysis
pipeline removes systematic effects down to the white noise level so that the noise
can average down with more future data. As we see from Fig. 32, this seems to
be the case up to some correlated fluctuations (more on these in Sec. 3.6.2) at
the smallest k⊥. These could be explained by standing wave residuals or poorly
constrained modes from suboptimal cross-feed sky overlaps. We can also see in the
right columns of Fig. 32 that the noise in the data is somewhat underestimated
at low k and vice versa at intermediate and high k. This is due to the way the
power spectrum uncertainties are estimated in Paper II, and we will come back to
this in detail in Sec. 3.6.4 as well as how it is improved in Paper IV.

Meanwhile, in Fig. 33, we show the entire k-space of the COMAP S2 power
spectra from Paper IV, including the masked regions. We can see that the power
spectra on small and intermediate scales seem to be noise-dominated. We also
see that the noise level does not seem over- or under-estimated. However, we see
clear signs of systematic effects on large perpendicular scales, which motivates the
COMAP S2 k-mask, and we come back to masking later in Sec. 3.6.2.

Sensitivity of an FGPXS compared to an FPXS

As we see from Eq. (3.33), of all possible combinations between feeds and elevation,
only those that neither cross the same feed nor elevation are propagated to the final
average cross-spectrum. This is graphically illustrated for both FPXS and FGPXS
in Fig. 34. When crossing individual feeds instead of groups of feeds a larger
percentage of the area of the triangle in Fig. 34 is maintained and consequently
the average feed cross-power spectrum will be more sensitive than the feed group
equivalent. This can, as shown in Paper IV, also be expressed in terms of the
fraction of the maximally achievable auto-power spectrum sensitivity σP (k) (i.e,
combining all cells in Fig. 34):

σ
NsplitNfeed
C(k)

σP (k)
≥
√√√√ 1

1− 1
Nsplit

√√√√ 1
1− 1

Nfeed

, (3.34)

where the first square-root always reduces to
√

2 because Nsplit = 2 in Papers II
and IV. We can find a theoretical loss in sensitivity between the FPXS and FGPXS
of around 12 %, ignoring cross-overlap between maps, etc.

4Note that the FPXS and FGPXS are in practice binned into 1D or 2D representations, i.e.,
as functions of k =

√
k2

x + k2
y + k2

z and (k⊥, k∥) = (
√

k2
x + k2

y, |kz|), by spherical and cylindrical
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Figure 33: Same as Fig. 32 but using the full COMAP S2 data and k-space mask. The
figure is similar to Fig. 3 of Paper IV, but also shows masked areas (hatched).

However, in practice, we observe a somewhat higher loss in sensitivity, although
the exact reasons are not yet properly understood and will be subject to future
investigation. In Fig. 35, we see an example of the (unity subtracted) ratio between
the uncertainty estimates, σfeedgroup and σfeed, for an FGPXS and FPXS (both
estimated as described later in Sec. 3.6.4) of Field 3. Both the FPXS and FGPXS

averaging to form the main summary statistic used later in inference. See Papers II and IV for
details on how and why the spectra are binned.
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Figure 34: Grid of possible feed (left) and feed group (right) combinations for one of
the COMAP field maps. Only combinations with 2D cross-spectrum data are used for
a final average FPXS or FGPXS. In contrast, all the dark and light gray (auto-feed
and auto-elevation combinations respectively) are excluded. The figure is adapted from
Paper IV.

include the same raw data volume, and the only algorithmic difference is the cross-
correlated feed configurations. On the very largest scales, which are masked in the
COMAP S2 analysis, the FGPXS sensitivity is higher than that of the FPXS. This
is most likely caused by the map weights, w ∝ 1/σ1σ2, which are used in computing
the pseudo-power spectra in Papers II and IV to make the mode mixing problem
easily invertible at a later stage. The result, however, is that non-overlapping
regions of the sky do not contribute to the cross-spectrum at all. Hence feed group
maps, having slightly larger footprints, have a superior overlap on the very largest
Fourier scales. Meanwhile, on smaller scales, the FPXS have a median of 18%
lower uncertainties than the FGPXS, which is a somewhat larger difference than
expected by Eq. (35). This will be subject to future investigations.

Power spectrum k-space mask

In COMAP ES (Paper II) all computed (k⊥, k∥)-bins are used for the final data
products. However, in COMAP S2 (Paper IV, we had to include a k-space
mask to prevent any potential residuals of the turn-around or start-of-scan effects
(Sec. 3.27) from affecting the analysis. In particular, data on perpendicular scales
k⊥ > 0.1Mpc−1 are masked from the S2 analysis. This can be seen in, e.g., Fig. 33.

Furthermore, the systematic contamination on these scales can be tested
further by performing null tests (see 3.6.4). These fail if the k⊥ > 0.1Mpc−1

mask is not applied, indicating that there are indeed some residual systematics on
the very largest map scales. Additionally, we mask the outermost k⊥- and k∥-bins
since these are closest to their respective Nyquist limits where aliasing problems
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Figure 35: Right: Unity subtracted ratio between feed group and feed cross-spectrum
sensitivity, σfeedgroup

σfeed
−1, COMAP Field 3. Gray hatching indicates the COMAP S2 mask.

Left: Histogram of the right panel. The red line indicates the theoretical sensitivity loss
of using feed groups instead of individual feeds as expected from Eq. (3.34).

are the strongest.
In Fig. 36, we show correlation coefficients between a selection of k-bins and all

the others. We note that on large scales, there are fairly strong correlations that
can be as large as ≥ 30 %, extending along constant k∥. These correlations are
a sign of poorly constrained large-scale modes where the maps lack effective sky
overlap. We see that the correlations decrease towards small scales where the maps
are dominated by noise. However, we see that the correlations become significantly
less spread out in k∥ outside of the discarded regime k⊥ > 0.1 Mpc−1. Currently,
these correlations are not properly taken into account when averaging feeds or
binning the power spectra into spherical or cylindrical averages. Thus, properly
addressing these correlations, especially when trying to recover the largest masked
scales, will be an important future goal.

Finally, we note that by masking the large-scale regions of the maps, we also
lose a significant portion of the area where COMAP is estimated to have a relatively
high S/N . This can be seen in Fig. 37, where the masked region k⊥ > 0.1Mpc−1 is
indicated by red hatching. The estimated normalized S/N assumes a Chung et al.
(2022a) fiducial model. While the S/N is relatively high in the excised regions, a
substantial part of the total S/N is kept in the COMAP S2 analysis.

Therefore, we err on the side of caution in Paper IV and mask the systematics
contaminated, mode-mixed, and highly correlated regime at the price of losing
some signal. That being said, as most of the clustering power (see Sec. 3.6.5)
and significant amounts of the total S/N lay in the masked region of the power
spectrum, recovering these scales will be an important goal for the future.

3.6.3 Power spectrum transfer functions

In a perfect experiment, a telescope has infinite resolution, the voxels of the maps
are infinitesimally small, and no filtering has to be performed to clean the data.
In such a case, the signal power spectrum estimator would simply be given by
Eq. (3.32). However, in reality, this is never the case. That is, we have to take into
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Figure 36: Representative selection of correlation coefficients between the marked gray
k-bin and all the others. Gray hatching indicates the COMAP S2 mask.

account how the beam of the telescope, the size of the voxels, and the filtering of
the data inevitably lead to a degree of signal loss.

The signal loss can mathematically be described by a product of transfer
functions so that

⟨C(k)⟩ = Tb(k)Tvox(k)Tf(k)PCO(k) ≡ T (k)PCO(k), (3.35)

where the effects of the beam smoothing, the voxel size, and filtering are described
in k-space by Tb(k), Tvox(k) and Tf(k), respectively.

As described in Sec. 3.4.3, the COMAP mapmaker is based on a simple nearest-
neighbor binning scheme. The effect of the binning scheme on the signal is a
sinc2(x) smoothing in the power spectrum domain. Because the COMAP maps
have three dimensions, there will be a corresponding voxel window for each of
these. We can write out the voxel transfer function analytically as

Tν(k∥, k⊥) = Tfreq(k∥)Tpix(k⊥) = sinc2
(

∆x∥k∥

2π

)
sinc2

(
∆x⊥k⊥

2π

)
, (3.36)

where the frequency pixel window Tfreq(k∥) is a function of scales along the line-
of-sight k∥ and the width of a spectral channel ∆x∥, and analogously for the
angular pixel window Tfreq(k⊥). Because the angular pixel window is approximately
radially symmetric at our scales, we have written Tpix(k⊥) ≈ TRA(kRA) ≈
TDec(kDec). The shape of the voxel transfer function can be seen in (k⊥, k∥)-space
in Fig. 38, as well as in profile in Fig. 39.
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Figure 37: Relative S/N of the COMAP data assuming the Chung et al. (2022a) COMAP
fiducial model. Red hatching represents the k-space mask applied in the COMAP S2
power spectrum analysis, and green contours represent the bin edges of our 1D spherically
averaged power spectra. The S/N normalization is chosen as the maximum value within
the uncut region (without hatching) to emphasize the S/N relative to the peak.

Next, the beam transfer function can also be seen in Figs. 38 and 39 (right
panel). It is caused by the instrumental beam of the COMAP telescope B(r)
(seen in the left of Fig. 39 as a function of radial distance r) smoothing the signal
on small scales (see also Sec. 3.5). This effect limits the recovery of small-scale
structures the most, as can be seen in Fig. 38. In particular, we can find the effect
of the instrumental beam B(r) on the signal in the power spectrum by using the
convolution theorem and get

Tb(k⊥) = |F{B(r)}|2. (3.37)

Additionally, as described in II, the main beam efficiency is applied to the beam
prior to computing the transfer function. These (semi)analytical derivations of the
beam and voxel window transfer functions are only used in the S2 publications
(Papers III-V) as they were deemed more accurate than the simulation-based
approach previously used in Early Science (Papers I-II).

Lastly, the pipeline transfer function, seen in Fig. 38, reduces the power of the
large-scale modes in our maps. It is somewhat more complicated to estimate as it
requires processing simulations through the low-level pipeline described in Sec. 3.4.
The exact details of the approach have also changed somewhat between COMAP
ES and S2 as the methodology was more refined. However, the rough idea remains
similar:

1. Generate a peak-patch dark matter simulation (Bond & Myers, 1996; Stein
et al., 2019) and populate the dark matter halos with CO luminosities
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Figure 38: Individual transfer functions quantifying (from left to right) the k-space
signal loss due to the pipeline filters, the line-of-sight frequency window, the angular
pixel window, the finite beam size of the COMAP telescope, as well as all individual
effects combined. Scales masked out from the analysis in COMAP S2 are marked by
hatching. Courtesy of Jonas Lunde, see Paper III.
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Figure 39: (Left) Radially averaged beam profile out to half a degree, and (right) the
corresponding radial beam transfer function (blue), as well as the frequency and pixel
window profiles (red and black). The left and right panels are, respectively, adapted
from Papers II and III.

LCO(Mhalo) using the COMAP fiducial model (see ‘UM+COLDz+COPSS’
by Chung et al., 2022a) (or any other model).

2. Optionally boost the signal to create a detectable signal at the chosen S/N .

3. Inject the signal into the raw COMAP data, which serves as the noise term
in the data model. Given the telescope (bi-linearly interpolated) pointing
PL, gain G, and beam B we can write the resulting mock TOD as

dmock
t,ν = GR(θ0)PLBsmock

θ,ν + nt,ν . (3.38)

Because the simulated signal cubes smock
θ,ν are generated as if they were

in a Cartesian grid, i.e., a small patch along the celestial equator (zero
declination), we must rotate the telescope pointing PL to be centered on the
equator using an Euler rotation R(θ0). This is done to ensure the injected
signal inherits all the correct geometric distortion from the Plate Carrée
projection used in the maps. In Fig. 40 we show examples of some signal-
injected TODs.
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4. After constructing the mock TODs dmock
t,ν we run it though the pipeline as

described in Paper III and Sec. 3.4. We can write this as

m̂mock
θ,ν = fmap

[
M(fTOD[GR(θ0)PLBsmock

θ,ν + nt,ν ]
]

, (3.39)

with the time- and map-domain filters in the pipeline being denoted as fTOD
and fmap, respectively, while the mapmaker is denoted by M . Meanwhile, the
signal TOD used in Eq. (3.38) is binned up into maps without any filtering
so that

ŝmock
ν,θ = M(GR(θ0)PLBsmock

ν,θ ) (3.40)
Figure 41 shows some examples of signal-injected and filtered maps and the
unfiltered signal.

5. The final pipeline transfer function can then be estimated using a cross-
power spectrum (as described in Eq. (3.31)) between the mock map m̂mock
and unfiltered signal ŝmock

ν,θ , normalized to the auto-power spectrum of the
signal ŝmock

ν,θ so that

T̂f ≈
C(m̂mock, ŝmock)

P (ŝmock)
. (3.41)

This estimator will then quantify how much the filtered and unfiltered signals
have in common. At the same time, by using a cross-spectrum, we ensure
that the transfer function estimator is robust against any residual systematics
present in the raw data nν,θ in Eq. (3.38). Meanwhile, in Paper I we used a
less optimal estimator that was purely based on auto-power spectra, as well
as having a noise bias subtraction step:

T̂f ≈
P (m̂mock)− P (m̂n)

P (ŝmock)
, (3.42)

where m̂n is the map of the raw COMAP data without added signal.5

With the individual transfer functions in hand, the full transfer function T can
deconvolved from the FGPXS signal estimator so that

PCO(k) = C(k)
T (k) , (3.43)

with the corresponding uncertainties

σCO
P (k) = σC(k)

T (k) . (3.44)

The effect of the transfer function on the error bars can be seen in Fig. 43. We
can see that the uncertainties of the COMAP data points increase at the lowest
and highest k where, respectively, the filter and beam transfer functions remove
most of the structure in the map.

5In addition, the Paper I transfer function estimator used a regridded signal simulation to
estimate ŝmock, instead of binning the injected unfiltered signal TOD as in the 4th step. This
introduced an implicit pixel window difference because the injected and reprojected signals did
not always end up in the same output pixels. The result was a spurious signal loss estimate at
small perpendicular scales. However, this was understood and fixed in the COMAP S2 release
of Paper III.
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Figure 40: Example of signal-injected TODs in a (top) noise and (bottom) signal
dominated case. The signal strength corresponds to one and five thousand times the
Chung et al. (2022a) COMAP fiducial model, respectively.

3.6.4 Power spectrum uncertainties and null tests

Before wrapping up Sec. 3.6 with an overview of the COMAP CO(1–0) power
spectrum constraints and modeling, we will mention how the power spectrum
uncertainties are typically estimated. We will also discuss how to perform null
tests on the data to ensure that any residual systematic effects present are below
the noise level. Specifically, developing a more accurate data-driven uncertainty
estimate and an improved null test framework for the COMAP S2 data release is
one of the main contributions to this thesis. We will thus only skim the uncertainty
and null test frameworks of Paper II and go into somewhat more detail on the
methodologies of Paper IV in this section.

Uncertainty estimation

When estimating uncertainties for power spectra, there are generally two
approaches: simulations and data-driven methods. The first approach, chosen
in Paper II for its simplicity, is noise simulations. The basic idea is to generate
an ensemble of maps with only noise, compute power spectra from these, and
estimate uncertainties based on these. The noise simulations should have the
same properties as the actual data. Hence, the approach can be made arbitrarily
complicated, depending on how realistic the noise model is.

In the first season of COMAP releases (Paper II) a relatively simple approach
was chosen, where white noise realizations mi

ν,θ are drawn from the voxel
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Figure 41: Example of unfiltered signal (top left) and several map frequency slices with
signal-injected and filtered COMAP data corresponding to different signal strengths
(boosts from fiducial strengths). The signals are produced using the Chung et al. (2022a)
COMAP fiducial model. Courtesy of Jonas Lunde, see Paper III.

uncertainty map σmν,θ so that

mi
ν,θ ∼ N (0, σmν,θ). (3.45)

From a large number of independent white noise realizations, an ensemble of power
spectra is generated from which one can estimate the power spectrum uncertainty
σC(k).

The advantage of using this method is that it is very quick to run due to
its simplicity and generates fairly accurate uncertainty estimates on small scales
where the noise properties of the map are closest to white noise. However, as we
can see from the transfer function estimate in Fig. 38, the pipeline transfer function
results in a loss of structure on large scales in the maps. Additionally, there is some
residual correlated noise in the data (see Fig. 9. of Paper III). Therefore, the result
of using this approach is that the noise estimate will overestimate the amount of
noise in the data on large scales due to low-level filtering. Meanwhile, on small
scales, the noise will be underestimated due to residual correlated noise that is not
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accounted for. This is seen in Fig. 32 in the bottom right panel, showing the 2D
field coadded FPXS in units of the estimated uncertainty.

Due to COMAP S2’s dramatically increased data volume, the simple white
noise simulation-based approach was found to no longer be accurate enough. At
the same time, there is not yet an existing framework in which realistic TOD
simulations can be propagated all the way through the COMAP pipeline to model
the uncertainty appropriately.

Therefore, a data-driven approach was chosen for S2 (Paper IV), where all
computed uncertainties are directly estimated from the data. As such, they
inherit all filtering biases and noise properties of the real data. Specifically, where
the ES approach estimated power spectrum uncertainties from a large number of
noise simulations, the S2 approach generated a large ensemble of randomized null
difference (RND) maps

∆mRND
i =

mRND
A,i −mRND

B,i

2 , (3.46)

where mRND
A,i and mRND

B,i maps are made from randomly shuffled halves of all the
scans in the data. The resulting RND maps ∆mRND

i then have the same noise
properties as the actual data but should not contain signal or coherent systematic
effects because of the difference between two random halves. From the ∆mRND

i

maps, we simply compute uncertainties the same ways as from the noise simulation
maps. The resulting error bars are used, for example, in Fig. 33, whereas the older
noise simulations are used in Fig. 32. To judge the quality of the estimated errors,
we can compare the COMAP S2 FGPXS in units of its uncertainties (in the lower
right of Fig. 33)) with the equivalent FPXS of COMAP ES (Fig. 32). We see that
the noise appears to be much more evenly distributed in k-space in the COMAP
S2 FGPXS than for the COMAP ES FPXS. Additionally, we no longer see the
same under- or overestimation of noise on, respectively, large and small scales. We
can, therefore, conclude that the uncertainty estimates capture the properties of
the data more accurately.

Null tests

Lastly, to ensure that the power spectra (or any other summary statistic) behave
according to the expectations of the experimental noise and do not contain
significant systematic residuals, we need to perform a set of null tests. The null
test framework was one of the things that changed significantly between the two
seasons of COMAP (i.e., Papers II and IV). The null test framework was essentially
redesigned from scratch for Paper IV.

In Paper II, six null tests are performed. Each computes an FPXS (see Sec.
3.6.2) where the two cross-correlated maps are of different fields. By doing so, we
test the null hypothesis that independent fields at different elevations should be
consistent with noise if there are no common systematic effects in the two cross-
correlated fields. Because the extragalactic CO in independent fields (without
any sensitivity for a monopole due to our normalization filter) is statistically
independent, there is no CO signal contribution to cross-field spectra. However,
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Figure 42: Empirical χ2 distribution (black) of the cylindrically and spherically averaged
FGPXS (top and bottom, respectively), the corresponding theoretical χ2 distribution
(blue) assuming degrees-of-freedoms (DF) equal to the number of summed k-bins, and
χ2 distributions with a variable DF fit to the empirical distribution (red). The theoretical
χ2 distribution is, in both cases, a poor match for the empirical distribution, as indicated
by a clear shift between the black and blue curves.

the problem with using cross-spectra between fields is that it can be challenging
to find a meaningful common coordinate system to rotate both fields to before
cross-correlation. Additionally, it only allows for null tests in which two maps
are crossed and not tests in which only one field is independently tested by itself.
Lastly, it is somewhat challenging to perform a high number of null tests in this
framework.

To improve this for the order of magnitude higher degree of sensitivity of the
S2 power spectra, we developed a new difference map-based test scheme in Paper
IV. Subsequently, half-difference maps, just like in Eq. (3.46), but with meaningful
non-randomized splits, are computed. Next, FGPXS of the difference maps are
estimated just like for regular maps (see Sec. 3.6.2). Thus, the null hypothesis of
our COMAP S2 null tests is the following: In computing the difference between
splits, the resulting map should be void of signal, while any systematic not shared
across splits should remain. Hence, the FGPXS of the difference maps should be
consistent with noise expectations.

Specifically, a set of 26 different variables (related to the weather, telescope
pointing, pipeline, and noise parameters; see Table C.2 in Paper IV) was identified,
and the data are evenly split into two for each of these variables. The RND
uncertainty estimation is computationally heavy, and we currently do not support
generating RND ensembles for each individual null test split map. We, therefore,
make sure that each null split is evenly distributed across elevation as well as
when the fields are rising and setting. This enables us to use the same RND-
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derived uncertainties for all 26 null test variables using the same RND ensemble.
However, the disadvantage of doing this is that the sensitivity of our null tests is
somewhat reduced. Generalizing and optimizing the framework to uneven splits
will be a point of future improvement.

In addition to the 26 null test variables over which a difference map is computed,
we independently perform each null test in the three Fields. We also individually
process scans with a slow and fast azimuth speed, as they could have different
mechanical vibration issues. The FGPXS computed for each difference map is
averaged both spherically and cylindrically. From this, we get 312 independent
null tests in total that we can perform to judge the data quality of the final power
spectra of S2.

To say whether the null test FGPXS are statistically consistent with noise, we
perform a χ2 test. For each null test variable j, we compute

χ2
null,j =

∑
ki

Cki
∆mj
− µki

∆mj

σ
C

ki
∆mj


2

=
∑
ki

 Cki
∆mj

σ
C

ki
∆mj


2

, (3.47)

where µki
∆mj

= 0 according to the null hypothesis. The difference map FGPXS
Cki

∆mj
has (a RND-estimated) uncertainty σ

C
ki
∆mj

in bin ki. From this, we can

obtain a probability-to-exceed (PTE) by comparing the resulting χ2
null,j to their

expected distribution as

PTE(χ2) = 1− CDF(χ2), (3.48)

where CDF(χ2) denotes the cumulative probability function of the χ2
null,j.

However, we cannot simply assume that the χ2
null,j will adhere to a simple

theoretical χ2 distribution. It turns out that the cross-spectrum between two
independent Gaussian random maps is itself not Gaussian random but rather
distributed according to a modified Bessel function (Watts et al., 2020; Nadarajah
& Pogány, 2016; Gaunt, 2019). But as we additionally bin our FGPXS estimates
(either spherically or cylindrically), the noise properties in each bin will again be
driven toward Gaussian properties to some extent by the central limit theorem.
Therefore, there is no analytically well-defined expression for the distribution of
our empirical χ2

null,j values.
Instead of relying on theoretical expressions, we can use the RND methodology,

otherwise used for estimating power spectrum uncertainties. As we saw earlier,
each RND map is not different from a proper null test difference map except that
the data are split randomly. All systematics and CO signals should cancel in an
RND map and, therefore, fulfill the null hypothesis perfectly. As such, they are an
excellent way to empirically test whether a proper null test difference map behaves
according to noise expectations of the data or if there are remaining systematic
errors.

In Fig. 42, we show an example of the empirical χ2
null,j distribution for both the

cylindrically and spherically averaged (masked) FGPXS estimated from hundreds
of RND spectra. We see that the theoretical χ2 distribution with degrees-of-
freedom (DF) equal to the number of summed k-bins underestimates the empirical
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χ2 values. This would result in the null test spuriously failing as the empirical
distribution is shifted to the high tail of the χ2 distribution. To provide a slightly
better fit to the empirical distribution, we fit a χ2 distribution with variable
degrees-of-freedom to the empirical distribution. We see from Fig. 42 that this
modified χ2 distribution provides a much better fit to the empirical distribution
than if a fixed DF was used. The fit distribution can be used to evaluate Eq. (3.48)
in the far tails when evaluating the PTE for outliers.

Finally, the PTEs of the null tests are expected to be drawn from a uniform
distribution. To validate this, we can perform a Kolmogorov–Smirnov (KS) test to
see if the null test PTE ensemble is plausibly drawn from a uniform distribution.

As mentioned, we get a total number of 312 null tests (see Appendix C of Paper
IV for a full table of PTEs). These behave according to noise expectations, and
the resulting PTEs all pass the KS uniformity test, as discussed in Paper IV. We
can thus confidently say that the final data products of the COMAP S2 release
seen in Figs. 43 and 33 are free from systematic effects down to the instrumental
noise level.

3.6.5 The state-of-the-art CO LIM constraints and connecting
them to physics

The state-of-the-art CO LIM constraints

Putting it all together, the S2 power spectra of Paper IV provide a dramatic
improvement in sensitivity compared to the Season 1 constraints, despite the
slightly less sensitive FGPXS estimator and large-scale k⊥-cuts. The improvement
is easily seen in Fig. 43, the main result from Paper IV. The COMAP S2 points
show around an order of magnitude improvement in the error bar size compared
to the COMAP ES power spectrum (Paper II) and the COPSS measurement of
Keating et al. (2016). The updated COMAP power spectrum data now scatter
much tighter around the two brightest non-excluded models, the COMAP fiducial
model of Chung et al. (2022a) and the Li-Keating model (Keating et al., 2020).

As such, the COMAP S2 power spectrum is the currently tightest direct
3D LIM constraint on the CO(1–0) clustering power spectrum in the literature.
However, the uncertainties are still too large to claim any detections, let alone
separate models. Nevertheless, we note that we have a 2.7σ excess in the second
power spectrum bin in Fig. 43. At 2.7σ the significance of the excess is not yet
enough to claim any detection, as it could simply be a noise fluctuation or some
systematic effect that has not yet been discovered. Even still, it is encouraging to
see an excess in our FGPXS after passing all null tests, as this could possibly also
represent a first subtle hint of cosmic CO in the COMAP data if it turns out not
to be explained by alternative causes.

Compared to COPSS, the only comparable CO(1–0) LIM experiment to
COMAP, we see from Fig. 43 that there is a mild 2.5σ tension between the
sixth COMAP bin t k ∼ 0.6 Mpc−1 and one of the 2.5σ excess points of COPSS.
However, we do not consider this tension statistically significant at this point, and
this point represents the only noteworthy disagreement between the two surveys.
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For more details and discussion on the COMAP ES and S2 power spectrum
results, we refer the interested reader to Papers II and IV.
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Figure 43: (Upper panel) Combined CO power spectrum estimates with 1σ uncertainties,
using only CES data and all three fields, from COMAP ES (blue) and COMAP S2 (black)
in relation to the power spectrum points of COPSS (Keating et al., 2016) (orange) and
the two closest CO(1–0) power spectrum models; the COMAP fiducial (Chung et al.,
2022a) and Li-Keating (Keating et al., 2020) models. (Lower panel) Same data points
as in the upper panel, but in units of their 1σ uncertainty. (Inset) Zoom in on COMAP
season 2 data points and the two selected models. The figure is adapted from Paper IV.

From power spectra to physics

Up until this point, we have only considered how to filter, calibrate, and compute
power spectra as a summary statistic from the COMAP data. However, as
astrophysicists and cosmologists, we are also interested in what the data can tell
us about the physics of the EoGA (and eventually EoR). To do so, we need to first
write down a model of how the physics, like the star formation rate (SFR), connects
to our observable. In our case, the observable is the CO(1–0) power spectrum. This
is the topic of Paper V. In Paper V, we take the COMAP S2 results produced by
the power spectrum analysis of Paper IV and infer astrophysical parameters from
it.

Although most of the work in this thesis has focused on the lower-level aspects
of COMAP and less so on the work presented in Paper V, we still include a
summary of the modeling as it is important to understand the ultimate goals
and the context of COMAP as a whole. For more details, we therefore refer the
interested reader to Paper V, Chung et al. (2022a), and (Breysse et al., 2022), as
well as references therein.
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Figure 44: Typical CO line intensity mapping power spectrum PCO(k) (black) made
up of a clustering term AclustPm(k) (red) and a constant shot noise contribution Pshot
(blue), in arbitrary units. Note that this plot is plotted in units without tilt (i.e., P (k))
as opposed to the power spectra in Figs. 43 and 46 (with kP (k)).

We start by writing down an expression for a typical line intensity power
spectrum as

PCO(k) = AclustPm(k) + Pshot. (3.49)

Because the star-forming CO emission field traces the underlying dark matter
structures on large scales, the first term called the clustering spectrum, is given by
the dark matter power spectrum Pm(k) times a scaling factor Aclust. This quantifies
how tightly the luminous matter tracks the underlying dark matter. However, CO
emitters are also discrete sources. There is, therefore, a constant Poisson noise
term, called shot noise Pshot, which dominates the emission on small scales. In
Fig. 44 an example of this decomposition is shown.

If we were to measure the CO field directly in comoving coordinates, we could
write the clustering amplitude Aclust = ⟨Tb⟩2, i.e., the mean line temperature-bias
product. This mean line temperature-bias product can itself be written as

⟨Tb⟩ ∝
∫

dMh
dn

dMh
L(Mh)bh(Mh), (3.50)

where Mh is the virial mass of a halo, L(Mh) is the CO luminosity, dn
dMh

is the
differential halo mass function, and bh(Mh) is the bias that quantifies how tightly
a halo traces the continuous dark matter density field. Furthermore, we can expand
the shot noise to be written as

Pshot ∝
∫

dMh
dn

dMh
L2(Mh)bh(Mh). (3.51)

As such, Eqs. (3.51) and (3.50), respectively, quantify the first and second
moments of the CO luminosity function and contain information about how the
CO structures trace the underlying dark matter, as well as the discrete nature of
the emitters that make up the CO emission (Kovetz et al., 2017).

However, a LIM map does not directly measure the structures in comoving
coordinates but instead in redshift space (i.e., the line-of-sight distance to some
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Figure 45: Star formation rate density, ρSFR, estimates of different surveys from low to
high redshift (Béthermin et al., 2017; Pillepich et al., 2018; Zavala et al., 2021; Gruppioni
et al., 2013; Rowan-Robinson et al., 2016; Cochrane et al., 2023; Stein et al., 2020; Planck
Collaboration XXX., 2014). Courtesy of Dongwoo Chung (private communication).

object is inferred through the cosmic redshift z; see, e.g., Schneider, 2015). The
structures in the map are, therefore, affected by redshift space distortions (RSD)
that can lead to some enhancement or attenuation in the CO power spectrum. One
of these effects is the Kaiser effect (Kaiser, 1987; Hamilton, 1998), where the large-
scale structure in the map will increase clustering due to infalling structures. On
the other hand, there is a loss of small-scale structure along the line-of-sight due
to line broadening of the CO line (Chung et al., 2021). This has been estimated
to reduce the power spectrum of CO structures at scales 0.2–0.3 Mpc−1 by around
∼ 10 % (Chung et al., 2021).

While the shape of the power spectrum can be affected to a degree by RSDs,
the overall amplitude of the CO power spectrum can vary by orders of magnitude
depending on assumptions of the physics of the CO emitters on high redshift.
Especially the assumptions of halo and galaxy properties, like star formation, at
high redshift and how these affect the CO observed CO luminosity have a huge
impact on the magnitude of the CO power spectrum. For example, in Fig. 45,
we can see the cosmic star formation density ρSFR as a function of redshift. At
the COMAP-Pathfinder redshift range z ∼ 2–3 the estimates of ρSFR already span
0.5–1 dex. As a result, predictions for the CO(1–0) power spectrum at the EoGA
vary by orders of magnitudes depending on their model and SFR assumptions at
early times. This spread in model predictions can be seen in Fig. 46 (we refer
the interested reader to Pullen et al., 2013; Li et al., 2016; Padmanabhan, 2018;
Chung et al., 2022a; Keating et al., 2020; Yang et al., 2022, for details on the
modeling landscape).

This is exactly where COMAP will significantly improve our understanding
of EoGA star formation physics by pushing down the upper limits on the CO
power spectrum until a detection is made. In fact, with the results from Paper II,
COMAP ES was already able to exclude both the Padmanabhan (2018) model with
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Figure 46: Landscape of CO(1–0) power spectrum models, with the upper limits at 95 %
confidence of COPSS (Keating et al., 2016) and COMAP ES (derived from the ES data
points of Paper II), and COMAP S2 (Paper IV) per k-bin. Courtesy of Dongwoo Chung,
see Paper V.

fduty = 1 and Model B by Pullen et al. (2013). However, using our significantly
improved sensitivity of the COMAP S2 power spectra from Paper IV, we can
further exclude the two models in individual k-bins. The COMAP sensitivity is
expected to increase further as more data are collected and the lower levels of
the analysis improve. Thus, upper limits are expected to migrate further towards
where most models predict a first detection within the next couple of years.

Furthermore, the space of models can be divided into two categories:
They either directly model the dark-matter-halo-to-CO connection with some
constraints from observations of the CO luminosity function (the Padmanabhan
2018 and the COMAP fiducial model by Chung et al. 2022a), or tie together halo
properties and CO luminosity via some intermediate proxy like the star formation
rate or infrared luminosity (such as Pullen et al., 2013; Li et al., 2016; Keating
et al., 2020; Yang et al., 2022).

As an example of one of these models, we consider the COMAP fiducial model
by Chung et al. (2022a), in which L(Mh) is modeled as a double power law in
combination with priors from the CO Luminosity Density at High-z (COLDz)
survey (Pavesi et al., 2018; Riechers et al., 2019) and UniverseMachine (UM)
(Behroozi et al., 2019). It is parameterized as

L′
CO(Mh)

K km s−1 pc2 = C

(Mh/M)A + (Mh/M)B
, (3.52)
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Figure 47: Posterior contours (black solid and white dashed 2D contours mark 39 %
and 86 % probability, and the solid horizontal line shows the 95 % upper limit on the
marginal probability distributions) for the clustering and shot noise amplitudes of the
CO power spectrum, assuming both a (left) “b- and veff-agnostic” and (right) “b- and
veff-informed” two-parameter model. The data used is the COMAP S2 data from Paper
IV combined with COPSS data (Keating et al., 2016). The clustering and shot noise
amplitudes of a selection of models from Fig. 46 are included for reference. Courtesy of
Dongwoo Chung, see Paper V.

and
LCO(Mh)

L⊙
= 4.9 · 105 L′

CO(Mh)
K km s−1 pc2 , (3.53)

with informative UM priors on the four (dimensionless) parameters

A = −1.66± 2.33, (3.54)
B = 0.04± 1.26, (3.55)

log C = 10.25± 5.29, (3.56)
log(M/M⊙) = 12.41± 1.77, (3.57)

governing the average relation and a log-normal scatter added about the average
relation with an initial prior of σ = (0.4± 0.2) dex similar to Li et al. (2016). The
other models are similarly parametrized, with possible intermediate steps for the
halo-CO relations.

Using what we have defined above, we can, as outlined in more detail in Paper
V, perform several analyses that may give us insight into the star formation at early
times. As a starting point, we can perform a simple two-parameter model in the
form of Eq. (3.49), with a clustering amplitude and shot noise level Aclust and Pshot
as free parameters. Furthermore, we can either be agnostic about assumptions of
specific models and RSD or assume specific values for the RSD. These are referred
to as the “b- and veff-agnostic” and “b- and veff-informed” two-parameter analyses
in Paper V. This type of analysis will not provide details on the actual physics
inside halos. Still, it may provide estimates of the amount of clustering and shot
noise in the system and, as such, constrain some aspects of the luminosity function
L(Mh). To obtain more detailed pictures of the physics one needs to assume a
model like the COMAP fiducial model (Chung et al., 2022a), or one of the other
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models, which focuses more on (empirical) physical relations. This is referred to
as the “five-parameter” in Paper V. Subsequently, one can map out the posterior
distribution of the model space using some standard Markov Chain Monte Carlo
(MCMC) algorithm and obtain parameter estimates with associated uncertainties
and correlations.

As we can see in Fig. 47 for both the informed and agnostic models, the two-
parameter posterior probability analysis prefers the Li-Keating model Keating
et al. (2020), but the sensitivity of COMAP is not yet large enough to claim any
detection. However, the other (non-excluded) models are still consistent with the
data at 2σ in both analysis modes. Interestingly, from the five-parameter analysis,
we see the first hints of an increase in the faint end of the CO luminosity function,
as well as in clustering, as shown in Fig. 48. For more details and discussion of the
COMAP modeling results, see Paper V, and the works of Chung et al. (2022a).
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Figure 48: Left: Median and 68 % confidence of the luminosity function L′
CO from

Eq. (3.52) assuming a five-parameter COMAP fiducial model of Chung et al. (2022a).
The different curves show the “UM+COLDz” priors, as well as when including in COPSS
Keating et al. (2016), COMAP ES, and COMAP S2 data from Papers II and IV. Right:
Posterior probability (1σ and 2σ) contours on ⟨Tb⟩ and Pshot resulting from the five-
parameter analysis. Courtesy of Dongwoo Chung, see Paper V.

3.7 Detection of CMB and continuum point sources

Now that we have introduced the COMAP experiment and explained how we
have contributed to and significantly improved its data analysis, we will briefly
present an interesting discovery made in the COMAP maps. When looking at the
frequency-averaged COMAP maps, it turns out that they contain a residual of the
CMB and a row of point sources. As these results have not yet been published
elsewhere, we present the continuum residuals in this work.

In Fig. 49, we show an example of the CMB detection in COMAP Field 2 and
the corresponding Planck LFI 30 GHz and Planck 2018 Commander CMB maps
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Figure 49: From left to right: Planck LFI 30 GHz map (Planck Collaboration II., 2020)
reprojected and masked to the COMAP Field 2 footprint, the Planck 2018 Commander
CMB map (Planck Collaboration IV., 2020), as well as the COMAP continuum leakage
map. Three clear detections of point sources, as indicated by annotations. See Figs. 50,
51, and 52 as well as Table 4 for more point source detections.

(Planck Collaboration II., 2020; Planck Collaboration IV., 2020). The latter two
are reprojected and masked to the same footprint as COMAP. As can be seen, the
COMAP CMB estimate has a much higher resolution than the Planck LFI 30 GHz
map, which is dominated by the Planck LFI 30 arcmin beam. Compared to the
Planck 2018 Commander CMB temperature map, where most of the sensitivity
comes from the 5 arcmin beam of the Planck HFI instrument, we clearly see that
COMAP and Planck see the same sky signal. We can also see several strong point
source detections in the COMAP map, as indicated by arrows in Fig. 49.

To show the high level of agreement between the COMAP and Planck CMB
estimates in all three fields, we plot the COMAP continuum leakage maps with
contours of the Planck Commander CMB map for all three fields in Figs. 50–
52. Because the units of the COMAP continuum leakage are somewhat arbitrary
because of the way the frequency channels are averaged, we perform a rough visual
calibration (with a simple scaling and offset parameter) to the Planck Commander
CMB map. In all three fields, there is a strong correlation between the calibrated
COMAP and Planck Commander CMB maps. Additionally, we include contours
of the NRAO VLA Sky Survey (NVSS) 1.4 GHz continuum survey (Condon et al.,
2002) to cross-match the COMAP point sources to an external radio dataset.

As mentioned, we see several point sources detected in both COMAP and
NVSS, as shown in Figs. 50–52. To identify the point sources seen in our COMAP
continuum leakage maps, we can perform a catalog search in the Condon et al.
(2002) NVSS catalog. The identified NVSS sources, including both tentative and
significant detections, are marked as numbers in Figs. 50–52 next to the respective
NVSS contours. In Table 4, we provide an overview of these, including the NVSS
identifier, celestial coordinates, and the 1.4 GHz spectral flux density measurement
by NVSS.

We also include approximate estimates of the spectral flux density of the point
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sources as measured by COMAP in Table 4. These are found by maximizing the
S/N of isolated point sources given the beam and noise properties of the telescope.
This is given by convolving the map with the beam B and then the inverse of the
noise covariance N−1. From the resulting matched-filtered map, we can read off
the spectral flux density per pixel in the map m as

SCOMAP
30 GHz = BT N−1m

diag(BT N−1B) (3.58)

with corresponding uncertainties

σSCOMAP
30 GHz

= 1
diag(BT N−1B) . (3.59)

Taking the ratio between these two, we see that we have several firm detections
with up to 10.7σ significance, as well as some more tentative sources measured
below 2σ significance.6

6We perform the matched filter and spectral flux density estimation with the pixell package;
https://github.com/simonsobs/pixell.
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Figure 50: Continuum leakage map of COMAP Field 1, corresponding to the data volume
of COMAP S2 (see Paper III). The Planck Commander CMB map (Planck Collaboration
IV., 2020) and NVSS 1.4 GHz survey are, respectively, indicated as green and magenta
contours. Point sources with a cross-match are marked with identifying numbers. In
Table 4, we provide the Condon et al. (2002) NVSS identifier, equatorial coordinates,
as well as 1.4 GHz NVSS and 30 GHz COMAP spectral flux density measurement of the
identified sources. The COMAP leakage map is manually calibrated to the Planck CMB
map.
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Figure 51: Same as Fig. 50 but for COMAP Field 2.

Although the CMB and point source detection in our COMAP Field 1–3 maps
are not of the highest scientific value, they nevertheless are an interesting discovery
and demonstrate the sensitivity of the experiment. It, however, also poses an
interesting potential secondary science goal of the COMAP survey, namely, using
the COMAP instrument for cosmological continuum science applications. As
demonstrated by our results, the COMAP instrument is a perfect 30 GHz match
to the Planck HFI instrument at higher frequencies because of the similar angular
resolutions. Furthermore, having a high spectral resolution thus makes COMAP
ideally suited to measure the spectra of, e.g., high-redshift Sunyaev-Zeldovich (SZ)
clusters at 30 GHz.

The residual continuum is found in our COMAP S2 maps after processing the
raw data through our low-level pipeline, as explained in Sec. 3.4. The individual
frequency channels in the map of each field are then coadded using inverse variance
weighting. The exact reason why we see a continuum residual in the frequency-
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Figure 52: Same as Fig. 50 but for COMAP Field 3.

averaged COMAP maps is somewhat beyond the scope of this thesis and will
be explained in detail in future COMAP publications and the upcoming Ph.D.
thesis of Jonas Lunde. In simple terms, the continuum radiation can leak into a
noise-weighted average of all channels due to the polynomial frequency filter (see
Sec. 3.4.2) only fitting a low-ordered polynomial across frequencies in an individual
sideband. Meanwhile, the sensitivity structure across the COMAP bandpass has
several system temperature spikes (see Fig. 18). The result is that the CMB and
point source continuum survive as a weak leakage effect if the data are subsequently
weighted and averaged by this system temperature profile.
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Chapter 4

Preparing for the Future: From Linear
to Global Iterative Data Analysis

Most of the work in this thesis has been done on data analysis for the COMAP
experiment. However, in Papers VI and VII, we also explore some algorithmic
improvements developed for CMB analysis that can, in principle, be adapted
to a LIM experiment such as COMAP. As described in Sec. 3.4, the COMAP
pipeline is an example of a classical linear pipeline in which the data are filtered,
calibrated, and binned into maps before inference is performed using power
spectra. These pipelines are often a good first approach to data analysis while
still learning about the properties of the data. However, there are more well-
motivated end-to-end pipeline architectures, such as those built on Bayesian
techniques like Gibbs sampling (Geman & Geman, 1984; Wandelt et al., 2004;
Eriksen et al., 2004; O’Dwyer et al., 2004). One of these pipelines is called
Commander3 and was originally developed for the BeyondPlanck collaboration
(BeyondPlanck Collaboration et al., 2023) and is currently further generalized
to leverage all cosmological datasets jointly in the Cosmoglobe project (see, e.g,
Watts et al., 2023a). The Commander3 framework is built on earlier iterations of the
Commander code, such as Commander1 and Commander2. Commander1 was originally
used in the Planck analysis (Eriksen et al., 2004, 2008; Seljebotn et al., 2019) and
represents the starting point of the Cosmoglobe project (Planck Collaboration X.,
2016; Planck Collaboration IV., 2020). These Bayesian end-to-end frameworks
can explore the system’s full posterior probability space of parameters and even
reveal all non-trivial correlations between parameters. In contrast, a simple linear
pipeline (such as that of COMAP) often treats parameters in the time and map
domains separately, and knowledge of the correlation between these is lost. This
then results in underestimated parameter uncertainties. The Commander3 code is
currently the only full global end-to-end analysis framework that can map out the
posterior probability from the time-domain all the way to cosmic parameters.

We begin this chapter by giving an overview of Commander3. Thereafter,
we present the work done for Paper VI, which used simulations to validate the
mapmaking, gain, and correlated noise estimation in the Commander3. Lastly,
we consider our contribution to Paper VII in which we use maximum likelihood
mapmaking to account for the bolometer transfer function of the Planck HFI
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Figure 53: Overview of central parameter and some external datasets used in the
BeyondPlanck analysis. Arrows indicate some known inter-dependencies between
parameters and datasets, illustrating the complex degeneracies of the system. The figure
is taken from the BeyondPlanck Collaboration et al. (2023).

bolometers. Specifically, we present work on a simplified and independent
validation of the main algorithm in the paper. In the future, the work in these two
papers can be adapted to the COMAP experiment. It will become important for
COMAP to become a high-precision cosmology survey once the first cosmic CO
detection is in sight.

4.1 Global Bayesian data analysis

The first step in an iterative Bayesian sampler like Commander3 is to write down a
parametric data model that captures all aspects of the real data. In Paper VI, we
consider Gibbs sampling applied to the Planck LFI data and can be written as

dj,t =gj,tPtp,j

[
Bsymm

pp′,j

∑
c

Mcj(β′
p, ∆j

bp)ac
p′ + B4π

i,t s
orb
j + Basymm

j,t sfsl
t

]
+ a1 Hzs

1 Hz
j + ncorr

j,t + nw
j,t, (4.1)

where indices p, c, t, and j indicate a pixel on the sky, an astrophysical component
(like the CMB, free-free, synchrotron radiation, etc.), time step, and radiometer,
respectively. Here dj,t represents the TOD, gj,t is the instrumental gain, Ptp,j

denotes the pointing matrix. The beam convolution is denoted as Bpp′,j, for
the symmetric main beam and asymmetric far sidelobes of the full 4π beam
response. The mixing matrix Mcj(βp, ∆pb) describes the spectral response of an
astrophysical component c as observed in radiometer j given a bandpass correction
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∆bp and spectral indices βp. The corresponding amplitude of component c is
given by ac

p in pixel p. Furthermore, the orbital CMB dipole is given as sorb
j,t , the

far sidelobes signal is denoted by sfsl
j,t and s1 Hz

j,t corresponds to the contributions
from electronic 1 Hz spikes with amplitude a1 Hz. The correlated and uncorrelated
(white) instrumental noise is denoted, respectively, by ncorr

j,t and nw
j,t.

The sum in Eq. (4.1) sums over all the astrophysical components, i.e., the
CMB, synchrotron, free-free, AME, thermal dust, and point sources, to obtain a
full sky model (see Andersen et al., 2023; Svalheim et al., 2023). Meanwhile, the
noise properties of the data dj,t are characterized by the noise covariance matrix
Ncorr = ⟨ncorr(ncorr)T ⟩. It has a simple diagonal form in Fourier space given by the
power spectral density (PSD)

P (f) = σ0

[
1 +

(
f

fknee

)α]
+ Ap exp

−1
2

(
log10 f − log10 fp

σdex

)2
 . (4.2)

This noise PSD, described in detail by Ihle et al. (2023), combines a 1/f spectrum
(that we have already seen earlier in the COMAP data model; Eq. 3.7) with a
log-normal component with fixed width σdex and peak fp. The free parameters of
the noise model in Eq. (4.2) can be collected into ξn = {σ0, α, fknee, Ap}, and can
later be sampled at the same time as a combined parameter vector.

The next step in the BeyondPlanck analysis is to map out the posterior
probability space of the free parameters in Eq. (4.1). The posterior probability
distribution of all free parameters, collected into ω, is given by Bayes’ theorem

P (ω|d) = P (d|ω)P (ω)
P (d) ∝ L(ω)P (ω). (4.3)

The term P (d|ω) = L(ω) is the likelihood and refers to the probability of
the data given the parameters, P (ω) denotes the prior and quantifies the prior
information we have on the parameters from theory or other experiments (see
BeyondPlanck Collaboration et al., 2023, for details on priors used Commander3).
The evidence term P (d) is normally omitted as it is simply a normalization factor
when considering parameter inference.

Assuming Gaussian noise properties, we can write the likelihood in the following
form:

−2 lnL(ω) = (d− stot(ω))T N−1
w (d− stot(ω)), (4.4)

where stot(ω) constitutes all contributions to Eq. (4.1) but the white noise nw,
and Nw is the white noise covariance matrix.

As we can see from Eqs. (4.4) and (4.1), the model and corresponding likelihood
function are dependent on a plethora of parameters that could be correlated in
highly non-trivial ways. In Fig. 53, we see a diagram illustrating a few known
correlations and degeneracies. However, mapping the posterior probability space
using some Markov Chain Monte Carlo (MCMC) algorithm is not trivial simply
because the number of parameters is so large, with up to millions of free parameters
(Wandelt et al., 2004; Eriksen et al., 2004; O’Dwyer et al., 2004). Currently, the
only viable MCMC method for a problem of these dimensions is Gibbs sampling
(Geman & Geman, 1984; Wandelt et al., 2004; Eriksen et al., 2004), which is
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Figure 54: Two-dimensional example of a Gibbs chain sampling a two-variate Gaussian
distribution (indicated by the 1σ and 2σ contours). The sampler starts at the green point
and moves along conditional probabilities as indicated by the arrows between subsequent
samples (red).

the main algorithm Commander3 is built around (see BeyondPlanck Collaboration
et al., 2023, for details).

Gibbs sampling is an MCMC algorithm where the free parameters are broken
down into groups that can be sampled jointly in a single step. We then sample
the parameters from the conditional distribution for each group, keeping all other
parameter groups fixed. In this way, we can sample thousands of parameters, e.g.,
all gain parameters g, as a vector instead of each element of the vector individually.
This is what makes Gibbs sampling so efficient for high-dimensional probability
distributions, as we consider here.

Algorithmically, we can write the Gibbs sampler as

g ← P (g |d, g, ncorr,ξn, a1 Hz, ∆bp, a, β, Cℓ), (4.5)
ncorr ← P (ncorr|d, g, ncorr,ξn, a1 Hz, ∆bp, a, β, Cℓ), (4.6)
ξn ← P (ξn |d, g, ncorr, ξn,a1 Hz, ∆bp, a, β, Cℓ), (4.7)
a1 Hz ← P (a1 Hz|d, g, ncorr, ξn, a1 Hz,∆bp, a, β, Cℓ), (4.8)
∆bp ← P (∆bp |d, g, ncorr, ξn, a1 Hz, ∆bp,a, β, Cℓ), (4.9)
β ← P (β |d, g, ncorr, ξn, a1 Hz, ∆bp, a, β,Cℓ), (4.10)
a ← P (a |d, g, ncorr, ξn, a1 Hz, ∆bp, a,β, Cℓ), (4.11)
Cℓ ← P (Cℓ |d, g, ncorr, ξn, a1 Hz, ∆bp, a, β, Cℓ), (4.12)

where each line represents a sampling step, denoted by ←, from the conditional
probability distribution of each parameter (group) of the model (BeyondPlanck
Collaboration et al., 2023). Intuitively, we can think of each step in Eqs. (4.5)–
(4.12) as moving along individual coordinate axes at a time while keeping the
rest of the parameters fixed. This is illustrated in Fig. 54, where we show a low-
dimensional sketch of a Gibbs chain.

Furthermore, we do not have to stop at a single experiment. The true power
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of a global Bayesian Gibbs sampler like Commander3 is unfolded when combining
multiple experiments, each covering different frequencies and resolutions in the sky,
all with different systematic sources of error. In fact, this is what the Cosmoglobe
project is aiming to achieve (see Watts et al., 2023a,b; Eskilt et al., 2023; Watts
et al., 2024b,c,a; San et al., 2024, for the current state of the project). In this
way, different experiments can complement each other, and ever-deeper systematic
errors can be rooted out. The power of Gibbs sampling is, therefore, unmatched
by any classical pipeline like the current implementation of the COMAP pipeline.
Adapting the Commander framework to COMAP will be an important future step
toward becoming a high-precision cosmology survey, and other LIM and CMB
surveys will all mutually benefit from a joint analysis. Currently, the main
challenge of incorporating an experiment like COMAP into this framework is the
enormous data volume of the spectrographic time-ordered data, and we thus likely
also need some additional large-scale parallelization improvements for this to work.
This is the goal of the Commander4 code, of which the first versions are currently
being developed under a recent European Research Council Advanced Grant. In
this framework, it will be possible to jointly analyze large CMB datasets like
those of Simon’s Observatory and LiteBIRD, but also possibly LIM data such as
COMAP and other experiments mentioned in Ch. 2.

4.2 Simulations and validation

In this section, we will consider pipeline validation of three central parts of the
Commander3 code, namely gain and correlated noise estimation and mapmaking.
The validation of Commander3 is one of the two topics covered in Paper VI,
and the one we worked more extensively on for this thesis. The other part of
Paper VI explores the difference between Bayesian posterior and frequentist prior
simulations and their uses. Therefore, we will only consider the pipeline validation
part of Paper VI, and refer the interested reader to the paper for more details on
the data simulation.

4.2.1 Pipeline validation

The goal of the pipeline validation presented in Paper VI is to validate central
algorithms in Commander3, namely the gain and noise estimation and mapmaking.
These algorithms are described in detail by Gjerløw et al. (2023), Ihle et al. (2023),
and Keihänen et al. (2023), respectively, and we refer the interested reader to their
work as the algorithms themselves are beyond the scope of this thesis.

To perform a validation of these algorithms, we use a set of simulated Planck
LFI data, limiting ourselves to only the LFI 30 GHz channel and consider a
relatively small data volume of around 10,000 PIDs corresponding to about a
year of data (Planck Collaboration I., 2014). Due to the simplified dataset, we
can produce Gibbs chains of up to 10,000 samples in a matter of a few days to
weeks instead of waiting several months, as was the case for the full BeyondPlanck
re-analysis of Planck LFI (Galloway et al., 2023).
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Figure 55: Estimated posterior distribution of several parameters for two different PIDs,
respectively indicated by blue and yellow 68 % and 95 % confidence intervals. The two
PIDs (blue and yellow) represent scans where the parameters are recovered within 1σ
while the other represents a more suboptimal recovery within 2σ. Dashed lines indicate
the true input parameters used to generate the simulated data. The parameters, from
left to right along the horizontal axis correspond to (1)–(3) Stokes I, Q and U of a
random pixel of the CMB temperature map mCMB; (4)–(6) Stokes I, Q and U of a the
correlated noise map pixel mcorr; (7) the CMB quadrupole amplitude a2,0; (8) the gain
g; (9)–(12) the noise parameters σ0, α, fknee, Ap. The figure is taken from Paper VI.

Because we are only interested in validating low-level algorithms, we consider
simplification of the full data model in Eq. (4.1) of the form:

dsim
i,t = gj,tPtp,jBsymm

pp′,j acmb
p′ + Basymm

pp′,j sorb
j,t + ncorr

j,t + nw
j,t = stot

j,t + ncorr
j,t + nw

j,t, (4.13)

only including the CMB while ignoring other astrophysical effects, far sidelobes
etc. As such, this does not validate the component separation, as only one sky
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Figure 56: Auto-correlation function ρ(ω) (see Eq. (4.14)) as a function of chain
separation ∆ for several chosen parameters of the data model in Eq. (4.13) computed
from a 10,000 sample Gibbs chain. From top to bottom, the panels correspond to some
pixel value of the CMB component map mCMB for both Stokes parameters I, Q and
U ; one pixel of the correlated noise map mncorr in all three Stokes parameters; the
quadrupole moment a2,0 of the CMB temperature; the average gain g across PIDs; as
well as the noise PSD parameters σ0, fknee, α and Ap/σ2

0. In the bottom five panels,
solid black lines represent the PID averaged values, while gray bands represent the 1σ
spread across PIDs. The dashed red line represents the 0.1 auto-correlation commonly
used to define the correlation length of the parameter. The figure is adapted from Paper
VI.
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component and frequency channel are included. The realizations of the CMB
map, acmb

p , are generated using the HEALPix (Górski et al., 2005) synfast
tool. Specifically, they are drawn from a best-fit Planck 2018 ΛCDM model
(Planck Collaboration V., 2020). For the simulations, we use known instrumental
input parameters drawn from the BeyondPlanck ensemble of BeyondPlanck
Collaboration et al. (2023), and the noise is drawn from the noise model we
presented in Eq. (4.2) independently for each PID.

Using these simulations, a Gibbs chain of 10,000 samples is produced using
the Commander3 code described in Sec. 4.1. The main goal is to find out
how well the input parameters are reconstructed and to map out uncertainties
and correlations of parameters. In Fig. 55, we see the marginalized posterior
probability distributions mapped out by our Gibbs chain. Specifically, we show
the posterior distribution for two PIDs. One in which most input parameters are
recovered within the 68 % confidence interval (blue). At the same time, the other
corresponds to a less well-behaved PID in which the parameters are recovered
only within the 95 % confidence interval (yellow). The two PIDs should, therefore,
cover most of the possible outcomes of the recovery procedure. We can see that all
parameters are generally recovered well, even in the problematic PID. However,
we note that the noise parameters σ0, α, fknee, Ap/σ2

0 show clear signs of mutual
correlations as evidenced by their skewed contours.

To judge whether or not the sample chains have burned in properly, we can
look at the auto-correlation function

ρω(∆) =
〈(

ωi − µω

σω

)(
ωi+∆ − µω

σω

)〉
, (4.14)

for Gibbs sample number i and chain sample offset ∆. This will quantify the
correlation between samples in the chain as a function of their separation.

In Fig. 56 we can see the auto-correlation function for a set of chosen
parameters: a pixel of the Stokes I, Q and U CMB map mCMB; the corresponding
correlated noise map pixel mcorr; the quadrupole amplitude of the CMB
temperature map; the gain g as well as the noise parameters σ0, α, fknee and
Ap/σ2

0 of a single PID. We see that the CMB and correlated noise maps converge
to auto-correlations below 0.1 within only a few samples, as these are dominated by
only white noise in single pixels. However, the quadrupole amplitude a2,0 and gain
g need considerably longer because they are correlated to each other. Additionally,
the gain relies on the CMB as a calibration source. This degeneracy is mitigated
in the full BeyondPlanck analysis, as all Planck LFI channels, as well as WMAP
data, are analyzed together (Gjerløw et al., 2023; Basyrov et al., 2023).

Meanwhile, the noise parameters have much longer correlation lengths. This is
most likely caused by internal degeneracies within the noise PSD itself, as noted
by Ihle et al. (2023) and the marginal posterior distributions shown in Fig. 55.
However, as we find in Paper VI, the noise PSD is relatively insensitive to changes
in the noise parameters, and the degeneracies do not cause any biases in any of
the other more important parameters of the system.

In general, we can conclude that the Commander3 framework seems to work as
intended. Our validation performed in Paper VI shows that we can recover the
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input parameters used to simulate the data. Importantly, we can also map out
the correlation between the parameters, which would otherwise remain difficult
to estimate in a different framework. Thus, moving towards a similar approach
in a future rendition of the COMAP pipeline will be an important goal and aid
COMAP in becoming a high-precision experiment like modern CMB surveys.
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Figure 57: Bolometer transfer function of Planck HFI T (ω) (green), the Planck HFI low-
pass filter K(ω) used to suppress noise on short time scales (red), as well as the ratio
between the two (black). Note that the bolometer transfer function also has a complex
component. Courtesy of Jonas Lunde, see Paper VII.

4.3 Optimal maximum likelihood mapmaking

The seventh and last paper (Paper VII) of this thesis is concerned with optimal
mapmaking for experiments using bolometers. Although COMAP, the main
subject of this thesis, does not use bolometers, some existing and upcoming LIM
experiments will likely use bolometers. Thus, this work will be relevant for all
bolometric (or detectors of similar properties) CMB, LIM, and other experiments.
Specifically, our contribution to Paper VII is to use a simplified 1D toy model to
build intuition for the main bolometer transfer function mapmaker proposed in
the paper and help verify the observations made.

To summarize the work, we start with a data model for a bolometric detector
like the one used by Planck HFI. Bolometers work by measuring the temperature-
dependent resistance across a radiation absorber to infer the intensity of the light.
Thus, a bolometric detector will heat up by the radiation of a source as it scans
across it and registers a signal while it is cooling down (see Richards, 1994, for
review on bolometers). As a result, bolometers have an associated time constant
that will smooth the signal along the scanning direction. This can be seen in a
simulated point source experiment from Paper VII in Fig. 58.
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We can write an expression for the data on the form

d = Ts + n, (4.15)

where the bolometer transfer function T = F−1T(ω)F, with Fourier transform F,
represents the smoothing of the bolometer time constant. The noise is given by
n. The bolometer transfer function T(ω) can be seen in Fig. 57. In the original
Planck HFI analysis (see Planck Collaboration VII, 2014, 2016), the bolometer
transfer function was simply deconvolved in the time domain so that

T−1d = T−1(Ts + n) = s + T−1n. (4.16)

can be used to obtain an unbiased map of the signal s. The problem with this
deconvolution is that T (ω) goes towards zero at short time scales, and hence the
term T−1n will increase the noise in the system. To deal with this, the Planck
HFI analysis additionally applied a low-pass filter K to modulate the noise. This
low-pass filter function is shown in Fig. 57. Then, the time stream

KT−1d = KT−1(Ts + n) = Ks + KT−1n. (4.17)

is binned up into maps using the mapmaking equation (Tegmark, 1997) like we
have seen previously in Sec. 3.4.3 on the COMAP mapmaker,

PT N−1Pm̂trad = PT N−1d. (4.18)

Signal s

1.5'/pix, 100x100 pix

Measured signal d =Ts + nwn

1.5'/pix, 100x100 pix

0.10 0.05 0.00 0.05 0.10
[arb. units]

0.10 0.05 0.00 0.05 0.10
[arb. units]

Figure 58: Simulated Gaussian point source s (left) and how the point source is measured
by the Planck HFI bolometers d = Ts + n (right). We can see how the observed
point source is smeared along the scanning direction by the finite time constant of the
bolometer transfer function T. Courtesy of Artem Basyrov, see Paper VII.
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Figure 59: Mean 1D map power spectrum and corresponding 1σ uncertainties of 10,000
noise-only realizations for white noise (blue), the traditional Planck HFI deconvolution,
with and without applying a low-pass filter K (respectively, red and green), as well as
the MLE method of Paper VII. Note a broken linear and logarithmic y-axis. The figure
is taken from Paper VII.

However, the resulting map m̂trad will be a biased signal estimator that will
show significant signs of ringing along the survey scanning direction if the kernel
K ̸= I. Furthermore, the method does not use proper noise weights KT−1NT−1K
in Eq. (4.18).

To solve this problem, we propose a maximum likelihood estimate (MLE) in
Paper VII where the transfer function T is taken into account directly in the
mapmaking stage. In doing so, we get the mapmaking equation

PT TT N−1TPm̂MLE = PT TT N−1d, (4.19)

where TT = F−1T∗(ω)F. This equation must then be solved using conjugate
gradient methods (see Shewchuk et al., 1994). As such, the method is significantly
slower to apply than the traditional method employed by Planck HFI. The
advantage is that the resulting MLE estimate of the map m̂MLE will be an unbiased
and properly weighted estimator of the signal. In the future, the MLE mapmaker
will be integrated into the Commander Gibbs sampling framework that we explained
earlier in Sec. 4.1.

To build some intuition on the proposed MLE mapmaker in Paper VII we apply
it to a 1D toy model where the bolometer transfer function T (ω) and low-pass filter
K(ω) used are identical to those of the Planck HFI 143-5 bolometer. Furthermore,
we adopt a simple sinusoidal scanning strategy and apply the bolometer transfer
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Figure 60: Absolute value of a slice through the covariance matrix, |Nm
100,i| =

(PT N−1P)−1
100,i, of the 1D MLE (black) and traditional (deconvolution and low-pass

filtered) Planck HFI 1D toy map (red) seen in Fig. 59. The figure is taken from Paper
VII.

function to the signal before adding noise. Subsequently, we generate 1D maps
of 200 pixels using the traditional and proposed MLE methods described earlier.
The result is seen in Fig. 59, which shows the average and standard deviation
of the power spectrum of the toy model maps using the different algorithms.
The traditional method dramatically increases noise without applying a low-pass
filter K(ω). At the same time, it matches the MLE method noise level if low-
pass filtering is used. Both the MLE and the traditional low-pass-filtered method
provide power spectra above the white noise level of the data. However, we can
also see that adjacent points in the K ̸= I case have a significantly longer correlation
length than the MLE method. This is also reflected in Fig. 60 by the lower wings
of a slice through the absolute ensemble covariance matrix of the MLE algorithm.

Furthermore, we see the effect of the HFI low-pass filter on a 1D signal-only
run in Fig. 61, where we see that the input signal is reconstructed in an unbiased
way by the MLE mapmaker. Meanwhile, the traditional method results in a bias
that manifests as ringing in the fractional residual. This perfectly reflects what
is seen in Fig. 62, where the traditional method shows asymmetric ringing in the
residual along the scanning strategy. In contrast, the MLE residual appears as
white noise.

In fact, as shown in Paper VII, employing the proposed MLE mapmaker,
respectively, reduces the ellipticity and FWHM of the effective instrumental beam
by 64 % and 2.3 %. For more details on the applications to the full Planck HFI
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Figure 61: Simulated 1D point source (black), the reconstructions thereof, m̂trad, using
the traditional Planck HFI deconvolution method (green). Meanwhile, the map m̂MLE
(orange) results from the proposed MLE algorithm of Paper VII. The lower panel shows
the fractional residual between the input and output signal of the two methods. The
figure is taken from Paper VII.

data, see Paper VII. Overall, we conclude that the proposed MLE mapmaker will
be highly beneficial for current and future bolometric experiments, both in the
CMB, LIM, or any other field.
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Figure 62: Residual of point source seen in Fig. 58 after estimating the signal using
either (left) the traditional Planck HFI deconvolution method or (right) the proposed
MLE method of Paper VII. Courtesy of Artem Basyrov, see Paper VII.
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Chapter 5

Conclusion and future outlook

In this thesis, I developed and further improved a state-of-the-art data analysis
pipeline for the COMAP-Pathfinder line intensity mapping experiment. COMAP
aims to make the first large-scale maps of star-forming CO at the EoGA.
Specifically, we have worked on two successive generations of the COMAP data
analysis pipeline for the COMAP Early Science (Papers I and II and COMAP
Season 2 releases (Papers III-V), respectively. Of these two, the most significant
contribution of this work has been to the Season 2 analysis. Additionally,
we have also worked on the Commander3 global Bayesian Gibbs sampler as a
future improvement for LIM experiments such as COMAP since it represents an
algorithmically more well-motivated pipeline architecture compared to the current
pipeline of COMAP (Papers VI and VII).

The Early Science and Season 2 pipelines have algorithmically similar
architectures, with the latter version building and improving on the former. The
raw data are captured with the COMAP-Pathfinder 26–34 GHz telescope at Owens
Valley Radio Observatory that is sensitive to the CO(1–0) rotational transition of
carbon monoxide emitted at redshifts z ∼ 2.4–3.4 in the EoGA. Subsequently, as
explained in Papers I and III, systematic contributions to the data from continuum
foregrounds, 1/f gain fluctuations, ground pickup, standing waves in the telescope
optics and electronics are removed from the data to isolate the extragalactic CO
and white noise. The data are then calibrated and projected into sky maps. In the
COMAP Season 2 release, Paper III, we discovered several new, highly pointing-
and frequency-correlated systematic effects in the maps. These were coined as
the start-of-scan and turn-around effects and are most likely sourced by standing
waves in the telescope signal path due to mechanical vibrations as the instrument
scans. We implemented a map-domain PCA filter to remove these systematic
effects, which effectively removed their contribution to below the noise level by
subtracting only 5 of 256 possible modes.

After filtering the maps with our map-PCA, we computed power spectra.
Specifically, the COMAP power spectrum methodology described in Paper II,
utilizes cross-power spectra between maps with data from different feeds and
elevations. Each feed has independent noise and largely independent signal
processing chains, and different elevations are expected to have various levels of
ground pickup contamination. Thus, our feed-feed pseudo-cross-power spectra
(FPXS) are both sensitive and robust against systematic effects.

95



Chapter 5. Conclusion and future outlook

In Paper IV, we improved our FPXS methodology by grouping detectors
suspected to have similar levels of systematic effects and used these feed groups
to compute cross-spectra (FGPXS). The resulting feed-group pseudo-cross-power
spectra are somewhat more robust against feed-common systematic effects, as
feeds with shared systematic effects are never cross-correlated. Furthermore, we
improve the power spectrum uncertainty estimation using a data-driven approach
that inherits all the correct properties of the real data. To ensure the data quality of
our final power spectrum data products, we develop a large set of robust difference
map null tests and find that they all pass according to noise expectations.

Using the COMAP ES pipeline of Paper I and II and about a year’s worth
of ES data, the resulting power spectrum represents the world’s first direct 3D
constraints on the CO(1–0) clustering power spectrum at the EoGA, ruling out
several models from the literature. With additional data, the COMAP Season
2 raw data volume was about three times that of COMAP ES. Combined with
an improved low-level analysis, the COMAP Season 2 analysis of Papers III and
IV resulted in around an order of magnitude deeper upper limits on the CO(1–
0) power spectrum than COMAP ES and COPSS (the only other CO(1–0) LIM
experiment; Keating et al., 2016). As such, the COMAP Season 2 results present
the currently tightest direct 3D CO(1–0) clustering constraints in the literature.
The sensitivity is now large enough to further exclude the already excluded models
of COMAP ES in individual k-bins and severely restricts the space of possible
CO(1–0) models (Papers IV and V). As shown in Paper V, the COMAP Season 2
data favor the Li-Keating model. However, all non-excluded are consistent with the
data to 2σ when assuming a simple two-parameter power spectrum model with
a clustering and shot noise amplitude. Assuming a more empirically motivated
five-parameter COMAP fiducial model, the COMAP Season 2 data shows the
first hints of an increased faint end of the CO(1–0) luminosity function. As the
COMAP data integrates down as noise, the analysis methods are still being refined,
and observations continue; COMAP is expected to make a detection within the
next couple of years. Our pipeline will be the first building block for future phases
of COMAP.

In addition to working on the current COMAP pipeline, this thesis also
considers some algorithmic improvements for a future iteration of a LIM analysis
pipeline. Specifically, in Paper VI we showed the power of the Commander3 Global
Bayesian Gibbs sampler by mapping out the full posterior probability space of
instrumental parameters in a set of simulated Planck LFI 30 GHz data. This
served as a validation of key routines such as the mapmaking and gain and
correlated noise estimation in the Commander3 framework. The code worked
as intended and provided a detailed overview of the posterior probability space
with all corresponding non-trivial correlations and uncertainties of the system.
Incorporating COMAP into Commander3 will be a key future outlook beyond this
thesis.

Lastly, in Paper VII we work on a maximum likelihood mapmaker to account
for the Planck HFI bolometer transfer function directly in a conjugate gradient
mapmaker, instead of relying on the deconvolution method of the original Planck
HFI team. Specifically, we worked on validating the developed mapmaker using
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simplified 1D toy models of the Planck HFI 143 GHz data. The proposed maximum
likelihood method resulted in a 64 % reduced ellipticity and a 2.3 % smaller
full-width-at-half-maximum of the effective instrumental beam. Therefore, this
method will be highly beneficial for any future CMB or LIM experiment that uses
bolometric detectors.
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Abstract

We describe the first-season CO Mapping Array Project (COMAP) analysis pipeline that converts raw detector
readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data
selection, and mapmaking. Absolute gain calibration relies on a combination of instrumental and astrophysical
sources, while relative gain calibration exploits real-time total-power variations. High-efficiency filtering is
achieved through spectroscopic common-mode rejection within and across receivers, resulting in nearly
uncorrelated white noise within single-frequency channels. Consequently, near-optimal but biased maps are
produced by binning the filtered time stream into pixelized maps; the corresponding signal bias transfer function is
estimated through simulations. Data selection is performed automatically through a series of goodness-of-fit
statistics, including χ2 and multiscale correlation tests. Applying this pipeline to the first-season COMAP data, we
produce a data set with very low levels of correlated noise. We find that one of our two scanning strategies (the
Lissajous type) is sensitive to residual instrumental systematics. As a result, we no longer use this type of scan and
exclude data taken this way from our Season 1 power spectrum estimates. We perform a careful analysis of our
data processing and observing efficiencies and take account of planned improvements to estimate our future
performance. Power spectrum results derived from the first-season COMAP maps are presented and discussed in
companion papers.

Unified Astronomy Thesaurus concepts: Cosmological evolution (336); CO line emission (262); High-redshift
galaxies (734); Molecular gas (1073); Radio astronomy (1338)

1. Introduction

Understanding the evolution of galaxies and the intergalactic
medium over the largest spatial and temporal scales is one of
the principal goals of cosmology. Galaxy surveys address this
challenge by resolving and detecting individual galaxies, a
technique that necessarily favors brighter galaxies and smaller
cosmic volumes. Spectral line intensity mapping (Madau et al.
1997; Battye et al. 2004; Peterson et al. 2006; Loeb &
Wyithe 2008) is a complementary technique (see Kovetz et al.

2017, 2019, for reviews) that holds the potential to characterize
the global properties of galaxies and their evolution by
surveying the aggregate emission from all galaxies over large
volumes.
This technique uses redshifted line emission (e.g., 21 cm,

Lyα, CO, or C II) as a tracer for the underlying density field.
Large volumes along a given line of sight may be surveyed
simultaneously with a single spectrometer at relatively low
spatial resolution, and by scanning this spectrometer across the
sky, a full 3D density map may be derived. Despite multiple
different modeling efforts (Righi et al. 2008; Visbal &
Loeb 2010; Lidz et al. 2011; Pullen et al. 2013; Breysse
et al. 2014; Li et al. 2016; Padmanabhan 2018; Moradinezhad
Dizgah & Keating 2019; Sun et al. 2019; Chung et al. 2022;
Moradinezhad Dizgah et al. 2022; Yang et al. 2022) and
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significant progress on the observational front (Keating et al.
2016, 2020; Riechers et al. 2019; Keenan et al. 2022), the
overall level of the CO signal, especially in the clustering
regime, is still unknown.

The CO Mapping Array Project (COMAP; Cleary et al.
2022) is an intensity mapping experiment that aims to use
emission from carbon monoxide (CO) to trace the aggregate
properties of galaxies over cosmic time, back to the Epoch of
Reionization. A Pathfinder experiment, consisting of a 19-feed
26–34 GHz receiver, has been fielded on a 10.4 m single-dish
telescope at the Owens Valley Radio Observatory (OVRO).15

In this frequency range, the receiver is sensitive to CO (1–0) at
z = 2.4–3.4, with a fainter contribution from CO (2–1) at
z = 6–8. The main goal of the Pathfinder is to detect the CO
(1–0) signal and use it to constrain the properties of galaxies at
the Epoch of Galaxy Assembly. A future phase will add a
second receiver at 12–20 GHz in order to detect CO (1–0) from
around z = 5–9, cross-correlating with the CO (2–1) signal
from the 26–34 GHz receiver and constraining the properties of
galaxies toward the end of the Epoch of Reionization.

The receiver’s detector chain is based on cryogenically
cooled HEMT low-noise amplifiers (LNAs) that contribute to a
typical system temperature of about 44 K across the full
frequency range (see the Appendix for more details). The
predicted signal from high-redshift CO emission is expected to
be no more than a few microkelvin per COMAP spatial/
spectral resolution element (or “voxel”). Thus, the noise must
be reduced by many orders of magnitude, compared to the raw
instrumental noise, before a statistically significant detection
may be achieved. In practice, this is done by repeatedly
observing the same part of the sky using multiple detectors, and
thereby gradually increasing the sensitivity per voxel. For this
to succeed, however, it is necessary to suppress systematic
contributions from atmospheric temperature variations, side-
lobe contamination, ground pickup, standing waves, Galactic
foregrounds, etc., by a corresponding amount.

The first-season COMAP science observations started in
2019 June and lasted until 2020 August. This paper describes
the first-season COMAP data analysis pipeline, which aims to
produce clean maps from raw time-ordered COMAP observa-
tions. This includes calibration, data selection, filtering, and
mapmaking. The rest of this paper is organized as follows:
First, in order to establish useful notation and conventions, we
give a brief introduction to the COMAP instrument in
Section 2, while referring the interested reader to Lamb et al.
(2022) for full details. Next, we provide a high-level overview
of the analysis pipeline in Section 3.1, before specifying each
step in Sections 3.3–3.6. Data selection and efficiency are
discussed in Sections 4 and 5. The results are presented in
Section 6, and we summarize and conclude in Section 7.

2. Instrument and Data Model

Before describing the COMAP analysis pipeline, we provide
a brief overview of the instrument itself and define an explicit
data model. A more detailed description of the instrument can
be found in a separate paper (Lamb et al. 2022).

2.1. Instrument Overview

The COMAP Phase I instrument observes in the Ka band, at
26–34 GHz, and is located at the OVRO in California, USA. It
is mounted on a 10.4 m telescope that was originally built for
the Millimeter Array at OVRO and then used as a part of the
Combined Array for Research in Millimeter-wave Astronomy
(Woody et al. 2004) experiment, and it has now been
repurposed for COMAP. The telescope’s primary and second-
ary reflectors have diameters of 10.4 and 1.1 m, respectively,
and the beam FWHM is about 4 5 at 30 GHz.
The receiver comprises 19 independent detector chains,

called “feeds.” The signal chain of each feed consists of
individual feed horns, polarizers, LNAs, two stages of down-
conversion, frequency separation, and digitization. For the
observations described in this paper, 15 feeds have a two-stage
polarizer, two feeds have a single-stage polarizer, and two
feeds have no polarizer. The digitization happens in two
CASPER “ROACH-2” FPGA-based spectrometers for each
signal chain, giving us four 2 GHz wide sidebands, each of
which has 1024 frequency channels, resulting in a native
frequency resolution of approximately 2 MHz. The two
sidebands of each band (A and B) are labeled “lower” (LSB)
or “upper” (USB). For more details on the instrument see Lamb
et al. (2022).
To support frequent and accurate gain estimation, COMAP

employs an ambient temperature load that is directly attached
to the environmental shroud housing. This “calibration vane” is
automatically moved in front of the feed-horn array at the
beginning and end of each observation (each lasting for about 1
hr; see Section 2.3), fully filling the field of view of each pixel.
The temperature of the calibration vane is monitored with
sensors, allowing the system temperature to be calculated and
applied to calibrate the gain (see Section 3.4 for more details).

2.2. Field Selection

COMAP observes several parts of the sky. Table 1 lists all
CO science fields and calibrators. In Figure 1 we plot the
elevation of the CO and calibration fields as a function of Local
Sidereal Time, indicating when the fields are available for
observation. The three CO fields were selected to maximize the
observing efficiency, avoid bright 30 GHz point sources (1
Jy), and overlap with the coverage of the Hobby–Eberly
Telescope Dark Energy eXperiment (HETDEX; Hill et al.
2008, 2021; Gebhardt et al. 2021), a galaxy survey targeting
Lyα emission from galaxies in the same redshift. Although
COMAP’s observing strategy has been designed to permit the
direct detection of CO fluctuations from galaxies at
z = 2.4–3.4, cross-correlation with a galaxy survey such as
HETDEX can increase the detection significance by at least a
factor of two (Chung et al. 2019; Silva et al. 2021), as well as
provide validation for the origin of detected signal in galaxies
at the target redshift.
In addition to the main science fields, we are also conducting

a survey of the Galactic plane covering longitudes
20° < l < 220°, details of which can be found in Rennie
et al. (2022).
To facilitate calibration with astrophysical sources, we

observe a handful of radio sources, including Jupiter, the
supernova remnants Taurus A (TauA) and Cassiopeia A
(CasA), and the radio galaxy Cygnus A (CygA), all of which
are somewhat extended compared to the beam, except for15 https://www.ovro.caltech.edu/
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Jupiter. These astrophysical calibrators are used to determine
the overall normalization of the beam transfer function. See
Ihle et al. (2022) and Rennie et al. (2022) for more details.

2.3. Observation Strategy

Telescope scans of the science fields follow a harmonic
motion described by

A at B btaz sin az ; el sin el , 10 0f= + + = +( ) ( ) ( )
where A, B are amplitude parameters that determine the angular
extent of the scan, the ratio a/b determines the shape of the
curve, and f is a phase parameter. az0 and el0 correspond to the
sky position of the field center midway through the scan. Two
different scan types were used. “Lissajous” scans are performed
with the following parameters:

A 48 cos el , 20= ¢ ( ) ( )
B 48 , 3= ¢ ( )

a A39 s , 41= ¢ - ( )
b B19.5 s , 51= ¢ - ( )

2. 6f p= ( )
Note the factor of1 cos el0( ), which makes sure the scan area is
roughly the same at all elevations. Note also that the time
parameter, t, is set to zero at the start of each scan. “Constant
elevation scans” (CES) use the same parameters in azimuth but

have no movement in elevation (i.e., B = b = 0). At the start of
a scan, the telescope is positioned at the leading edge of the
field. The telescope then executes the scan while the field drifts
through the pattern. This typically takes 3–10 minutes, after
which the telescope is repointed to the leading edge of the field
again in preparation for the next scan. An example of the
scanning path for about 1 hr of continuous observations with a
Lissajous scan and a CES is shown in Figure 2. Testing the
relative performance of the CES and Lissajous scanning
strategies in terms of final data quality is an important goal
of the first-season COMAP survey.

2.4. Data Model

As described by Lamb et al. (2022), the COMAP detector
readout for a single-frequency channel may be modeled as

P k G T , 7out B sysn= D ( )
where kB is the Boltzmann constant, G is the gain, Δν is the
bandwidth, and Tsys is the system temperature of the
instrument. The system temperature may be further modeled
as16

T T T T

T T T , 8
sys receiver atmosphere ground

CMB foregrounds CO

= + +
+ + + ( )

where Treciever is the effective noise temperature of the receiver,
Tatmosphere is the noise contribution from the atmosphere,
Tground is ground pickup, TCMB is the contribution from the
cosmic microwave background (CMB), Tforegrounds are con-
tinuum foregrounds (typically from the galaxy), and TCO is the
line emission signal from extragalactic CO, which is the main
scientific target of the COMAP instrument.
To understand the challenges involved in measuring the

cosmological CO signal, it is instructive to consider the order
of magnitude and stability of each term in Equation (8). The
largest single contribution is that of the receiver temperature,
which is usually about 10–30 K. For the COMAP receiver,
with HEMT LNA technology, this is very stable.
The second-largest contribution is from the atmosphere,

which typically adds 15–25 K. This term varies significantly on
all timescales longer than a few seconds and depends on
external conditions, including elevation, humidity, cloud
coverage, ambient temperature, and wind speed. It is also

Figure 1. Elevation of CO (pink/purple) and calibration (orange) fields as a
function of local sidereal time.

Table 1
COMAP Fields and Calibrators

Field Name R.A. (J2000) Decl. (J2000) Notes

Field 1 01:41:44.4 +00:00:00.0 CO science field—lies within the HETDEX Fall field
Field 2 11:20:00.0 +52:30:00.0 CO science field—lies within the HETDEX Spring field
Field 3 15:04:00.0 +55:00:00.0 CO science field
TauA 05:34:31.9 +22:00:52.2 Pointing calibrator—supernova remnant (Crab Nebula)
CasA 23:23:24.0 +58:48:54.0 Pointing calibrator—supernova remnant
CygA 19:59:28.4 +40:44:02.1 Pointing calibrator—radio galaxy
Jupiter Pointing calibrator

16 In this section we are writing all the contributions to Tsys in terms of their
effective noise contribution, rather than any physical temperatures. See
Section 3.4 for a definition of Tsys in terms of physical quantities.
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strongly correlated between detectors and frequencies, since all
feeds observe through essentially the same atmospheric column
at any given time; fortunately, the phase structures of the
atmospheric fluctuations are uncorrelated on long timescales.

Next, ground pickup typically accounts for 5–6 K. Most of
this contribution is from illumination spillover around the
primary, i.e., ground signal diffracting at the edge of the
secondary past the edge of the primary. A secondary
contribution from ground signal reflecting off the secondary
support legs, however, can be particularly problematic because
it depends sensitively on the instrument pointing: if a sidelobe
happens to straddle a strong signal gradient, such as the horizon
or the Sun, several millikelvin variations may be measured on
very short timescales and with a time dependency that appears
nearly sky synchronous.

The fourth term represents the CMB temperature of 2.7 K,
which is both isotropic and stationary, while the fifth term
represents astrophysical foregrounds, expected to contribute at
most 1 mK, for instance, synchrotron, free–free, and dust
emission from the Galaxy. Although these are sky synchronous
and, in principle, could confuse potential CO measurements,
they also have very smooth frequency spectra (Keating et al.
2015) and are therefore relatively easy to distinguish from the
cosmological CO signal, which varies rapidly with frequency.
An important potential exception is line emission from other
molecules redshifted to our band from galaxies at other epochs.
The hydrogen cyanide (HCN) line is expected to be one of the
brightest such lines. Emission from HCN in galaxies toward
our CO fields at redshift z = 1.6–2.4 will appear in our
frequency range. However, this contribution is expected to be
an order of magnitude lower than that from CO (Chung et al.
2017).

Finally, the cosmological CO line emission signal is
expected to account for 1 Km( ) . Whether it is possible to
detect such a weak signal depends directly on the stability and
sensitivity of the instrument. In this respect, the fundamental
quantity of interest is the overall noise level of the experiment,
which is dominated by random thermal noise.

The magnitude of these random thermal fluctuations is
proportional to Tsys, with a standard deviation that is given by

the so-called radiometer equation,

T
, 9N

syss
n t

=
D

( )

where τ is the integration time. Thus, since both the system
temperature and the bandwidth are essentially fixed exper-
imental parameters, the only way of reducing the total
uncertainty is by increasing the integration time. As a concrete
and relevant example, we note that an integration time of 45 hr
is required to achieve a standard deviation of 20 μK with a
system temperature of 45 K and a bandwidth of 31.25 MHz.
In addition to the thermal and uncorrelated noise described

by the radiometer equation, there are three main sources of
correlated noise, namely, gain fluctuations in the LNAs,
atmospheric temperature fluctuations, and time-dependent
standing waves. All of these are expected to have a roughly
1/f-type spectrum, although with different particular proper-
ties.17 The fact that these sources of correlated noise are also
strongly correlated between frequencies is very useful in order
to filter out this noise in the analysis.
Equation (7) describes the detector output at any given time.

To connect this to the actual measurements recorded by the
detector, we adopt the following data model:
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Here d ti
n ( ) denotes the raw data recorded at time t for frequency

channel ν in feed i; d iá ñn represents the corresponding time
average and basically corresponds to T t G t ;i i

sysá ñá ñn
n( ) ( ) tG

id ( )
denotes feed-dependent gain fluctuations; Pi

cel and Pi
tel are

pointing matrices in celestial and telescope coordinate systems,
respectively; Δscont denotes the celestial continuum source
fluctuations, mainly from the CMB and Galactic foregrounds;

sCOD n is the CO line emission fluctuation; Δsground is the
ground signal fluctuation picked up by the far sidelobes; and
ncorr(t) are the correlated temperature fluctuations, mostly

Figure 2. Movement of the telescope boresight in azimuth and elevation for an observation employing Lissajous scans (top) and an observation employing CES
(bottom). Both observations consist of 15 individual scans of Field 1.

17 There are several different sources of standing waves; some of the main
ones give rise to 1/f-like spectra, but others do not.
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consisting of atmosphere fluctuations and standing waves.
Factors with no feed or frequency index are assumed to be
similar (or at least strongly correlated) at different frequencies
and feeds, while factors with a ν label indicate parts of the
model that are assumed to have nonsmooth frequency
dependence. The main purpose of the COMAP analysis
pipeline is to characterize sCOD n given d ti

n ( ).

2.5. Data Overview

Before presenting the analysis pipeline, we provide a
preview of the raw time-ordered data (TOD) generated by the
COMAP instrument, with the goal of building intuition that
will be useful for understanding the purpose of each component
of the analysis pipeline described in this paper. Figures 3 and 4
show examples of such raw TOD from the instrument using the
CES (left column) and Lissajous (right column) scanning

strategies. Perhaps the most obvious features in these plots are
stepwise changes in power as the telescope changes elevation
during repointings between scans; see Section 2.3. The
Lissajous scans additionally show oscillations in power as the
telescope changes elevation during the scan, since the telescope
looks through a thicker slab of atmosphere at lower elevations,
and this increases the atmospheric contribution to the system
temperature.
The top panels in Figure 4 show an individual frequency

channel for a single scan (i.e., stationary observation period),
while the bottom panel shows the corresponding power spectral
density (PSD). For the CES case, the PSD is relatively
featureless, with an overall shape that looks consistent with a
typical 1/f noise spectrum. For the Lissajous case, an additional
strong peak is seen around 0.007 Hz, which matches the
scanning period of 14 s, and this corresponds to the periodic
atmospheric variations seen in the panels above.

Figure 3. Raw data from the COMAP instrument (in arbitrary digital units of power). Here we see data averaged over a single 2 GHz wide sideband (top) and
examples of data from four individual frequency channels in that sideband (bottom). These data were taken using two different scan patterns: CES (left) and Lissajous
(right).

Figure 4. Raw data from an individual frequency channel of the COMAP instrument. Power is shown as a function of time (top), and the corresponding PSD is also
shown (bottom). We show data from a CES (left) and a Lissajous scan (right).
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Figure 5 shows the time-averaged data for all frequency
channels of a single feed for one scan. The spectral shape is
mostly determined by the average gain as a function of
frequency, due to the combined effect of the various
components of the receiver chain. This average gain is a
purely instrumental effect, not associated with the true sky
signal, and therefore simply corresponds to a normalization
factor that should be calibrated out before higher-level analysis.
However, some of the spectral shape is also determined by the
fact that the system temperature also changes with frequency,
and in some cases exhibits large spikes within specific
frequency ranges (see Lamb et al. 2022 for more details).
Separating the gain variation as a function of frequency from
the system temperature as a function of frequency is a main
goal of the calibration procedures described in Section 3.4.

In Figure 6 we plot the correlation,

C
d d

d d d d
, 11ij

i j

i i j j
=

á ñ

á ñá ñ

ˆ ˆ
ˆ ˆ ˆ ˆ ( )

between the power, d
iˆ , recorded by any two feeds, i and j, after

averaging over all frequencies within each sideband for each
radiometer. Here we first note that the data from different
sidebands of the same feed are strongly correlated. This is
because both main sources of correlated noise in the COMAP
data, namely, gain fluctuations and atmospheric fluctuations,
are common for sidebands within a given feed. In contrast,
sidebands for different feeds mostly share the atmospheric
fluctuations (and also some standing waves) but have
independent gain fluctuations, and this results in lower overall
correlations, but still typically in the 10%–40% range.
Accounting for and mitigating such correlations will clearly
be essential in order to extract robust science from these
observations.

The quality of the COMAP data depends strongly on the
observing conditions, as illustrated in Figure 7. The top panel
shows an observation made under normal conditions, while the
middle panel shows an observation made during poor weather,
with thick cloud coverage. The bottom panel shows a data
segment with strong “spikes,” a feature of some data taken
during summer. Such spikes have been seen to occur when
insects are flying in front of the receiver. Automatic

identification and removal of problematic data is clearly an
important and necessary component of the pipeline.
Finally, Figure 8 shows the calibration vane observations

that are made at the beginning and end of each observation
period. Since the ambient temperature is about one order of
magnitude higher than Tsys, the measured power is also
correspondingly about one order of magnitude higher, and this
bright and known signal allows for a precise estimate of Tsys.
Note that these data segments are removed prior to data
analysis, as they would otherwise compromise any filtering that
may be applied to the data.

3. COMAP Analysis Pipeline

3.1. Pipeline Overview

We are now ready to present the COMAP analysis pipeline,
which is designed to process the raw data discussed in
Section 2.5 into calibrated and cleaned CO maps. The main

Figure 5. Time-averaged raw data from each frequency channel on a single feed of the COMAP instrument. The colors represent the four 2 GHz wide sidebands. Note
that a few of the frequency channels at the edges and middle of sidebands tend to be unstable and are masked out in the analysis.

Figure 6. Correlation between the sideband-averaged data from the 19 feeds of
the COMAP instrument for a single CES. Note that within each feed-feed cell
there are subcells showing the correlations between individual sidebands. For
this observation, as for much of the observing campaign, the LNAs for feeds 4
and 7 were turned off because those feeds, as a test, did not have a polarizer and
so had large standing waves owing to reflections between the receiver and the
secondary reflector.
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steps of this pipeline are schematically illustrated in Figure 9,
and the corresponding codes are listed in Table 2.

The processing starts with “Level 1” files, which contain raw
data as recorded by the instrument, together with pointing
information and housekeeping data. Each of these files
typically contains about 1 hr of observation time, including
calibration vane observations at the beginning and end. We
denote each (roughly) 1 hr of data as one observation and
assign it an individual observation ID (abbreviated obsID).

Each observation consists of several scans, where one scan is
the period between two repointings of the telescope, during
which the telescope performs the same motions around a fixed
point in azimuth and elevation while the target field drifts
through. The instrumental properties are consequently assumed
to be stationary within each scan. The module denoted
scan_detect in Figure 9 indicates a dedicated code that
partitions each observation into individual scans, based on
pointing information, and records information of each scan in a
database.
The main processing takes place in the l2gen module,

which generates calibrated and cleaned TOD and stores them in
so-called “Level 2” files. This is achieved through the
application of a series of filters (see Section 3.3) and a time-
varying gain normalization (see Section 3.4). This stage also
evaluates basic goodness-of-fit statistics and defines a
frequency channel mask that excludes missing or broken data
for the current scan, before reducing the spectral resolution of
the data to a spectral resolution suitable for mapmaking. This
demonstrates the advantage of the high spectral resolution of
the raw data. While our cosmological signal does not have
much structure on scales corresponding to these high resolu-
tions, the systematic effects do. The high resolution thus allows
us to filter out or mask systematic effects more precisely,
without masking entire low-resolution frequency channels. In
our main analysis, we reduce the resolution from ∼2 to ∼31
MHz, resulting in the computational speedup of subsequent
steps and a memory saving for storing final maps by a factor
of 16.
Next, the accept_mod module reads in the statistics

(including goodness of fit) and basic frequency mask produced
by l2gen and produces a list of accepted observations as
defined by user-specified thresholds for each statistic (see
Section 4). Examples of relevant statistics used for this purpose
are χ2 per observation, correlated noise knee-frequency ( fknee),
and solar elongation. The output from this process is called an
accept list, which determines what data to use for mapmaking.
Converting TOD into pixel-ordered data is done by a

mapmaker called tod2comap (see Section 3.6). As shown in
the following sections, the adopted filters result in very nearly
uncorrelated white noise, and the current implementation of
tod2comap accordingly adopts simple binning into voxels.
Finally, from these maps we can estimate the CO power
spectrum using the module comap2ps (see Ihle et al. 2022 for
details).

3.2. Data Segmentation

As described above, we define a scan to be the observing
period between repointings of the telescope. The purpose of the
scan_detect code is to identify all scans within all
observation periods and produce an observation database,
consisting of a list of obsIDs sorted according to source. For
each obsID, we list all scans within that obsID, including basic
information such as the Modified Julian Date (MJD) of the start
and end of the scan, as well as the scanning mode (e.g.,
Lissajous or CES) and mean pointing information.

3.3. Filtering

As described in Section 3.1, the COMAP TOD exhibit a
wide range of non-CO-related contributions, both of instru-
mental and external origin. These must be suppressed by orders

Figure 7. Feed-averaged COMAP TOD recorded under various observing
conditions. The top panel shows data observed under normal conditions and is
dominated by instrumental noise. The middle panel shows data observed under
poor weather conditions with a thick cloud coverage, resulting in large coherent
power fluctuations observed by all feeds. The bottom panel shows data with
strong spikes, which may, for instance, happen during rare periods with high
insect activity.

Figure 8. The calibration vane is inserted in front of the receiver at the
beginning and end of one observation of a CO science field. The time between
calibration vane insertions is typically about an hour, a period set by the
preferred data file size for the CO field observations.
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of magnitude prior to mapmaking in order to extract the
astrophysically valuable signal. With this goal in mind, we
introduce four specific filters, each targeting one class of
artifacts.

Figure 10 shows the evolution of the data as it passes
through each of the filters.

3.3.1. Normalization

The first filtering operation we introduce is data normal-
ization. This is done simply by dividing the raw TOD, Pout, by
its own running mean and then subtracting 1,

d t
P t

P t
,
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1. 12out

out
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n
n

=
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-( ) ( )
( ) ( )

Here t is a time sample index and ν denotes frequency channel.
This operation is performed separately on each frequency
channel. The running mean is estimated by putting the data
through a low-pass filter with a timescale of about 100 s. This
step basically removes d iá ñn from Equation (10), and it also
removes the first term in square brackets (which is equal to 1)
of the same equation.

The main purpose of this step is to equalize (i.e., “flatten”)
the instrumental passband, as illustrated in Figure 5, and
effectively establish data with appropriate relative calibration.
The main practical advantage of doing so is that the amplitude
of common-mode contaminants, such as gain-induced corre-
lated noise or atmospheric fluctuations, becomes comparable
across all frequencies within a single sideband, and therefore
much easier to filter out. The same also holds true for
broadband astrophysical contributions, such as the CMB or
foregrounds, which also must be removed prior to signal
extraction. See the top panel of Figure 10 to see the effect of the
normalization step. We can see that long-timescale fluctuations
are removed and that the data now fluctuate around zero.

Note also that with the definition in Equation (12) the noise
level of d(ν, t) is given by the sample rate and bandwidth alone
in the ideal case and should equal 1 t nD . Calibration into
physical units is performed simply by multiplying d(ν, t) by
Tsys. We find that d(ν, t) is a particularly convenient function
for goodness-of-fit tests, and it will serve as our main object of
interest in the following.

3.3.2. Removal of Az/El Templates

The second filter we apply is designed to suppress signals
that are correlated with local pointing (azimuth and elevation),
as opposed to sky-correlated signals. The two main effects of
this type are elevation-correlated atmospheric contributions and
azimuth-correlated sidelobe contributions. The first of these
effects may be modeled by a simple expression for the optical
depth of the atmosphere of the form

el
sin el

, 130t
t

=( ) ( ) ( )

where τ0 is the optical depth of the atmosphere at zenith and el
is the elevation, while the second effect may be approximated
through a low-order polynomial in azimuth. We therefore filter
the data by fitting and subtracting the following simple model
to each normalized frequency channel separately:

d
g

t
a t c n

sin el
az . 14= + + +( ( )) ( ) ( )

Here g, a, and c are fitting constants, and n denotes Gaussian
noise with an assumed constant variance. We find the best-fit
values for the free parameters by minimizing a χ2 statistic, and
we use g and a to clean the TOD with respect to the Az/El
templates,

d d
g
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g

a
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az . 15after before= - - - +( ) ( ) ( )

In this expression, 〈 〉 denotes the mean value in time for a
specific frequency channel, and this term ensures that the TOD
has vanishing mean also after subtraction of Az/El templates.
For long-duration scans we divide the TOD into disjoint
segments of roughly 4 minutes each and perform the template
fit and removal separately on each data segment, in order to
improve the tracking of temporal variations.
The effect of the Az/El template removal can be seen in the

second row of Figure 10.

3.3.3. Polynomial Continuum Filter

Our third filter, usually referred to as the “polyfilter,” is
designed to remove all continuum signals observed

Figure 9. Flow diagram of the analysis pipeline. The dark-green ellipses are data products, whereas the light-green boxes are the different modules of the data analysis
pipeline.

Table 2
Analysis Pipeline Software Routines

Module Name Input Output Description

scan_detect Level 1 files Obs. database Classifies and gathers info for the required set of observations
l2gen Level 1 files, Obs. database Level 2 files Performs filtering and calibration of the TOD
accept_mod Level 2 files, Obs. database Accept list Performs data selection
tod2comap Level 2 data, Accept list Maps Converts TOD into 3D maps
comap2ps Maps Power spectra Calculates and combines auto- or cross-spectra from maps
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simultaneously by all frequency channels within a given
sideband. Specifically, for each time step we fit and subtract a
low-order (and typically linear) polynomial to the normalized
and Az/El-subtracted TOD in frequency space for each
sideband.

We assume

d c c c ..., 160 1 2
2n n= + + +n ( )

where dν are the data across one sideband at a specific time step
and c0, c1, c2, etc., are constants that are fitted independently
for each sideband and at each time step. We then remove the
fitted polynomial from the data. In the third row of Figure 10,
we can see an example of how this filter removes the majority
of the correlated noise from the data.

The main target of this filter is 1/f noise from gain variations
in the receiver electronics and atmospheric temperature
fluctuations, which is strongly correlated between frequency
channels within each sideband. Indeed, the fact that this noise
is so tightly correlated between channels is one of the key
instrumental features of the COMAP instrument that makes CO
measurements feasible in the first place, effectively reducing
the final noise level by a significant amount.
As a bonus, this polynomial filter also suppresses any slowly

varying astrophysical signal, and in particular broadband
signals such as CMB, synchrotron, free–free, or anomalous
microwave emission. In contrast, the cosmological CO signal is
expected to vary on the scale of adjacent frequency channels
and is therefore only mildly affected by this filter. However,
some CO signal is indeed lost on the largest longitudinal scales

Figure 10. Effect of each filter in time domain. Each row shows the data before (left column) and after (right column) applying the indicated filter. From top to bottom,
the filters shown are (1) normalization, (2) elevation gain subtraction, (3) polyfiltering, and (4) PCA filtering. Data used are from scan 7717.03, feed 9, in a 31.25 MHz
band around 32.3 GHz.
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as a result of this filter, and this effect will later be quantified in
terms of an effective transfer function (see Section 5 for more
details).

3.3.4. Principal Component Analysis Filter

While the previous filter removes continuum signals within
each sideband, our fourth and final filter targets common-mode
signals seen simultaneously by the entire focal plane. The two
most prominent examples of such contaminants are residual
atmospheric variations and standing waves, both of which have
strongly correlated time variations across all feeds and
frequencies. To suppress these signals, we perform a so-called
principal component analysis (PCA) on the whole data set and
subtract the leading modes. Intuitively speaking, this amounts
to identifying the functions of time that explain the largest
amount of the variance between the different frequencies across
all the different feeds. These functions are the leading PCA
components.

To formulate this idea in a mathematical language, let us
organize all data in a given scan into a data matrix D, where
each row contains the TOD corresponding to a single-
frequency channel on a single feed. Thus, D is a matrix with
dimensions nfreq × nsamp, where nfreq = nfeeds · nsidebands ·
nfreqpersideband = 19 · 4 · 1024 is the total number of frequency
channels added up from all sidebands and feeds and nsamp is the
number of samples in time, such that

D
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The empirical data covariance matrix, C, may then be written
as

C D D, 18T= ( )
and the eigenvectors, vk, of this matrix that correspond to the
highest eigenvalues are precisely the PCA components we are
looking for. In practice, we identify the few leading PCA
components through a standard iterative method.
For each frequency (in each feed) we compute the PCA

amplitudes by projecting the observed data vector, d, onto the
PCA eigenvector,
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where d is now the normalized, Az/El-template-subtracted, and
polynomial-filtered data described above. The leading PCA
components are then subtracted from the data,

d d va , 20
i

n

k kafter before
1

comp

å= -
=

( )

where ncomp is the number of leading components removed
(typically four).
Figure 11 shows the three leading PCA components for a

typical scan. For each component, its variation with time is
shown for the duration of the scan, as well as its contribution to
the overall variance for each feed. Although the contribution of
even the leading PCA modes to the overall variance of a typical
scan is on the level of single-digit percentages, recall that
thermal noise will always dominate the variance for each scan
and the spectral structure of even single-digit percentage PCA
modes will surely dominate over the targeted CO signal, which
is why this filter is important.
Figure 12 shows the frequency-channel-to-frequency-chan-

nel correlation matrix between all frequencies of all feeds
before and after applying the PCA filter for a single scan. We
see that most of the residual correlations between different
feeds are removed in the PCA filter. A more extreme example,
showing a case where the PCA mode dominates the variance of
the data, is shown in Figure 13.

3.3.5. Masking

Sometimes individual frequency channels or groups of
nearby frequency channels show artifacts, even after applying
all the filters described above. This could manifest in a
significant excess noise that is correlated in time, or in
correlations between different frequency channels. We wish to
mask these frequency channels so that their contribution does
not contaminate the final results.

Figure 11. The three leading PCA components of a typical scan, and which
feeds are affected.
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To determine which frequencies should be masked, we first
perform the polyfilters and PCA filters on a copy of the original
data set. We then use two main approaches to identify
individual or groups of frequency channels to be masked.
The first approach uses the fact that the expected correlation
between two independent Gaussian variables (for large nsamp) is
given by n1 samp , where nsamp is the number of samples used
to calculate the correlation. Thus, after accounting for the
expected correlation induced by the polyfilter, we know the
statistics describing good data and can identify bad data as
deviations from these statistics. Specifically, we consider
groups of elements within the frequency–frequency correlation
matrix (either squares of different sizes or sets of columns) and
compare the average absolute correlation within this group with
the scatter expected from white noise alone. Any channel with
an absolute correlation larger than 5σ is removed from further
analysis.

Our second approach is to calculate a set of diagnostics for
individual frequency channels, for instance, the average
correlation of the channel in question to all the others in the
same sideband, or the average absolute value of the same. We
then compare the values of these diagnostics for the different
channels and remove significant outliers.

In addition to these approaches, we also remove frequency
channels heavily affected by aliasing. This typically corre-
sponds to about 10% of the frequency channels, found at the

edges of the bands. We mask all frequencies with a suppression
of the aliased signal of less than 15 db. For more details on the
aliasing effect, see Lamb et al. (2022). We also mask out
individual frequency channels with very high system tempera-
tures (above 80 K).
After the full mask has been determined, we apply the mask

to the original (unfiltered) data set and repeat the filtering
described above, but now only using the unmasked data. This
prevents bad data from contaminating good data through the
various nonlocal filters.

3.4. Calibration

With cleaned and co-added TOD in hand, the final step we
need to perform at the TOD level is calibration, that is,
assigning a noise temperature scale to the detector readout.
From Equation (8), the overall noise level is proportional to
Tsys.
Ideally, in order to calibrate our instrument, we would put a

load of a known temperature in front of the telescope and above
the atmosphere and compare the measured output power with
the output power measured with no load. A good approx-
imation to this is to use an ambient temperature load that covers
the receiver feed horn. Assuming that the telescope, the ground,
and the atmosphere have the same physical temperature as the
ambient load, the output power will be the same as if the load

Figure 12. Comparison of channel–channel correlation matrices before (left panel) and after (right panel) applying the PCA filter.

Figure 13. Effect of PCA filter on a “bad” scan, with unusually heavy weather or standing wave contributions.
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was above the atmosphere (Penzias & Burrus 1973). Taking
into account the vertical temperature profile and the distribution
of the absorbing components in the atmosphere, the corrections
are only a few percent for the relevant wavelengths.

In this approach we define the system temperature, Tsys, by
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where Trx is the noise temperature of the receiver, τ is the
optical depth of the atmosphere, and 1 − ηspill is the fraction of
the astrophysical signal lost to ground spillover. Tgnd and Tatm
are the physical temperatures of the ground and the
atmosphere, respectively, while TCMB is the CMB monopole
(we neglect other sky contributions). The overall factor of
e τ/ηspill converts from a system temperature defined at the
receiver input to one defined outside the atmosphere. This
definition ensures that

T T , 22sys signalD = D ( )
meaning that a change ΔTsignal in the sky signal gives a
corresponding change ΔTsys in the system temperature. This
definition makes the interpretation of our measurements easy
and intuitive.

To measure the system temperature, we compare the readout
when we have an ambient vane Pamb in front of the receiver and
when we look at the cold sky Pcold. From Equations (7) and
(21) we can estimate Tsys as
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where Tamb is the ambient temperature and TCMB is the cold sky
temperature. We then multiply the data d(ν, t) by the Tsys
measurement to go from (normalized) detector units to
temperature

d t d t T t, , , . 24K sysn n n= á ñ( )∣ ( ) ( ) ( )
This method of calibration allows us to account for both the
atmospheric absorption and ground spillover, without having to
measure τ and ηspill themselves.

As both the atmosphere and the receiver gain vary over time,
the measurements of Tsys vary over time. To get the most
accurate estimation, we make use of the ambient vane at the
beginning and end of each observation. We then interpolate the
ambient load measurements to the time of each scan to
calculate a value of Tsys, which is done for each feed and
frequency of each scan in l2gen. Figure 14 shows a typical
example of how the estimated Tsys looks for a single obsID, as
a function of frequency. The temperature usually behaves as a
relatively smooth function, with large spikes at specific
frequencies (for more details see Lamb et al. 2022). To see
the distribution of sideband-averaged system temperature for
all Season 1 observations, we refer the reader to Figure 21 in
the Appendix.
A challenge with this calibration method is that we are

calibrating the total power of the instrument, integrated out to
about 90°, rather than just the power in the main beam. As we
are interested in structures at small angular scales, some of the
total power is essentially lost, with the details depending on the
structure of the beam and the scales of interest. In the power
spectrum analysis (Ihle et al. 2022) we take this into account by
using a beam transfer function, calibrated on measurements of
astrophysical calibration sources (Rennie et al. 2022).

3.5. Downsampling

Until now, all steps have been performed at full frequency
resolution, i.e., 1024 channels per sideband or 2 MHz channel
bandwidth. For mapmaking purposes, however, we typically
do not require such high resolution, as the intrinsic line width
of the CO signal limits the amount of information at small line-
of-sight scales (Chung et al. 2021). To save both memory and
computing time, we therefore co-add several neighboring high-
resolution frequency channels (usually 16, corresponding to a
final bandwidth of 31.25 MHz) into a single low-resolution
channel using inverse variance noise weighting.

3.6. Mapmaking

After the main data selection step (described in Section 4),
the last step in the pipeline is mapmaking, which is
implemented in a code called tod2comap. This reads in
cleaned TOD and pointing information, applies a high-pass
filter, and produces temperature sky maps for each frequency
channel. The high-pass filter removes structures on long
timescales in the TOD. This is done by Fourier-transforming
the TOD and removing the part with frequency below a set
value, typically 0.02 Hz, before transforming back to TOD.
Ideally, the TOD can be written as a sum of the signal s and

the noise n,

d Ps n, 25= + ( )
where P is the pointing matrix, which connects each time
sample to a pixel on the sky. Our goal is to estimate s given d.
Assuming that the noise is Gaussian distributed with a time-
domain covariance matrix N, the log-likelihood function
corresponding to Equation (25) may be written as

d Ps N d Pslog . 26T 1µ - --( ) ( ) ( )

Setting the derivative of this log-likelihood to 0, we obtain the
standard mapmaker equation,

s P N P P N d. 27T 1 1 T 1= - - -ˆ ( ) ( )

Figure 14. Tsys measurement from Feed 1 of obsID 15117 across the 4096
frequency channels.
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As discussed above, the COMAP noise after filtering is very
close to white, and this implies that N may be approximated as
diagonal.18 In that case, Equation (27) may be solved explicitly
and independently for each pixel p as follows:

s
d

. 28p
t p t t

t p t

2

2

s

s
=

å

å
Î

-

Î
-

ˆ ( )

Here σt is the noise standard deviation of sample t, and samples
with lower noise are thus weighted more strongly than the
samples with higher noise. The corresponding map-domain
noise standard deviation is given by

1
. 29p

t p t
2

1 2

ås
s

=
Î

-⎛⎝⎜ ⎞⎠⎟ ( )

We perform this mapmaking procedure separately for each
frequency channel.

4. Data Selection, Observation Efficiency

As we will show in Section 6, most of our filtered time
streams are dominated by white noise. However, this does not
necessarily imply that they are free from systematic errors to a
level required for scientific analysis. On the contrary, many
effects may only be discovered when co-adding both over time
and frequency.

The main challenge for data selection is to identify and
remove data contaminated by systematic errors. It is preferable
to remove bad data at the earliest stage possible, before they are
co-added with clean data. However, co-adding data also
reduces the noise, making it easier to identify systematic
effects at a later stage. For this reason, since we cannot detect
all systematic errors during the low-level filtering and masking,
we go through several stages of data selection, throughout the
data analysis pipeline.

In addition to the frequency masking described in
Section 3.3.5, we also apply cuts based on statistics calculated
for each sideband of each feed and scan. These statistics allow
us to find patterns and correlations at levels far below the noise
level of an individual scan.

4.1. Data Losses and Efficiency

In order to quantify the overall data efficiency, Edata, i.e., the
fraction of raw data we use for the final power spectrum
estimates, we summarize the different stages at which data are
rejected:

1. No data from feeds 4, 6, and 7 were used for the final
analysis. Two of these feeds (4 and 7) were used for
engineering tests and did not produce useful data, while
large systematic errors were visible in the low-level data
for one of them (feed 6). We denote the fraction of data
lost by rejecting data from these feeds by Lfeed.

2. As described in Section 3.3.5, during the low-level data
filtering (in l2gen), we mask bad, outlier or aliased

frequency channels. This means that we lose some
fraction of the data, denoted by Lfreq.

3. During the first year of observations, we took a large
amount of data at elevations above 65° and below 35°.
Since we now know that these data are very susceptible to
ground contamination (via the main beam and sidelobes),
we do not use these data in our results. The fraction of
data lost in this elevation cut is denoted by Lel.

4. The main data selection stage (in accept_mod) consists
of two main parts. First, we go through all the level 2 files
and gather or calculate a long list of diagnostic statistics
for each scan, for example, the time of day, the average
system temperature, and a range of goodness-of-fit
statistics. Other examples include whether or not the
Sun or the Moon is in one of our main sidelobes, the
measured noise properties, machine-learning-derived
weather predictions (Rasmussen 2020), and various
parameters from the low-level filters. In total there are
77 different such statistics in the database. Each of these
statistics is calculated for each sideband of each feed for
each scan. The next part of the process consists of
defining, for most of these statistics, an allowed range of
values. Using the full database, together with the allowed
range of values, we make an accept list, which
determines which data are accepted and which are
rejected at this stage. We denote the fraction of the data
that are lost at this stage (excepting the ps_chi2
statistics mentioned next) by Lstats.

5. Of the 77 statistics described above, one group is of
particular importance. We take the filtered data from a
single scan and make a single 3D map using the data
from a single sideband of a single feed. We can then
divide this map by the white-noise variance map and
calculate the spherically averaged pseudo-auto-spectrum
for this single sideband. This pseudo-auto-spectrum can
then be compared to what we would expect from white
noise and the different data points combined into a single
χ2 goodness-of-fit statistic that we call the ps_chi2. We
make different versions of the ps_chi2 statistic, for
example, by combining the four sidebands of each feed
into a single map, by combining all feeds into a single
map for a single scan, or by combining maps from all
scans in a single observation (roughly 60 minutes of data)
into a single map, calculating a separate ps_chi2
statistic for each of the different maps. We then set
thresholds for acceptable deviations from the white-noise
expectations and reject data that show large excesses in
these power spectrum statistics. We denote the fraction of
data that are lost at this stage by L

P k
2c ( )

.
6. During the final stages of the main power spectrum

estimation, we calculate the cross-spectra for data from
different feeds and different data splits (for more details
on this see the companion paper Ihle et al. 2022). For
each of these spectra we calculate χ2 statistics that are
used to accept or reject the spectra in the final results.
This allowed us to identify problems associated with
specific feeds. For example, feed 8 had a known problem
with the LNA, and almost all cross-spectra involving this
feed had a high χ2 statistic; we therefore removed all
spectra involving this feed at this step. For Field 1 we
also found clear excesses in several spectra involving
feeds 16 and 17 from the low-elevation data set; all these

18 This is not strictly correct for long timescales. As such, the current
mapmaker is statistically slightly suboptimal, and the resulting transfer function
is lower than strictly necessary. Future implementations of the COMAP
mapmaker will therefore instead rely on well-established destriping or
maximum likelihood algorithms, which are often able to recover slightly more
large-scale information than a binning mapmaker.
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spectra were also removed from Field 1. We also cut any
spectrum with a χ2 above 5σ. We denote the fraction of
data that is lost at this stage by L

C k
2c ( )

.
7. Power spectra formed from the data taken using the

Lissajous scanning strategy (which we used for about half
of the observations in the first season) showed strong
large-scale excess power, potentially due to ground
contamination, which is more easily removed from CES
scans. (This excess power is most clearly quantified in
Table 1 of Ihle et al. 2022.) For this reason, we did not
include any of the Lissajous data in our final science
results. We denote the fraction of the final data using CES
scans as Escan.

8. Finally, there are periods in time where the telescope, for
whatever reason, is not observing the main science CO
fields. We denote the fraction of time that we are taking
CO data by Eobs. For each of our three individual CO
fields we define the observation efficiency as the total
time the field was observed multiplied by 3 and divided
by the total period over which the observations were
taken.

4.2. Future Sensitivity Projections

Table 3 shows the data lost at different stages of data
selection, as well as an optimistic projection for how these
values could change in the future. As we can see, a large
fraction of the data are lost in the final stage of cuts (based on
the C k

2c ( ) statistics), indicating that there are systematic errors
that are not being identified in earlier steps. By understanding
the origin of these errors and removing them at an earlier stage,
there is the potential to significantly increase the amount of data
available for analysis.

As mentioned, in the case of data taken using Lissajous
scans (which corresponds to about half of the total obtained in
Season 1), there is a clear excess in the final power spectrum;
for this reason, these data were not used for our science results.
For data taken using CES scans, the C k

2c ( ) cut produces spectra
for Fields 1 and 2 that are consistent with white noise. For Field
3 we needed to apply a more restrictive set of limits on the
various statistics and P k

2c ( ) , which we believe to be related to an
increased level of ground contamination compared to the other
two fields.

With experience of Season 1 in hand, we are working on
building the second-generation COMAP pipeline, including
improved ground modeling, mapmaking, and real-time con-
tinuum filtering and calibration, based on the lessons learned
from the first-generation data analysis and our improved
understanding of the data. We have also altered our observing
strategy and corrected hardware problems. For some of these
improvements, quantifying the resulting increase in sensitivity
is somewhat speculative. However, the combined effect of all
of these changes is likely to be significant, and we will
therefore attempt to systematically estimate the amount of
usable data that will be available after 5 yr, taking these
changes into account, and how this transfers to our power
spectrum limits. This will allow us to compare our estimated
5 yr sensitivity to signal models (Chung et al. 2022) and serve
as a benchmark against which we can compare our future
progress.
Below we discuss the improvements we think we potentially

can achieve in each factor from Table 3.

1. At the end of Season 1, the receiver was removed from
the telescope for maintenance. Feeds 4 and 7 were
switched from engineering testing to science operations
mode, while problems with feed 6 were repaired. In
subsequent observing seasons, we therefore hope to keep
Lfeed close to 0%.

2. We plan to increase the clock frequency of the analog-to-
digital converters in the ROACH-2 back end. This will
reduce the number of frequency channels removed owing
to aliasing and, coupled with improvements in the
filtering and a more stable system, should improve Lfreq
significantly.

3. Regarding Lel, we are no longer observing above 65° and
below 35° in elevation, so we should not lose any more
data to this elevation cut in subsequent seasons.

4. With a careful study of the effect of relaxing the current
conservative limits on the various statistics, we believe
that there is some scope to reduce Lstats by identifying
which cuts are important and relaxing the others.

5. As we have not yet spent time to fine-tune the allowed
limits on these statistics, we believe that it will be
possible to significantly improve L

P k
2c ( )

if we choose the
limits more carefully.

6. By identifying data affected by systematic errors at an
earlier stage in the pipeline and by splitting the data into
more pieces for the cross-correlation, we expect to be
able to significantly reduce L

C k
2c ( )

(especially for Fields 2
and 3). Field 1 shows that it is possible to reduce the
losses at this step significantly. For Field 1, after we
removed all spectra involving feed 8 and all spectra
involving feeds 16 and 17 from the low-elevation data set
by hand, the automatic C k

2c ( ) cut at 5σ accepts all but one
of the remaining 182 cross-spectra, indicating that the
remaining data are very clean.

7. After Season 1 we no longer use Lissajous-type scans,
which means that Escan = 100% for all subsequent
seasons.

8. During Season 1, we addressed the main instrumental and
operational issues that decreased Eobs, as well as
instituting weekly maintenance checks; we expect to
achieve close to the maximum efficiency of 82.5% (based
on the total time our CO fields are within 35°–65°

Table 3
Losses and Overall Data Efficiencies for the First-season Data (Columns (1)–

(4)) and an Optimistic Projection for Years 2–5 (Column (5))

Field 1 Field 2 Field 3 All Fields Projection

Lfeed 15.8% 15.8% 15.8% 15.8% 0.0%
Lfreq 26.7% 28.1% 26.7% 27.2% 15.0%
Lel 7.3% 31.2% 29.5% 24.4% 0.0%
Lstats 47.4% 35.7% 44.9% 42.6% 35.0%
L

P k
2c ( ) 20.9% 22.3% 40.0% 27.8% 20.0%

L
C k
2c ( )

a 24.6% 78.8% 39.6% 47.6% 10.0%

Edata 18.0% 4.42% 8.70% 9.50% 39.8%

Notes. Losses, L, denote the fraction of data lost at each step. Here Edata is the
product of the factors (1 − L) for all the losses in the rows above.
a These are the losses for the CES cross-spectra, which are the only ones we
ended up using in the final results. The corresponding losses for the Lissajous
data are given in Ihle et al. (2022).
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elevation) for future seasons. We will therefore assume an
observation efficiency of 75% for the future, a large
improvement over the values of 36.8%, 52.9%, and
53.2% for Fields 1, 2 and 3, respectively, obtained during
the first season.

Based on these considerations, we make an estimate of our
future data efficiency, as shown in Table 3 (the rightmost
column). We further assume that we can estimate the future
(5 yr) power spectrum sensitivity by simply scaling the current
sensitivity by an overall factor, D,

D
. 305 yr

S1

5 yr
s

s
= ( )

We define the total efficiency for Season 1 as
E E E ES S S

tot
S1

scan
1

data
1

obs
1º , where S1 denotes the quantity from the

first season. The fraction of data using the CES scan during the
first season, E S

scan
1 , was given by 51.7%, 55.6%, and 34.3% for

Fields 1, 2, and 3, respectively. We assume for the forecast that
by splitting the data into more parts (than the two we are
currently using), we can improve the sensitivity of the cross-
spectrum estimator (see Ihle et al. 2022 for more details) by a
factor of Esplit = 1.3 (the asymptotic limit as Nsplit →∞ is 2 ).

Using the total duration of the season 1 observing campaign,
TS1 = 440 days, we base our forecast on the performance of
our best field (Field 1) and find the factor, D5 yr, needed to
estimate the 5 yr sensitivity, assuming that we can make all
three of our fields perform as well as Field 1. We also assume
that we can improve the transfer function by at least 10% on
average by improved filtering and mapmaking, giving us an
extra overall factor ETF = 1.1. We then get

D
T E T E

T E
E E

3 5 365

3
, 31

S S

S
5 yr

1
tot
S1 1

tot

1
tot
S1 split TFº

+ -( · ) ( )

where E E E 29.8%tot data
proj

obs
projº = , and where the 3 comes

from the fact that we are extrapolating the current sensitivity of
Field 1 to all three fields. Here the superscript “proj” denotes
the previously discussed future projections. Inserting the
values, we find D5 yr = 69. Discussion of the current upper
limit and the 5 yr power spectrum sensitivity forecast can be
found in the companion paper Chung et al. (2022).

The preceding number should be interpreted as a reasonably
optimistic order-of-magnitude estimate and does not take into
account new systematic errors that may be revealed with any
increase in sensitivity. Such effects will surely require a
revision of our existing filtering and data selection procedures.

5. Signal Loss and the Pipeline Transfer Function

5.1. The Pipeline Transfer Function

The main summary statistic we use to estimate the CO signal
is the power spectrum

kP
f

n n n
V . 32k

x y z

2

vox=
á ñ( ) ∣ ∣ ( )

This is extracted from the temperature sky maps by, first,
computing the 3D Fourier transform of the maps; binning the
squared Fourier coefficients according to the wavenumber, k;
and averaging over all contributions to a given k-bin. Finally,
they are multiplied by the comoving voxel volume, Vvox, and
divided by the total number of voxels, nxnynz. Note that each

voxel is inverse variance weighted by p
2s- as given by

Equation (29) before computing the Fourier transform, mean-
ing that we are calculating the pseudo-spectrum, or the
spectrum of the inverse variance noise weighted map, rather
than a regular auto-spectrum. It is therefore important to keep
in mind that the pipeline transfer function deduced from
pseudo-spectra, which is what will be discussed in this section,
will be similarly biased as the pseudo-spectra themselves. We
make no effort here to account for or undo the “mode mixing”
resulting from the noise weighting, but we leave the discussion
about this effect and power spectrum methods in general to Ihle
et al. (2022).
As the raw data pass through our filtering and mapmaking

procedures, some of the signal is typically lost at each stage,
and the maps described in Section 3.6 are therefore biased. In
order to estimate and correct for this bias at each scale, k, we
need to estimate the so-called pipeline transfer function, which
is simply defined as the power spectrum ratio between the
recovered and original signal.
We can estimate this transfer function by adding a signal-

only simulation to a pure noise TOD and then comparing the
combined signal-plus-noise simulation output to the true
signal-only input. We adopt the raw COMAP TOD as a model
for the noise, which in power units are denoted by PN. The
signal-only contribution is produced by scanning a precom-
puted 3D simulation of brightness temperature (using the
fiducial model in Chung et al. 2022), T psim ( ), with the telescope
pointing, and we label this PS. We then add these together in
power units,

P P P k G T
T

T
1 . 33S N N S B sys

sim

sys
n= + = D ++ ⎜ ⎟⎛⎝ ⎞⎠ ( )

If this is done at each time step (and pointing) of the raw data,
then we can construct a simulated TOD PS+N simply by adding
the temperature of the simulated cube of signal at any given
frequency channel along the line of sight. This signal-plus-
noise TOD can then be sent through our whole low-level data
analysis pipeline, like a regular TOD. We only need to make
sure that the same frequency masking is applied to the TODs
with or without added signal, to make it a fair comparison. We
then separately generate 3D voxel maps from PS, PN, and
PS+N, and from these we compute corresponding 3D pseudo-
auto-spectra PS(k), PN(k), and PS+N(k), following the above
procedure. Based on these three spectra, we can finally estimate
a scale-dependent transfer function T(k) as

k
k k

k
T

P P

P
. 34S N N

S
=

-+( ) ( ) ( )
( ) ( )

Noting that the pipeline filters have very different impact in
the angular and frequency directions, it is useful to decompose
k into parallel (line-of-sight) modes, k∥ ≡ |kz|, and the

perpendicular (angular) modes, k k kx y
2 2º +^ . This is the

version of the transfer function we use for the main science
analysis. However, for simplicity of visualization we will here
show several results for the 1D (spherically averaged) version
of the transfer function, in addition to the 2D (cylindrically
averaged) one.
Another thing to note is that the signal used to estimate the

transfer functions is boosted, compared to the theoretical
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model, so that its peak temperature is around 2 K, in order to
make it easily detectable given the level of noise TOD used. As
a result, the signal-to-noise ratio in the simulated data will be
several orders of magnitude higher than in the raw data, as the
actual CO signal from a raw observation will be completely
dominated by noise when only using a few hours of
observation.

5.2. The Effect of Individual Filters on the Transfer Function

First, to understand the impact of the various filters in terms
of signal loss, we estimate 1D transfer functions for a range of
different pipeline configurations. Specifically, we analyze six
obsIDs (three CES and three Lissajous obsIDs, both observa-
tions of Field 3), where we consider different combinations of
PCA and polyfilter, enabling or disabling each filter in turn. For
the polyfilter, we additionally consider two cases, namely, a
constant fitting term or a linear fitting function. Here, we only
wish to illustrate the effects of each filter on the measured
signal, and so we have simply added signal to the raw data
using a single simulation realization. This ensures that the
effects seen in each filter combination are not due to any
differences between realizations. However, it will be necessary
in future analyses, when even the smallest systematic effects
become important, to average the transfer function estimates

resulting from several different realizations. The results from
these calculations are summarized in Figure 15. The black solid
line shows the default pipeline configuration.
One can see that the default settings, i.e., a first-order

polyfilter and PCA filtering turned on, yield almost the same
transfer function as the case where the PCA filter is turned off.
The PCA filter is not expected to remove much of the actual
input signal, as it only removes the components of the TOD
that are the most correlated over all frequencies and feeds, thus
potentially removing only the structures of the input signal that
are common over the entire survey volume observed at any
given time.
When it comes to the case with a zeroth-order polyfilter or

with the polyfilter turned completely off, there are, however,
large differences seen from the results using the default
settings. Using a zeroth- or first-order polyfilter, a considerable
fraction of the input signal is removed by the pipeline on scales
above k ∼ 0.04 Mpc−1. We see that the zeroth-ordered
polyfilter yields a similar result to that without the polyfilter
near the peak regions of the transfer functions; however, a
nonnegligible portion of signal from k ∼ 0.04 Mpc−1 up to the
peak region is taken out when turning on the zeroth-order
polyfiltering. The low transfer efficiency on low k for any of the
shown filter combinations is due to the limited area covered in
each scan, the high-pass filter imposed in the mapmaker, and
the polynomial filter in frequency.
If we turn off the subtraction of the Az/El templates, we can

also see in Figure 15 that more signal is let through the pipeline
on scales k � 0.3 Mpc−1. The effect of the Az/El template
subtraction is, however, especially noticeable on scales k < 0.1
Mpc−1, which is expected, as the structures in the power
spectra removed by the Az/El templates are of a larger scale in
the pixel domain.
Note also that when computing these transfer functions for

different filter combinations, we used the combined maps of
three obsIDs of Lissajous-type scans and three with CES.
However, we found that there were significant differences
between the transfer functions from a Lissajous and CES scan
type and have therefore also included the average of the three
transfer functions of each type in Figure 15. As one can see, the
Lissajous scan type results in a transfer function that is larger
on most scales, which probably is a result of the Lissajous scan
covering a larger area in a single scan compared to the CES.
The Lissajous scans, as opposed to the ones with CES, also
seem to result in a transfer function that drops a bit down from
its peak at high k. The reason for this difference is not yet fully
understood at this point.
In general, the estimates of the transfer function break down

at high k⊥ owing to PS(k) going to zero in Equation (34), so we
see some large random fluctuations here, but this is not a
problem because the instrumental beam means that we have
basically no sensitivity to these modes anyway.
When looking at the 2D version of the transfer function, as

shown in Figure 16, the effects of the polyfilter on the transfer
function become more evident because we can then distinguish
between what is happening in the angular directions (k⊥) and
the spectral dimension (k∥). As the polyfilter is designed to
remove the 1/f-noise and continuum foreground emission
along the frequency dimension on each sideband, we expect the
changes in the transfer function to be most visible in the large
line-of-sight scales k∥. This is indeed what is seen in the
difference ΔT(k) between the transfer functions without and

Figure 15. Top panel: 1D transfer functions, T(k), for different filter options
and scanning modes as a function of scale, k. The default combination used in
the COMAP pipeline is shown as a solid black line. Bottom panel: difference
between the various filter and scanning options and the default configuration.
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with a first-order polyfilter in Figure 16 for low k∥, where we
note a 50%–90% relative loss in power when using a first-order
polyfilter. Meanwhile, on all other scales the difference ΔT is
left mostly unchanged.

Lastly, we emphasize that the transfer functions presented
here are meant only to graphically illustrate the effects of our
filtering on the signal. The transfer functions applied to the final
pseudo-power spectrum, to compensate for the bias introduced
by the filtering, are cylindrically averaged and are based on
roughly 63 hr of observations. For more details on this see Ihle
et al. (2022).

6. Noise Characterization and Removal of Correlated Noise

In this section we describe our noise characterization model
and demonstrate how effectively the pipeline removes
correlated noise from the data. One of the most important
functions of the COMAP data pipeline is the removal of
correlated noise. By correlated noise, we mean noise that is
correlated in time. The fact that all known sources of correlated
noise in our system also produce noise that is correlated across
feeds or frequencies, gives us powerful leverage to remove
correlated noise from our data. As the CO brightness
temperature is many orders of magnitudes below the telescope
system temperature, any significant deviations from a white-
noise spectrum in our filtered data must be due to residual
correlated noise or another systematic effect. This means that in
order to quantify the presence of correlated noise, we can look
at the deviation from white noise.

We can often approximate the correlated noise using a
spectral density of the form

N f
f

f
1 , 350

2

knee

s= +
a⎜ ⎟⎜ ⎟⎛⎝ ⎛⎝ ⎞⎠ ⎞⎠( ) ( )

where σ0 is the white-noise level.
The second term in Equation (35) is known as 1/f noise,19

which is characterized by a knee frequency fknee, representing

the transition frequency between the flat white noise and the
sloped 1/f noise, and the exponent α, giving the slope of the
spectral density in the 1/f-dominated regime. The white-noise
level is estimated by calculating the variance between
neighboring samples in the TOD, as

d dVar

2
. 36i i

0
1s =

- -( ) ( )

Figure 17 shows the 1/f behavior of the TOD throughout
different steps in the pipeline and clearly demonstrates the
effect of each filter. The normalization step heavily suppresses
the low-frequency end of the spectrum. The Az/El template
knocks out the strong ∼0.7 Hz correlation caused by the
Lissajous scanning strategy. The polyfilter significantly reduces
the noise power across the entire power spectrum, even
lowering the white-noise limit. This is possible because even
though the white noise is uncorrelated in time, parts of it are
still correlated in frequency. Finally, the PCA filter further

Figure 16. Comparison of 2D transfer function estimates with (left panel) and without (middle panel) the polyfilter. Right panel: difference between the two previous
cases.

Figure 17. Power spectral distribution of a single scan from a 31.25 MHz band
around 28.2 GHz at different stages in the pipeline, with 1/f noise curves fitted.
The power spectral distribution is binned with logarithmic bin sizes toward
higher frequencies for clarity. Lower frequencies have been excluded from the
fit, as these scales are greatly suppressed at the normalization stage.

19 Keep in mind that f refers to the temporal frequency of the time-ordered
signal, not the observed photon frequencies, which we consistently refer to
as ν.
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reduces the noise left over by the polyfilter. By the end of the
pipeline, the TOD is almost completely dominated by white
noise. It should be noted that while the polyfilter typically
suppresses much more noise power than the PCA filter in an
average scan, this is not always the case. In scans with
significant contamination (like standing waves or bad weather),
the PCA filter may suppress even more noise power than the
polyfilter. An extreme example of this is shown in Figure 13.

6.1. Polyfilter Noise Properties

As discussed in Section 3.3.3, the polyfilter involves fitting
and subtracting a low-order polynomial in frequency space
from each sideband at each individual time step. The polyfilter
is the first filter targeting correlated noise except on the very
largest timescales, and the resulting coefficients are therefore
highly informative regarding the noise properties of the data. In
the current analysis setup, we only use a first-order polynomial
filter, such that each time step of each sideband is associated
with two coefficients, c0 and c1. These coefficients, treated as
functions of time, turn out to have 1/f-like power spectra.
Figure 18 shows the distribution of noise parameters of 1/f fits
performed on c0 for all available scans of the A:LSB sideband
of feed 1. As discussed in Section 2.4, the correlated noise
common to each sideband is mostly dominated by gain
fluctuations of the individual LNAs at each feed. We therefore
expect, and find, that each feed has its own characteristic noise
properties. Since we can use the polyfilter to remove this
correlated noise, the individual noise properties of the different
feeds are less important when measuring the CO line emission
than if we were measuring continuum sources, in which case
these properties would become crucial.

6.2. Goodness of Fit, χ2 Test

The main goal of our pipeline is to remove both correlated
noise and continuum foregrounds, while leaving as much as

possible of the CO line intensity signal intact. In the ideal case,
and assuming that the cosmological CO signal is so weak that it
cannot be measured in a single scan, our cleaned TOD should
therefore be described by white noise alone. We therefore need
statistics to measure potential deviations from white noise. We
use a standard χ2 statistic per scan for this purpose, defined as
follows:

N

N2
. 37

i
N d

2
0

2
i

0c =
å -

s= ( ) ( )

Here di are the N samples of the scan, and σ0 is the white-noise
level defined in Equation (36). For a perfect white-noise TOD,
we expect 0, 12c m s~ = =( ) .
Figure 19 shows the χ2 distribution for all the scans in the

first observation season, comprising about 5000 hr of
observations, divided by observational field. Here we have
combined all the data points for each sideband, such that N =
nsamp · nfreq, where nsamp is the number of samples in time
(typically nsamp = 10–20,000) and nfreq = 64 is the number of
frequencies per sideband. As seen in Figure 19, the data are
indeed very close to white noise, with only a small shift and a
positive tail. We also note that the Field 1 field outperforms the
two other fields by a small margin. Given that the number of
samples, N ∼ 105, going into each of the χ2 values in this
histogram is so large, a mean bias of less than 1σ per scan
corresponds to an excess variance (from correlated noise or
other systematic effects) of less than about 0.5%. This is
remarkable, since we have not imposed a high-pass filter to
remove the correlated noise; nevertheless, our filters (mostly
the polyfilter and the PCA filter) are able to remove it almost
perfectly by using the fact that it is correlated between different
frequencies. Since correlated noise integrates down as we add
together independent observations, this means that the
correlated noise will always be dominated by the white noise.
Other systematic effects, however, may not be entirely
independent between different observations and will thus not
necessarily integrate down as fast when we combine different
observations. Such systematic effects can thus lead to problems
that are not visible at this stage of the analysis.

6.3. Maps

Figure 20 shows a single-frequency map, from each of our
three fields, based on the data from the first season of
observations. This data set results in a sensitivity of a few tens

Figure 18. Distribution of noise parameters σ0, fknee, and α for the c0
coefficient of the polyfilter. All available scans of feed 1, sideband A:LSB
were used.

Figure 19. χ2 distributions of filtered data for the three main fields, with a
standard normal distribution for comparison.
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of μK per 2 × 2 arcmin2 pixel for a single 31.25 MHz channel.
At least at a visual level, the maps appear largely dominated by
white noise. We see that each field only has significant

coverage within roughly a 2 × 2 deg2 area on the sky. The right
panel of the figure shows histograms of all the map voxels, mp

(Equation (28)), divided by their corresponding white-noise

Figure 20. Co-added COMAP single 31.25 MHz frequency channel maps with a central frequency of 28.9 GHz (left) and voxel histograms of the map voxels divided
by their corresponding white-noise level for all 3D voxels (right) for (a) Field 1, (b) Field 2, and (c) Field 3. Regions that either are not observed by the telescope or
have a noise level σ0 > 1000 μK are masked out in the plotted maps. Note that in the voxel histogram we use a linear y-axis below a voxel count of 5 and a logarithmic
one above.
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level, σ0p (Equation (29)). Overplotted is what is expected from
a unit normal variable. The histogram shows that we are
extremely close to white noise even out to the far tails of the
distribution. While this does not demonstrate that there are no
residual systematics in the map, it does show that any
systematic is suppressed far below the white-noise level in a
single map voxel. If there were any significant correlated noise
in the maps, that would show up as extra variance in this
histogram. However, while these results do show that
correlated noise is not a major problem, they do not rule out
other systematic effects on larger scales in the map.

7. Summary and Conclusions

We have presented the data analysis pipeline used to process
the first-season COMAP observations with respect to high-
redshift CO emission, from raw TOD to final calibrated maps.
This pipeline implements four main steps (calibration, filtering,
data selection, and mapmaking), each of which is designed to
optimally exploit the unique instrumental capabilities of the
COMAP instrument. For instance, calibration is performed
using a combination of frequent comparison with a hardware
calibrator and real-time total-power measurements. The filter-
ing procedures explicitly exploit the multifeed and multi-
frequency design of the COMAP instrument to reject common-
mode contaminants, resulting in data that are strongly
dominated by uncorrelated white noise after filtering. Finally,
both the data selection and mapmaking processes directly use
this fact to produce near-optimal goodness-of-fit statistics and
pixelized sky maps with high computational efficiency.

By applying this pipeline to data from the first observing
season, we have demonstrated a key goal of the Pathfinder: that
the noise level integrates down with time as expected for
uncorrelated white noise. A careful analysis of the data and
observing efficiencies obtained in Season 1 has allowed us to
forecast the performance of the Pathfinder taking into account
expected and already-implemented improvements to the
instrument, analysis, and observing strategy. Based on this
forecast and on models for the CO emission at z ∼ 3, the
Pathfinder is expected to achieve a detection of the CO (1–0)
auto-power spectrum by the end of the 5 yr observing
campaign (Chung et al. 2022).
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Appendix
System Temperature Distribution

Figure 21 shows a histogram of the sideband-averaged
system temperature, Tsys, for all Season 1 observations. From
the radiometer equation (Equation (9)) we see that the system
temperature quantifies the noise level of the observations, so
this histogram shows the distribution of the sensitivity of our
measurements. Some of these variations are from the different
noise levels of the different feeds and sidebands, but most of
the variation comes from the different optical depth of the
atmosphere when observing at different elevations. Note that
the sideband averages were taken after the frequency masking
that happens during the low-level filtering. We also exclude
observations at elevations higher than 65° and lower than 35°,
as these are not used in the final analysis. We see that 95% of
the recorded system temperatures are in the range 34–60 K,
with a median value of 44 K.
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Abstract

We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of
the current data set. The main results are derived through the Feed–Feed Pseudo-Cross-Spectrum (FPXS) method,
which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use
effective transfer functions to take into account the effects of instrumental beam smoothing and various filter
operations applied during the low-level data processing. The power spectra estimated in this way have allowed us
to identify a systematic error associated with one of our two scanning strategies, believed to be due to residual
ground or atmospheric contamination. We omit these data from our analysis and no longer use this scanning
technique for observations. We present the power spectra from our first season of observing, and demonstrate that
the uncertainties are integrating as expected for uncorrelated noise, with any residual systematics suppressed to a
level below the noise. Using the FPXS method, and combining data on scales k= 0.051–0.62 Mpc−1, we estimate
PCO(k)=−2. 7± 1.7× 104 μK2 Mpc3, the first direct 3D constraint on the clustering component of the CO(1–0)
power spectrum in the literature.

Unified Astronomy Thesaurus concepts: CO line emission (262); Cosmological evolution (336); High-redshift
galaxies (734); Molecular gas (1073); Radio astronomy (1338)

1. Introduction

Intensity mapping aims to map out large 3D volumes using
bright emission lines as tracers of large-scale matter distribu-
tion (Madau et al. 1997; Battye et al. 2004; Peterson et al.
2006; Loeb & Wyithe 2008; Kovetz et al. 2017, 2019). One
promising set of lines comprises the rotational transitions of the
carbon monoxide (CO) molecule. CO traces cold molecular
gas, and is closely linked to star formation (Carilli & Walter
2013).

The CO Mapping Array Project (COMAP) is an intensity
mapping experiment targeting CO. This paper, one of a set
associated with the first-season COMAP analysis, presents the
methodology used to constrain the CO power spectrum with

COMAP data. An overview of the COMAP experiment is
presented by Cleary et al. (2022), while the COMAP
instrument is described by Lamb et al. (2022).
The low-level COMAP data-processing pipeline is summar-

ized by Foss et al. (2022). This pipeline converts raw
uncalibrated observations into 3D maps, using redshifted CO
line emission from distant galaxies as a tracer of the cosmic
density field. Since the first-season COMAP instrument
observes at frequencies between 26 and 34 GHz, and the
rotational CO(1–0) transition has a rest frequency of 115 GHz,
the current measurements trace galaxy formation at redshifts
between z= 2.4 and 3.4, during “the epoch of galaxy
assembly.” The current limits, forecasts, and modeling at these
redshifts is discussed in Chung et al. (2022), while a future
phase of COMAP, targeting “the epoch of reionization,” is
discussed in Breysse et al. (2022). The use of this instrument
for a galactic survey is presented in Rennie et al. (2022).
One common and powerful quantity used to characterize the

statistical properties of such 3D cosmic maps is the so-called
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power spectrum (or the two-point correlation function), which
measures the strength of fluctuations as a function of physical
distance (e.g., Lidz et al. 2011; Pullen et al. 2013; Li et al.
2016; Bernal et al. 2019; Chung 2019; Ihle et al. 2019; Uzgil
et al. 2019; Gong et al. 2020; Keenan et al. 2022; Yang et al.
2021; Moradinezhad Dizgah et al. 2022). For an isotropic and
Gaussian random field, this function quantifies all statistically
relevant information in the original data set, but with a far
smaller number of data points, and it thus represents a dramatic
compression of the full data set. For non-Gaussian fields,
additional information can be extracted by the use of other
statistics (Breysse et al. 2017, 2019; Ihle et al. 2019; Sato-
Polito & Bernal 2022). Even for non-Gaussian fields, however,
such as the galactic density field, the power spectrum
encapsulates a large fraction of the important information,
and it is therefore an efficient tool even for such fields.

However, while compressing hundreds of terabytes of raw
data into a handful of power spectrum coefficients certainly
makes the interpretation of the data easier in terms of
theoretical comparisons, it also makes the final estimates
highly sensitive to small systematic effects and instrumental
noise. To guide our intuition, we note that current theories
predict an intrinsic CO standard deviation per resolution
element of no more than a few microkelvin (Breysse et al.
2014; Li et al. 2016; Chung et al. 2022), which is to be
compared with a typical system temperature of 44 K for the
COMAP instrument; or atmospheric fluctuations of a few
kelvin; or sidelobe contributions of a few millikelvin. All such
effects must therefore be suppressed by many orders of
magnitude in order to establish robust astrophysical constraints.

As described by Lamb et al. (2022) and Foss et al. (2022),
the COMAP focal plane consists of 19 different feed horns,
arranged in a hexagonal pattern, with about 12′ sky separation
between the closest feeds. The signal entering each feed horn is
sent through its own signal chain, with its own amplifiers and
digital high-resolution spectrometers. Each such signal chain is
typically referred to as a “feed.” As such, the instrument has
many unique features that makes it suited to this process. A few
important examples include the highly efficient spectroscopic
rejection of common-mode signals, several semi-independent
feeds, a configurable scanning strategy, and frequent usage of
hardware calibrators. Still, the rejection of systematic errors at
the microkelvin level is highly challenging, and the current
paper describes several algorithmic methods that can be applied
to improve the robustness of the final results.

The rest of the paper is organized as follows. In Section 2,
we review various aspects of power spectrum methods and
present our adopted COMAP power spectrum estimator, the
Feed–Feed Pseudo-Cross-Spectrum (FPXS). Power spectra
estimated using data from COMAP’s first observing season
are presented in Section 3, and we conclude in Section 4.

2. Methods

We begin our discussion with an overview of the funda-
mental algorithms used for COMAP power spectrum estima-
tion. For other recent examples of the use of power spectrum
analysis on intensity mapping data, see, e.g., Mertens et al.
(2020), Keating et al. (2020), and Keenan et al. (2022).

2.1. Autospectrum Analysis

Let mijk denote a 3D map, and let us call each resolution
element in this map a voxel. i, j, and k are then the voxel
indices. We define the power spectrum P(k) of this map to be
the variance of its Fourier components, fk:

kP
V

N
f , 1k

vox

vox

2( ) ∣ ∣ ( )= á ñ

where k is the wavevector of a given Fourier mode, Vvox is the
volume of each voxel, and Nvox is the total number of voxels.
If we assume that the map is statistically isotropic, then the

power spectrum will only be a function of the magnitude of the
wavevector, P(k)= P(k). In observational cosmology, we often
want to distinguish the angular directions (denoted by the x and
y coordinates) from the line-of-sight (LOS) direction (denoted
by the z coordinate). This is because the map typically has
different properties in different directions; for example, due to
instrumental beam effects or redshift space distortions
(Hamilton 1998; Chung 2019). It is therefore often useful to
define the power spectrum in terms of parallel (LOS) modes,
k∥≡ |kz|, and perpendicular (angular) modes, k k kx y

2 2º +^ .
We can estimate the power spectrum in a given set of k-bins,
{ki}, from a given map as
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where Pki is the estimated power spectrum in bin number i and
Nmodes,i is the number of Fourier components with wavenumber
kj≈ ki (i.e., in the bin corresponding to wavenumber ki).
Assuming that foreground and systematic contributions have

already been removed to negligible levels through preproces-
sing, the power spectrum of a cleaned line intensity map is
typically modeled as a sum of a signal and noise component
(assumed to be statistically independent):

k k kP P P . 3signal noise( ) ( ) ( ) ( )= +

If we are able to estimate the noise power spectrum through
independent means—for example, by using a noise model or
simulations—we can extract the signal power spectrum simply
by subtracting the estimated noise,

k kP P P , 4ki isignal noise
est

i( ) ( ) ( )» -

where kP inoise
est ( ) is the estimated noise power spectrum in bin

number i.
If the map consists of uniformly distributed white noise, then

the noise power spectrum is independent of k and given by

P V , 5Tnoise vox
2 ( )s=

where σT is the white noise standard deviation in each voxel (in
units of kelvin). In our case, this magnitude of the white noise
level is determined by the radiometer equation,

T
, 6T

sys ( )s
d t

=
n

where Tsys is the system temperature of the detector; δν is the
frequency resolution of each voxel; and τ is the total time each
pixel is observed.
In addition to this instrumental noise contribution, there is

an intrinsic uncertainty when estimating the signal power
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spectrum from a map, called sample variance, which arises
from the limited number of Fourier modes in the map.
Together, these contributions give us the uncertainty of the
power spectrum:
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k k
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where Nmodes is the number of Fourier modes in bin number i,
and the last approximation is exact when the Fourier modes are
assumed to be independent Gaussian variables.

If the power spectrum is noise dominated, we can reduce this
intrinsic uncertainty in two ways. First, we can observe the
same area of sky for a longer time, thus decreasing the noise
power spectrum contribution to the uncertainty. Alternatively,
we can cover a larger sky area, and thus increase the number of
measured Fourier modes. As long as we are noise dominated, a
simple analysis suggests that observing a small area for a long
time is more efficient for making a first detection than
spreading the observations over a larger area. In a realistic
situation, however, there are several other factors that must be
taken into account, including the choice of angular resolution
and scanning strategy constraints, and these will typically limit
how small a field it is possible to observe.

Another source of uncertainty in estimating the signal is the
accuracy of the estimated noise power spectrum model. If this
model is biased or uncertain, then the associated residuals will
propagate directly into the estimate of Psignal(ki).

2.2. Pseudospectrum Analysis

As described above, there are several challenges with an
autospectrum analysis, as will be discussed both in this and the
following sections. First of all, if the noise in the map is not
uniform, which it generally is not, the noise power spectrum
will be dominated by the parts of the map with the highest
noise levels. In order to address this, it is necessary to devise a
method that puts more weight on the parts of the map with low
noise, and less weight on the parts of the map with high noise.

The standard method of accounting for this is through
inverse noise-variance weights. That is, we weigh the map, m,
by the noise level map, σm (the map given by the expected
standard deviation of the white noise in each voxel), before we
compute the power spectrum,
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where P̃ denotes the pseudospectrum and f̃ are the Fourier
components of the noise-weighted map,
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 is a single overall normalization constant (which we will get
back to), and σm is, as usual, the noise level map.

On a general note, the term “pseudospectrum” typically
refers to a power spectrum estimator that is computed from a

biased estimator of the true sky map, and as such is itself
biased; see Hivon et al. (2002). This may be contrasted with
more conventional power spectrum estimators that aim to
estimate the power spectrum of the true sky signal. The
statistical information content of the pseudospectrum and the
unbiased power spectrum is identical, and the main difference
between the two classes of estimators concerns their ease of
interpretation; while the unbiased power spectrum may be
directly compared with theoretical models and other literature
results, the pseudospectrum is experiment dependent, and
typically requires simulations for proper statistical interpretation.
In our setting, we use the pseudospectrum to take into

account both masked voxels (by setting σm→∞ for voxels
that are excluded from further analysis) and varying noise
levels across the map. Both these operations lead to mode
mixing, i.e., different-signal Fourier modes are mixed together,
and the estimated signal pseudospectrum is therefore a
distorted version of the true signal power spectrum. However,
since we know exactly how the signal map has been distorted,
we can, at least in principle, calculate the exact mode-mixing
matrix that is needed to reconstruct the mode mixing and obtain
an unbiased signal spectrum from the pseudospectrum (Hivon
et al. 2002). How feasible this is for a specific case depends on
the details of the map dimensions and computational resources.
For more details on mode mixing, see Appendix D.
Although mode mixing does complicate the physical

interpretation of the pseudospectrum, there are several ways
of dealing with this without having to calculate and invert the
full mode-mixing matrix. First of all, if the analysis involves
comparisons with signal simulations, then one may simply
apply the same weight matrix to each simulation, making the
observed and simulated power spectra statistically compatible.
Second, if the level of mode mixing is modest, then the
pseudospectrum may be an adequate estimator for the signal
power spectrum for a given application, especially on smaller
scales. This typically holds particularly well for noise-
dominated applications, for which a single power estimate
covering a large range in k is desired; in that case, the mode
mixing often has a minimal effect on the estimates, and the
pseudospectrum is often a perfectly valid estimate in its own
right. The accuracy of this approximation must be assessed for
each use case.
In cases for which the pseudospectrum is intended to be used

as a direct estimator, it is necessary to choose a value for the
normalization factor  in Equation (10). Establishing the
formally correct value for this normalization is not entirely well
defined, as you are essentially trying to approximate the effect
of an entire matrix with a single number (see Appendix D for
more details). However, we can make a simple and fairly
reasonable choice as follows:


1

, 11
1

m
4

( )=

s

where 〈〉 denotes the average over the whole map. To make the
results easier to interpret, we therefore apply this normalization
to all the results shown in this paper. For analyses that employ
the full mode-mixing matrix, or in which the pseudospectrum is
compared directly to simulations, this normalization is
completely irrelevant.
To roughly estimate the expected level of mode mixing, we

calculate the ratio of the pseudospectrum and the autospectrum
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for 10 signal realization maps. Figure 1 shows the mean and
standard deviation of the mode mixing in each of the main
power spectrum bins. Overall, we see that at the scales where
we have most of our sensitivity, the effect of mode mixing is
fairly modest, typically in the 5%–30% range. Thus, even at
face value, the pseudospectrum does provide a reasonable
order-of-magnitude estimate of the true power spectrum, even
if it may not be appropriate for precision analysis. We also note
that these results suggest that, if anything, an upper limit
obtained by interpreting the pseudospectrum at face value will
be a slightly weaker (i.e., more conservative) upper limit than
we would get by accounting for the mode mixing.

We leave it for future work to estimate the mode-mixing
matrix and undo the mode-mixing bias in the pseudospectra.
For the rest of this paper, we will interpret the pseudospectra at
face value.

2.3. Cross-spectrum Analysis

A general challenge when using either the auto- or
pseudospectrum is that highly accurate estimates of the noise
contribution are required to estimate the signal power spectrum.
In many cases, this can be very challenging, and any systematic
error will directly bias the final signal estimate.

One way to avoid this complication is to use the so-called
cross-spectrum, C(k). While the power spectrum quantifies the
variance of the Fourier components of a single map, the cross-
spectrum quantifies the covariance between the Fourier modes
of two different maps:

*
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Here, Re{} denotes the real part of a complex number, and f1
and f2 are the Fourier components of two maps, m1 and m2.

Clearly, if m1 and m2 are identical, then the cross-spectrum is
equivalent to the autospectrum. The advantage of the cross-
spectrum, however, is that if the maps m1 and m2 are made
from different data, the noise contributions are independent,
and they do not contribute to the mean of the cross-spectrum,
only to its variance. Therefore, it is not necessary to estimate

and subtract the noise power spectrum to obtain an unbiased
signal estimate, but rather

kC P . 13k isignali ( ) ( )á ñ =

Of course, a proper noise estimate is still necessary for
uncertainty estimation, but the requirements on this are
typically far less stringent than for the estimator mean.
Although the cross-spectrum significantly reduces the

precision needed when estimating the noise power spectrum,
we do pay a price in the form of somewhat lower intrinsic
sensitivity. For instance, when splitting the data into two
independent parts, and cross-correlating these, we do lose a
factor of at least 2 from the fact that we do not exploit the
autocorrelations within each data set separately. Fortunately,
this problem can be remedied by splitting the data into more
independent maps, and averaging the cross-spectra of all
possible combinations. A lower limit on the cross-spectrum
sensitivity is given by

N

1

1 1
, 14C

N
P

split

split  ( )s s
-

where Nsplit is the number of different map splits and σP is the
optimal sensitivity of the autospectrum derived from the full
data set.
The cross-spectrum has some other very important advan-

tages with respect to the autospectrum, as well. As discussed in
the introduction, one of the major challenges for an experiment
like COMAP, in which we have to integrate down the noise by
several orders of magnitude in order to measure a small signal,
are systematic errors. However, since the cross-spectrum may
only be biased by structures common to the two maps, one can
try to ensure that any known systematic effects contribute to the
two maps independently. In that case, the systematic effects
will not bias the signal estimate. Combining this insight with
splitting the data into multiple parts allows us to design a power
spectrum statistic that is far more robust to systematics than the
autospectrum.
We define a pseudo-cross-spectrum in an analogous manner

to the pseudo-auto-spectrum. The only subtlety is that we make
sure to apply the same weight map, w, for both maps.
Explicitly, we adopt the following weight map,

w
1

, 15
m m

1,2
1 2

( )
s s

µ

for both m1 and m2 when calculating the pseudo-cross-
spectrum, Cki

˜ .

2.4. The Feed–Feed Pseudo-Cross-Spectrum Method

The idea of the FPXS method is to combine all the insights
from the preceding sections to construct a single statistic for the
CO signal, which has a high intrinsic sensitivity, uses proper
noise weighting, and is robust against instrumental and other
systematic errors. In that respect, we first note that the COMAP
focal plane consists of 19 feeds, each with its own amplifiers
and detectors. Furthermore, many systematic errors are
particular to each feed, due to different passbands, amplifiers,
cables, beams, etc. We may therefore split the data according to
the feeds (i.e., make one map per feed), and then compute the
cross-spectra of all the different feed combinations, without
ever correlating two maps from the same feed.

Figure 1. Ratio of the signal pseudospectrum to the signal autospectrum, based
on 10 signal realizations.
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Second, we also note that one of the most troublesome
systematic errors for COMAP is ground pickup. This is mainly
because the ground contamination correlates with the pointing,
and it therefore does not average down in the same way as any
systematic error that is random in the time domain (and hence
independent in different observations). We can make ourselves
as robust as possible against any residual ground signal in our
map by also splitting the data by the elevation of the
observations, so that we never take the cross-spectrum of two
different data sets taken at the same elevation.15

With these considerations in mind, we define the following
procedure for calculating the FPXS:

1. We split the data into disjoint sets, sorted according to
elevation. For simplicity, we assume for now that we split
the data into two sets, A and B, where A contains all the
observations taken at elevations below the median
elevation, and B contains all the observations from the
higher elevations. We can easily generalize this to a case
where we split the data into more than two sets.

2. For each set, A and B, we generate maps for each of the
19 feeds. We denote the different maps according to data
set and feed, such that A13 indicates the map that
combines all data from data set A for feed number 13.

3. We then calculate the pseudo-cross-spectrum, Ck
ij
i

˜ , for all
the different map combinations of Ai and Bj where i≠ j.

4. Next, we compute the average pseudo-cross-spectrum,
Cki
˜ , by noise weighting all the different cross-spectra:
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Here, Cki

ij˜s is the uncertainty (standard deviation) in k-bin
number i of the pseudo-cross-spectrum of the maps Ai

and Bj, and the sum is over all combinations of i and j
except the cases where i= j. Under the naive assumption
that all cross-spectra are independent, the uncertainty of
the combined cross-spectrum is given by
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The data can of course be split in other ways, to make ourselves
less susceptible to other systematic effects, but we have found
that using the feeds and elevation splits yields good results for
the current data set.

2.5. White Noise Simulations

Until now, we have not discussed how to estimate the noise
power spectrum and the corresponding noise uncertainty of the
power spectrum. In general, estimating the noise power
spectrum precisely is very difficult, since one needs to take
into account not only the intrinsic white noise level of the data,
but also the effect of the different filtering procedures in the
low-level data analysis, as well as any correlated noise
contribution.

Since we use a cross-spectrum method, however, the noise
spectrum is only used to estimate the uncertainties of the power
spectrum, not its mean level, and the requirements on the
absolute noise spectrum are therefore somewhat relaxed.
Explicitly, if we make an error of a few percent in our noise
estimate, we will not bias the estimated signal spectrum, only
misestimate the error bars by a few percent. While clearly not
ideal, this is usually not critical, considering all the other
simplifying assumptions introduced in the analysis. On the
other hand, if we had adopted an autospectrum method, an
error of a few percent on the noise power spectrum could easily
have rendered our signal estimate unusable, even in the case of
very high intrinsic sensitivity.
For this reason, we therefore adopt a simple approach to

noise power spectrum estimation: we assume that the noise in
the maps is uncorrelated white noise, and generate noise
simulations, mi, by drawing random samples in each voxel
from a Gaussian distribution with zero mean and a standard
deviation given by the value of the noise level map, σm. We
then estimate error bars by generating a large number of noise
simulation maps, calculating the power spectrum from each,
and finally taking the standard deviation in each k-bin of
interest. This gives us uncertainties on the noise contribution to
each power spectrum bin, but neglects the intrinsic uncertainty
in the signal power spectrum itself. However, as we are still
completely noise dominated, this intrinsic uncertainty of the
signal spectrum should be negligible.

2.6. Transfer Functions

Until now, we have assumed that the sky maps produced by
the low-level analysis pipeline are unbiased. For multiple
reasons, this is not the case. First of all, the instrument does not
have infinite resolution, and the instrumental beam will
therefore smooth out the signal on small angular scales. The
same effect occurs due to the finite spectral resolution of the
instrument in the frequency dimension. Second, the various
filters and mapmaking procedures in the analysis pipeline
generally remove some of the signal, mostly on larger angular
and spectral scales. In the following, we take these effects into
account through so-called transfer functions. These are
functions in the k∥–k⊥ plane that quantify the fraction of the
signal power that is retained in each k-bin, and allow us to
establish unbiased estimates of the power spectrum from biased
sky maps.
In general, a transfer function, T(k), is defined through the

following relation:

k k kP T P P , 18k signal noise( ) ( ) ( ) ( )á ñ = +

where Pk is the power spectrum calculated from the final map
and Psignal(k) is the actual physical signal power spectrum. We
decompose the full transfer function into different parts, and
derive each separately. We then multiply the transfer functions
together to get the full transfer function.
In writing down Equation (18) with a transfer function, T(k),

that is not a function of the signal, we have implicitly assumed
that the effects we are accounting for using the transfer function
are linear, that they do not depend on the properties of the
signal, and that they can therefore be estimated using any signal
model. While this is a good approximation in many cases (e.g., the
beam effect is purely linear and most of the low-level filters
are linear, assuming the same scanning pattern), it is only an
approximation. However, even any residual theoretical dependence

15 The ground contamination also depends on azimuth, but since most of the
problematic ground contamination happens at the highest or lowest elevations,
it is most natural to divide the data according to elevation.
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on the input signal will typically be small in practice, since the
signal power spectrum in any reasonable model is very smooth and
has no sharp features. The most important effects to get right when
estimating the transfer function are the noise distribution and
scanning pattern. This is even more important because we are
working with pseudospectra, where the noise level will affect the
weighting and the mode mixing. That is why, even though it is
costly to produce simulated data, we use about 63 hr of simulated
data (thus ensuring a realistic scanning pattern as well as noise
distribution) when we estimate the pipeline transfer function. Since
we are using the pseudospectrum anyway, and not accounting for
the mode mixing, we are already accepting errors of the order of
10%, which puts less stringent constraints on the precision of the
rest of our procedures.

2.6.1. Instrumental Beam Transfer Function

Due to the finite resolution of the instrument, we cannot
measure the cosmological signal on the smallest angular scales.
In order to take this effect into account, we introduce a beam
transfer function. For now, we assume the beam to be both
achromatic (i.e., constant in frequency) and azimuthally sym-
metric. We construct an azimuthally symmetric beam model by
averaging the full 2D (azimuth-elevation) beam model (Lamb
et al. 2022) and inserting an exponential cutoff at around 30′.

The ambient load calibration discussed in Foss et al. (2022)
measures all of the power entering the feed horns, including the
power that comes from the ground and all of the sky above the
horizon. However, any power on scales larger than the modes
we are sensitive to is essentially lost. To get a proper, scale-
dependent, calibration, our beam model is normalized using
observations of Jupiter and TauA, which show that 72% of the
power is in the central 6 4 of the beam (Rennie et al. 2022).

In addition, by including the beam model out to about 30′,
we take into account the roughly 10% of extra power that is
retained at larger angular scales. We could include the beam
model further out, but we are already hitting diminishing
returns, so not much more would be gained.

Our (unnormalized) beam model can be seen in the top panel
of Figure 2. The corresponding beam transfer function is
estimated using signal-only simulations. That is, we generate a
large number of 3D signal realizations and convolve our
azimuthally symmetric beam model with the angular dimen-
sions of the map. We then calculate the power spectrum of each
of the signal realization maps, with and without beam
smoothing. The estimated transfer function is given as the
ratio of the average of these:

kT
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where Pk
signal,beam is the power spectrum calculated from a

beam-smoothed signal realization map and Pk
signal is the power

spectrum calculated from the non-smoothed one.
Figure 2 shows the beam transfer function derived using 100

signal simulations. We see that the beam smoothing suppresses
the power on small angular scales, corresponding to the main
beam FWHM of about 4 5. We also see that although we lose
sensitivity from our main beam efficiency, we retain some of
this power on larger scales by making use of a beam model up
to around 30′.

2.6.2. Frequency Resolution Transfer Function

Our current analysis, for simplicity and computational
efficiency, uses fairly wide bins in frequency, of 31.25 MHz.
This can be compared to intrinsic CO line widths of order
30 MHz (Chung et al. 2021), which will give the smallest
scales present in the CO signal we are trying to observe. Once
we are ready to claim a detection, we will increase the
frequency resolution by at least a factor of 2 to get slightly
more sensitivity to the small-scale CO signal, but for now this
is not a high priority. We will, however, take into account the
bias induced by the current bin size. Often such effects are
taken into account by applying an analytic pixel window
function, but this is not sufficient here, since the presence of
structure on scales smaller than our bins means that some of
this power can be aliased into our power spectrum. As the
effect depends on the small-scale structure of the signal, there is
no model-independent way to take this effect into account, and
we will have to use simulations.
We estimate the frequency binning transfer function, Tfreq(k),

by comparing power spectra of the simulated signal (using the
default model in Chung et al. 2022) on a high-resolution
frequency grid to power spectra of the simulated signal on our
current frequency grid, both binned in our current k∥ × k⊥
bins. The transfer function derived using 50 such signal
simulations is shown in Figure 3. We see a decrease in power
toward smaller-LOS scales, but with an increase in the final
bin, which we believe is the effect of aliasing the smaller-scale
structure into this bin.

Figure 2. Top: radially symmetric instrumental beam model. Bottom: the
resulting beam transfer function, after taking into account the main beam
efficiency.
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2.6.3. Pipeline Transfer Function

Each step of the analysis pipeline—including low-level
filtering, calibration, and mapmaking—affects how much of the
true sky signal is present in the final maps and power spectra.
We estimate the transfer function of these operations by
processing the sum of the raw data and a known signal-only
time-ordered simulation through the analysis pipeline, follow-
ing the exact same procedure as for the raw data alone. The
pipeline transfer function may then be estimated as

kT
P P

P
, 20k k

k

pipeline
full noise

signal
( ) ( )»

-

where Pk
full is the power spectrum calculated from the maps

derived from the raw data with added signal, Pk
noise is the power

spectrum derived from the same data but without the added
signal, and Pk

signal is the power spectrum derived from the raw
signal simulation that was added to the raw data.

In Figure 4, the 2D binned pipeline transfer function for the
Coudé Echelle Spectrometer (CES) data is shown. The transfer
function peaks at intermediate ks, with efficiencies of
∼0.8–0.85 around the peak region. We see that we lose the
largest scales both in the angular and LOS directions. This is
due to the various filters applied to the time-ordered data to
remove correlated noise and systematics, in addition to the
effects of the scanning strategy. For more details, see Foss et al.
(2022).

2.6.4. Unbiased Signal Estimate

Figure 5 shows the full transfer function, combining all the
effects discussed above. Correcting the FPXS with the above
transfer function, we can establish an unbiased estimate of the

signal pseudospectrum,
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where kPsignal˜ ( ) is the signal pseudospectrum and Tk
full˜ =

T T Tk k k
beam freq pipeline˜ ˜ ˜ is the full estimated transfer function for the

pseudospectrum. The uncertainty of this signal estimate is
given by
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2.6.5. Spherical Averaging

Due to the transfer function, different k-modes corresp-
onding to the same k= |k| bin have very different sensitivities.
In order to get the best result, we need to take this into account
when we calculate the spherically averaged power spectrum.
As before, we use inverse noise-variance weighting to achieve
this, giving us the following estimate for the unbiased
spherically averaged pseudo-cross-spectrum:
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where w 1k C
2

k˜sº and ki denotes the ith k-bin.
For simplicity, we only calculate the spherical average of the

cross-spectra that have already been cylindrically averaged and
binned. This means that we use the bin centers of the k∥× k⊥
bins to represent all the modes in the bin, which means that a
few k-modes get shifted back or forth by one bin in the
spherically averaged cross-spectrum. Since there are no sharp

Figure 3. Frequency binning transfer function. Figure 4. Pipeline transfer function for the cylindrically averaged power
spectrum for constant-elevation scans. This transfer function is based on a
single signal realization and roughly 3 hr of data.
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features in the signal power spectrum, this bias is modest, and
not very important for the first-season analysis.

3. Power Spectrum Results

As described in Foss et al. (2022), after the COMAP time-
ordered data have been filtered and calibrated, and the bad
observations have been removed, the cleaned data set is
compressed into a set of 3D maps. We make separate maps for
the Lissajous scans and the CES scans, since these tend to have
different systematics and statistical properties.

3.1. FPXS Results

We estimate separate cross-spectra for the Lissajous and
CES data, for each of the three CO fields that we have observed
(Foss et al. 2022). Since we found clear excess power in the
Lissajous spectra, we do not include them in the main results,
and we will here focus on the CES data. The power spectrum
results for the Lissajous data are presented in Appendix A.

We split the data in two parts, according to the elevation of
the observations, and use the FPXS method on these two sets of
feed maps in order to minimize systematics. We also calculate a
χ2 statistic for each of the 16× 15 different feed–feed cross-
spectra,16 Ck

ij
i

˜ .
Based on these χ2 statistics, denoted kC

2
( )c , we decided to

reject all the spectra involving feed 8, since they showed very
clear excesses in almost all spectra. This reduced the amount of
data by 12.5% for all fields. We also saw clear structure in
several of the spectra involving the low-elevation data from
feeds 16 and 17 in the Field 1 results. This led us to remove all

spectra involving these feeds from the low-elevation data set
for Field 1, thereby increasing the data loss to 24.2% for this
field. In addition to the spectra that were removed by hand, we
also rejected all spectra with more than a 5σ excess in kC

2
( )c

before we calculated the FPXS mean spectrum.
In the automatic 5σ cut, the fractions of the remaining

spectra that were removed for the CES data were given by 1/
182 for Field 1, 159/210 for Field 2, and 65/210 for Field 3.
As discussed in Foss et al. (2022), the fact that such large
fractions of data were removed at this stage (especially for
Fields 2 and 3) suggests that large improvements in sensitivity
can be achieved in the future, if we can identify the data
affected by systematic errors at an earlier stage of the pipeline.
The resulting spherically averaged pseudo-cross-spectra are

shown in Figure 6. We see that the results for the CES data
appear to be largely flat, with fluctuations that are consistent
with our white noise estimate. This demonstrates that we are in
fact averaging down the noise, as expected for uncorrelated
noise, and that the various potential systematic errors are
suppressed to a level below the noise. At this point in the
COMAP survey, this is a key outcome, given that our fiducial
theoretical model predicts a signal on the order of
kPCO∼ 103 μK2 Mpc2 at our target redshift (Chung et al.
2022), well below the noise level shown here. This signal
estimate is highly uncertain, however, and as discussed in
Chung et al. (2022) these data already rule out some of the
most optimistic models.
Combining these data points into a single measurement of

the average CO power spectrum over the range k= 0.051−
0.62 Mpc−1, we get

P k 2.7 1.7 10 K Mpc . 24CO
4 2 3( ) ( )m= -  ´

This estimate is based on the pseudospectrum, and, as
discussed in Section 2.2, it is a somewhat biased estimate of
the signal, but should be a conservative estimate if used as an
upper limit, as we do in Chung et al. (2022). This is the first
direct 3D constraint on the clustering component of the
CO(1–0) power spectrum in the literature.

Figure 6. Spherically averaged mean pseudo-cross-spectra for CES observa-
tions of Field 1 (blue), Field 2 (orange), and Field 3 (green). These spectra were
generated from all the accepted data using the FPXS cross-spectrum statistic. In
addition, the full transfer function has been applied, to debias the signal
estimate. The data points from the different fields are offset slightly in k from
their actual values to make them easier to distinguish.

Figure 5. Full transfer function.

16 As discussed in Foss et al. (2022), all data from feeds 4, 6, and 7 are rejected
at an earlier stage of data selection. This leaves the data from 16 of the full 19
feeds.
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Figure 7 shows the corresponding cylindrically averaged
power spectrum in k∥× k⊥ space. We see that the noise blows
up very quickly as we move away from the region where the
transfer function peaks. This illustrates the importance of
taking the transfer function into account during the spherical
averaging if you want maximum sensitivity in the 1D spectrum.
In the region where we have appreciable sensitivity, the spectra
look consistent with white noise, as they do for the 1D spectra.
The bottom row shows the spectra divided by their corresp-
onding white noise uncertainties, to better illustrate what
happens at all scales.

3.2. Null Tests

Given that the current data appear to be largely consistent
with white noise, the importance of null tests is less critical
than it would be if a potential detection had been made. Still,
null tests are a useful consistency check, and they may be
useful in identifying and highlighting specific systematic errors,
as well as potentially provide hints regarding the nature of the
Lissajous excesses.

In order to get a sensitive set of null tests, we can calculate
cross-spectra between maps of our different fields. In these null
tests, any systematic related to standing waves or from residual
large-scale ground contamination could still show up, while the
signal should not contribute at all. Moreover, as long as we
center the fields appropriately, they are roughly as sensitive as
our original spectra, while other null tests are typically less
sensitive. We therefore perform the same kind of FPXS power
spectrum estimation as for the main results, but use the high-
elevation data from one field and the low-elevation data from
another field. In this way, we obtain two null tests per field pair,
one where the first field uses the low-elevation data while the

second field uses the high-elevation data (denoted A), and
another pair (denoted B) where the first field uses the high-
elevation data and the other the low-elevation data. This gives a
total of 6 null tests for each scanning method.
Figure 8 shows the results from these calculations, and we

see that the null spectra are consistent with white noise
expectations for all the CES data. For the Lissajous data,
however, we see that most of the null tests show large excesses
in power, consistent with our interpretation of the main
Lissajous data containing systematics.
Table 1 shows χ2 statistics calculated from each of the null

tests in Figure 8, as well as the single-field results from
Figures 6 and 10, by combining the eight data points of each
spectrum. Specifically, we calculate the “probability to
exceed,” which is defined as 1 minus the cumulative
distribution function of the χ2 distribution with the given
number of degrees of freedom (here, 8). If the data are given by
white noise, these statistics should be evenly distributed
between 0% and 100%, while if we have excess power
present, then the values should tend to be small. The results in
the table support and quantify the statements that we made
above, that the CES data looks consistent with white noise and
the Lissajous data has clear power excesses present.
Although it is hard to interpret these values precisely, the

fact that we see a clear excess in most of the Lissajous spectra
made by combining maps from different fields suggests that
whatever the systematic effect that gives rise to this excess, it
needs to be common to all fields.

4. Conclusion

In this paper, we have introduced FPXS as a robust method
for estimating the CO signal power spectrum from 3D intensity

Figure 7. Cylindrically averaged mean pseudo-cross-spectra for CES observations (top row). The second row shows the spectra divided by the corresponding white
noise uncertainties.
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maps produced by the COMAP data analysis pipeline. We have
discussed how to account for signal loss due to both filtering
and beam smoothing, and we have estimated their magnitudes
for the first-year COMAP observations with simulations.
Computing the FPXS from the actual COMAP data, we find
that the current data set is consistent with white noise for
constant-elevation scan data, and the uncertainties average
down with time, as expected for ideal data. Equivalently, these
results suggest that all systematic errors are lower than the
white noise level in our main sensitivity range.

In contrast, the FPXS results from the Lissajous scan data
show clear signs of systematic errors. Further modeling and
analysis work is required before these data can be used for
astrophysical analysis.

Null tests largely seem to be consistent with our main results,
with all the CES null tests being consistent with white noise,
while most of the Lissajous null tests show clear excesses,
supporting our assumption that the excesses seen in the main
Lissajous spectra are the result of systematics.

Future analysis will involve explicit estimation of the mode-
mixing matrix (see Appendix D), to undo the mode-mixing
effect and present unbiased power spectrum estimates. We can
also increase our sensitivity (by up to a factor of 2 ) by splitting
the data into more than the current low- and high-elevation sets.
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Figure 8. FPXS spectra of maps from different fields. Here, A denotes cross-spectra of the low-elevation map from the first field and the high-elevation map from the
second field, while B denotes the opposite combination. The data points from the different spectra are offset slightly in k from their actual values to make them easier
to distinguish.

Table 1
χ2 Statistics from Science Results (Left) and Null Tests Using All the Different Field Combinations (Right)

χ2, Probability to Exceed

Fields All Field 1 Field 2 Field 3 1 × 2, A 1 × 2, B 1 × 3, A 1 × 3, B 2 × 3, A 2 × 3, B

CES 33% 17% 30% 52% 9% 73% 52% 69% 5% 28%
Lissajous 0.02% 0.1% 3% 72% 3% 3% 0.5% 58% 0.3% 0.3%

Note. These values were calculated by combining the data points shown in Figures 6, 8, and 10 into a single χ2 value for each spectrum.
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Appendix A
Lissajous Power Spectrum Results

When looking at the Lissajous data, we found clear excess
power in the spectra. For this reason, we do not use any
Lissajous data for our final science results, but include the
Lissajous power spectra here for completeness. We use the
exact same approach for the Lissajous data as we did for
the CES data. We derive a separate pipeline transfer function for
the Lissajous data (see Figure 9), since the properties of these
scans are a bit different from the CES scans. As noted in Foss
et al. (2022), we find that the transfer function for the Lissajous
data preserves a bit more large-scale angular structure than the
CES one, but it does not make much qualitative difference in
terms of the complete transfer function. In the automatic 5σ cut
based on the kC

2
( )c statistics, the fractions of remaining spectra

that were removed for the Lissajous data were given by 132/182
for Field 1, 92/210 for Field 2, and 109/210 for Field 3.

The Lissajous FPXS results for the spherically averaged
power spectrum are shown in Figure 10. In contrast to the CES
data, these data do not appear equally well behaved. Here, we
see clear signs of excess power on large scales in both Field 1
and Field 2. These excesses suggest that large-scale systematic
errors are still present for the Lissajous scans, and may be
caused by either residual atmospheric variations or ground
pickup from the far sidelobes, for instance.

These residuals are even more prominent when considering
the 2D k∥× k⊥ power spectrum, as shown in Figure 11. Here,
we see some clear regions exhibiting systematic power excess.
This is seen most clearly in the second row of the figure, which
shows the power spectrum divided by the expected white noise
fluctuations, thus corresponding to power measured in units of
standard deviation. In particular, for Field 3, we see a bright
region on the largest angular scales, and on scales between
k∥∼ 0.03–0.1 Mpc−1 in the frequency direction. We also see
fairly bright regions at around k⊥= 0.2 Mpc−1 and between
k∥∼ 0.06–0.6 Mpc−1in the Field 1 data, which is right in the
middle of our most sensitive region.

Figure 9. Pipeline transfer function for the cylindrically averaged power
spectrum for the Lissajous scans. This transfer function is based on a single
signal realization and roughly 3 hr of data.

Figure 10. Spherically averaged mean pseudo-cross-spectra for the Lissajous
observations of Field 1 (blue), Field 2 (orange), and Field 3 (green). These
spectra were generated from all the accepted data using the FPXS cross-
spectrum statistic. In addition, the full transfer function has been applied, to
debias the signal estimate. The data points from the different fields are offset
slightly in k from their actual values to make them easier to distinguish.
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Appendix B
Fourier Conventions

In this Appendix, we present the conventions for the discrete
Fourier transformations used in this paper. All the conventions
are consistent with the default conventions in NumPy’s (Harris
et al. 2020) FFT library. The forward transformation is given by

f x i
ml

n
l nexp 2 , 0, , 1,l

m

n

m
0

1 ⎛⎝ ⎞⎠ å p= - = -
=

-

where xm are the discrete values of the function in real space
and fl are the Fourier coefficients. The inverse transformation is
then given by
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We define the physical wavenumber as follows:
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Appendix C
Definition of Cosmological Map Grid

Since Fourier transforms require a rectangular grid, we
assume that the 3D temperature maps can be approximated by a
rectangular grid in comoving cosmological parameters. We
assume that all the voxels have the same shape and size as the
middle voxel at redshift zmid≈ 2.9.

The comoving length corresponding to an angular separation
δθ, for a given redshift z, is given by

l r z
cdz

H z
, C1

z

0
( ) ( ) ( )òd dq dq= =

¢
¢

^

where r(z) is the comoving distance traveled by light emitted
from redshift z to us.
The comoving radial distance corresponding to a small

redshift interval δz= z1− z2= ν0/ν1
obs− ν0/ν2

obs≈ (1+ z)2δ
νobs/ν0, where z1> z2, is given by

l
cdz

H z

c z

H z

c

H z

z1
, C2

z

z 2 obs

02

1

( ) ( ) ( )
( ) ( ) òd

d dn
n

= » »
+

where ν0≈ 115.27 is the emission frequency of the CO 1→ 0
line we are studying and δνobs= 31.25 MHz is the resolution of
our frequency bins.
Given a pixel width of 2′, we then get the following voxel

dimensions:

l 3.63 Mpc, C3( )d =^

l 4.26 Mpc. C4( )d =

Appendix D
Mode Mixing and the Master Algorithm

In order to understand the mode-mixing effect, let us
consider in more detail the Fourier transform of a weighted
map:17

Figure 11. Cylindrically averaged mean pseudo-cross-spectra for the Lissajous observations (top row). The second row shows the spectra divided by the
corresponding white noise uncertainties.

17 We work in 2D here to save some indices; the generalization to 3D is
straightforward.
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Here, xm1m2 is the map, Wm1m2 is the weight map, and fk k1 2
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the Fourier transform of the weighted map. We can insert the
expression for the inverse Fourier transform of x and W,
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where f and f W are the Fourier transforms of x and W,
respectively. Working through the algebra, we get
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where % denotes the modulo operation and we have defined the
mode-mixing amplitude Kk k, ¢.

Adopting vector notation, we may now write the pseudos-
pectrum as follows:
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where D is the number of dimensions of the map and we have
defined the mode-mixing matrix Mk k, ¢. We see that the
autospectrum and the pseudospectrum are related by a linear
transformation, so all the information in one is also there in the
other.

Within the cosmic microwave background field, accounting
for mode mixing by explicitly calculating and inverting Mk k, ¢ is
often referred to as the MASTER algorithm (Hivon et al. 2002;
Leung et al. 2022). Doing this requires that we calculate the
mode mixing between each Fourier mode and all the other

Fourier modes, so for 3D maps this scales poorly with the map
dimensions. On the other hand, the algorithm parallelizes
trivially, and the matrix must only be computed once for a
given weight map, after which the same operation may be
applied efficiently to any number of simulations. Whether this
is feasible depends on the details of the individual use case.
Some methods exist in the literature to approximate this
procedure in a faster way; see, e.g., Louis et al. (2020).
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ABSTRACT

The CO Mapping Array Project (COMAP) Pathfinder is performing line intensity mapping of CO emission to trace the distribution
of unresolved galaxies at redshift z ∼ 3. We present an improved version of the COMAP data processing pipeline and apply this to
the first two seasons of observations. This analysis improves on the COMAP Early Science (ES) results in several key aspects. On
the observational side, all second-season scans were made in constant-elevation mode, after noting that the previous Lissajous scans
were associated with increased systematic errors; those scans accounted for 50% of the total Season 1 data volume. Secondly, all
new observations were restricted to an elevation range of 35–65 degrees, to minimize sidelobe ground pickup. On the data processing
side, more effective data cleaning in both the time- and map-domain has allowed us to eliminate all data-driven power spectrum-
based cuts. This increases the overall data retention and reduces the risk of signal subtraction bias. On the other hand, due to the
increased sensitivity, two new pointing-correlated systematic errors have emerged, and we introduce a new map-domain PCA filter
to suppress these. Subtracting only 5 out of 256 PCA modes, we find that the standard deviation of the cleaned maps decreases by
67% on large angular scales, and after applying this filter, the maps appear consistent with instrumental noise. Combining all these
improvements, we find that each hour of raw Season 2 observations yields on average 3.2 times more cleaned data compared to ES
analysis. Combining this with the increase in raw observational hours, the effective amount of data available for high-level analysis is
a factor of 8 higher than in ES. The resulting maps have reached an uncertainty of 25–50 µK per voxel, providing by far the strongest
constraints on cosmological CO line emission published to date.

Key words. galaxies: high-redshift – radio lines: galaxies – diffuse radiation – methods: data analysis
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1. Introduction

Line intensity mapping (LIM) is an emerging observational tech-
nique in which the integrated spectral line emission from many
unresolved galaxies is mapped in 3D as a tracer of cosmologi-
cal large-scale structure (e.g., Kovetz et al. 2017, 2019). It rep-
resents a promising and complementary cosmological probe to,
say, galaxy surveys and cosmic microwave background (CMB)
observations. In particular, LIM offers the potential to survey
vast cosmological volumes at high redshift in a manner that is
sensitive to emission from the entire galaxy population, not just
the brightest objects, as is the case for high-redshift galaxy sur-
veys (Bernal & Kovetz 2022). The most widely studied emis-
sion line for LIM purposes is the 21-cm line of neutral hydrogen
(Loeb & Zaldarriaga 2004; Bandura et al. 2014; Santos et al.
2017), which is the most abundant element in the universe, but
other high-frequency emission lines also appear promising (Ko-
rngut et al. 2018; Pullen et al. 2023; Akeson et al. 2019; Crites
et al. 2014; CCAT-Prime Collaboration et al. 2022; Vieira et al.
2020; Karkare et al. 2022; Fasano et al. 2024), in particular,
due to their different and complementary physical origin, as well
as lower levels of astrophysical confusion, Galactic foregrounds
and radio frequency interference.

The CO Mapping Array Project (COMAP) represents one
example of such an alternative approach and uses CO as the
tracer species (see, e.g. Lidz et al. 2011; Pullen et al. 2013;
Breysse et al. 2014). The COMAP Pathfinder instrument consists
of a 19-feed1 focal plane array observing at 26–34 GHz (Lamb
et al. 2022), deployed on a 10.4 m Cassegrain telescope. This
frequency range corresponds to a redshift of z ∼ 2.4–3.4 for the
CO(1–0) line, a period during the Epoch of Galaxy Assembly (Li
et al. 2016). The Pathfinder instrument started observing in 2019,
and COMAP has previously published results from the first year
of data, named Season 1, in our Early Science (ES) publications
(Cleary et al. 2022; Lamb et al. 2022; Foss et al. 2022; Ihle et al.
2022; Chung et al. 2022; Rennie et al. 2022; Breysse et al. 2022;
Dunne et al. 2024). These ES results provided the tightest con-
straints on the CO power spectrum in the clustering regime pub-
lished to date. Since the release of the ES results, the COMAP
Pathfinder instrument has continued to observe, while also im-
plementing many important lessons learned from Season 1 both
in terms of observing strategy and data processing methodol-
ogy. Combining the observations from both Seasons 1 and 2,
and improving the data analysis procedure, the new results im-
prove upon the ES analysis by almost an order of magnitude in
terms of power spectrum sensitivity.

This paper is the first of the COMAP Season 2 paper se-
ries, and here we present the low-level data analysis pipeline and
map-level results derived from the full COMAP data set as of the
end of Season 2 (November 2023). This work builds on the cor-
responding Season 1 effort as summarized by Ihle et al. (2022).
The corresponding power spectrum and null-test results are pre-
sented by Stutzer et al. (2024), while Chung et al. (2024) discuss
their cosmological implications in terms of structure formation
constraints. In parallel with the Season 2 CO observations, the
COMAP Pathfinder continues to survey the Galactic plane, with
the latest results focusing on the Lambda Orionis region (Harper
et al. 2024).

The remainder of this paper is structured as follows: In
Sect. 2 we summarize the changes made to the observational
strategy in Season 2 and provide an overview of the current sta-
tus of data collection and accumulated volume. In Sect. 3 we
summarize our time-ordered data (TOD) pipeline with a focus on
1 We refer to a full detector chain as a "feed".

the changes since ES. In Sect. 4 we study the statistical proper-
ties of the spectral maps produced by this pipeline while paying
particular attention to our new map-domain principal component
analysis (PCA) filtering and the systematic errors that this filter
is designed to mitigate. In Sect. 5 we present the current data se-
lection methodology and discuss the resulting improvements in
terms of data retention in the time, map, and power spectrum do-
mains. In Sect. 6 we present updated end-to-end pipeline trans-
fer function estimates and discuss their generality with respect
to non-linear filtering. Finally, we summarize and conclude in
Sect. 7.

2. Data collection and observing strategy

Table 1 shows the raw on-sky integration time per season. Here
we see that COMAP Season 1 included 5,200 on-sky observation
hours collected from May 2019 to August 2020, while the sec-
ond COMAP season included 12,300 hours collected between
November 2020 and November 2023. In these publications, we
present results based on a total on-sky integration time of 17,500
hours, a 3.4-fold increase in raw data volume compared to the
ES publications.

We start by reviewing the changes made to the data collection
and observing strategy before and during Season 2. Most of these
changes came as direct responses to important lessons learned
during the Season 1 data analysis and aimed to increase the net
mapping speed, although one was necessitated due to mechan-
ical telescope issues during Season 2. Overall, these changes
were highly successful, and Season 2 has much higher data re-
tention than Season 1, which will be discussed in Sect. 5. The
most important changes in the Season 2 observing strategy are
the following:

1. Observations were restricted to an elevation range of 35◦–
65◦ in order to reduce the impact of ground pick-up via the
telescope’s sidelobe response. As discussed by Ihle et al.
(2022), the gradient of the ground pickup changes quickly at
both lower and higher elevations, and the corresponding ob-
servations were therefore discarded in the Season 1 analysis;
in Season 2 we avoid these problematic elevations altogether.

2. Similarly, Lissajous scans were abandoned in favor of solely
using constant elevation scans (CES), since Foss et al. (2022)
found elevation-dependent systematic errors associated with
the former.

3. The two frequency detector sub-bands, which previously
covered disjoint ranges of 26–30 GHz and 30–34 GHz
(Lamb et al. 2022), were widened slightly, such that they now
overlap; this mitigates data loss due to aliasing near the band
edges.

4. The acceleration of the azimuth drive was halved to increase
the longevity of the drive mechanism, which started to show
evidence of mechanical wear.

The latter two changes were only implemented in the second
half of Season 2, and mark the beginning of what we refer to as
Season 2b. These changes are now discussed in greater detail.

2.1. Restricting the elevation range

Sidelobe pickup of the ground is a potentially worrisome system-
atic error for COMAP, especially since it is likely to be pointing-
correlated. Even though ground pickup is primarily correlated
with pointing in alt-azimuthal coordinates, the daily repeating
pointing pattern of COMAP means there will still be a strong
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Table 1. Overview of COMAP observation season definitions

Name Dates Observing hours Notes
Season 1 05/2019 - 08/2020 5,200 Data published in Early Science. Contains 50% Lissajous, 50% CES.
Season 2a 11/2020 - 04/2022 7,900 100% CES from this point forward.
Season 2b 05/2022 - 11/2023 4,400 After azimuth drive slowdown and sampler frequency change.

Table 2. Season 2 is split into two sub-season, respectively denoted 2a and 2b, as the telescope scanning speed was significantly reduced in May
2022 for mechanical reasons.

correlation in equatorial coordinates. Analysis of Season 1 ob-
servations (Foss et al. 2022), which ranged from ∼30◦ to ∼75◦
elevation, showed pointing-correlated systematic errors at the
highest and lowest elevations.

To study this effect in greater detail, we developed a set of an-
tenna beam pattern simulations using GRASP2 for the COMAP
telescope (Lamb et al. 2022), and these showed the presence of
four sidelobes resulting from the four secondary support legs
(SSL), with each sidelobe offset by ∼65◦ from the pointing cen-
ter. These simulations were convolved with the horizon elevation
profile at the telescope site, and the results from these calcula-
tions are shown in Fig. 1. This figure clearly shows that Fields 2
and 3 experience a sharp change in ground pickup around 65◦–
70◦ elevation, as one SSL sidelobe transitions between ground
and sky. At very low elevations the ground contribution also
varies rapidly for all fields as two of the other SSL sidelobes ap-
proach the horizon. While the low-level TOD pipeline removes
the absolute signal offset per scan, gradients in the sidelobe
pickup over the duration of a scan still lead to signal contamina-
tion. We have therefore restricted our observations to the eleva-
tion range of 35◦–65◦, where one SSL sidelobe remains pointed
at the ground, and the other three SSL sidelobes are safely point-
ing at the sky, leaving us with a nearly constant ground pickup.
This change incurred little loss in observational efficiency, as al-
most all allocated observational time outside the new range could
be reallocated to other fields within the range.

2.2. Abandoning Lissajous scans

The first season of observations contained an even distribution
of Lissajous and constant elevation scans, with the aim of ex-
ploring the strengths and weaknesses of each. The main strength
of the Lissajous scanning technique is that it provides excellent
cross-linking by observing each pixel from many angles, which
is useful for suppressing correlated noise with a destriper or
maximum likelihood mapmaker. The main drawback of this ob-
serving mode is that the telescope elevation varies during a single
scan, resulting in varying atmosphere and ground pick-up contri-
butions. In contrast, the telescope elevation remains fixed during
a constant elevation scan (CES), producing a simpler pick-up
contribution although with somewhat worse cross-linking prop-
erties.

When analyzing the Season 1 power spectra resulting from
each of the two observing modes, Ihle et al. (2022) found that the
Lissajous data both produced a highly significant power spec-
trum, especially on larger scales and failed key null tests. The
CES scans, on the other hand, produced a power spectrum con-
sistent with zero, and passed the same null tests. We therefore
concluded that the significance in the Lissajous power spectrum
was due to residual systematic errors. Additionally, the main

2 https://www.ticra.com/software/grasp/
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Fig. 1. Approximate sidelobe ground pickup as a function of az/el point-
ing, simulated by convolving a beam (simulated using GRASP) with the
horizon profile (shown in gray) at the telescope site. The paths of the
three fields across the sky, in half-hour intervals, are shown, as well as
the Season 2 elevation limits at 35◦–65◦. These limits ensure minimal
ground pickup gradient across the field paths.

advantage of Lissajous scanning, namely better cross-linking,
proved virtually irrelevant because of a particular feature of the
COMAP instrument: because all frequency channels in a sin-
gle COMAP sideband are processed through the same backend,
the instrumental 1/ f gain fluctuations are extremely tightly cor-
related across each sideband. As a result, the low-level TOD
pipeline is capable of simultaneously removing virtually all cor-
related noise from both gain and atmosphere by common-mode
subtraction (see Sect. 3.5). At our current sensitivity levels, we
therefore find no need to employ a complex mapmaking algo-
rithm that fully exploits cross-linking observations, but we can
rather use a computationally faster binned mapmaker (Foss et al.
2022). After Season 1 we therefore concluded that there was no
strong motivation to continue with Lissajous scans, and in Sea-
son 2 we employ solely CES.

2.3. Widening of frequency bands for aliasing mitigation

As discussed in detail by Lamb et al. (2022), the COMAP instru-
ment exhibits a small but non-negligible level of signal aliasing
near the edge of each sideband. In the Season 1 analysis, this
was accounted for simply by excluding the channels with alias-
ing power from other channels suppressed by less than 15 dB.
In total, 8 % of the total COMAP bandwidth is lost due to this
effect, and this leads to gaps in the middle of the COMAP fre-
quency range. Both the origin of the problem and its ultimate
solution were known before the Season 1 observations started
(Lamb et al. 2022), but this took time to implement.

Band-pass filters applied after the first downconversion and
low-pass filters applied after the second downconversion allow
significant power above the Nyquist frequency into the sampler.
This is then aliased into the 0–2.0 GHz observing baseband,
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Fig. 2. Comparison of the faster pointing pattern from a Season 2a scan,
and the slower pointing pattern of a Season 2b scan. Both patterns show
a 5.5-minute constant elevation scan, as the field drifts across.

requiring the contaminated channels to be excised. By increas-
ing the sampling frequency from 4.000 GHz to 4.250 GHz, the
Nyquist frequency is raised to 2.125 GHz, closer to the filter
edges. Not only is the amount of aliased power reduced, it is also
folded into frequencies above the nominal width of each 2 GHz
observing band. The existing samplers were able to accommo-
date the higher clock speed, but the field-programmable gate ar-
ray (FPGA) code had to be carefully tuned to reliably process the
data. This was finally implemented from the start of Season 2b,
and the aliased power is now shifted outside the nominal range
of each band, such that the affected channels can be discarded
without any loss in frequency coverage. The number of chan-
nels across the total frequency range is still 4096, so the “native”
Season 2b channels are 2.075 MHz wide, up from 1.953 MHz.

2.4. Azimuth drive slowdown

It became clear during Season 2 that the performance of the tele-
scope’s azimuth drives had degraded, owing to wear and tear
on the drive mechanisms caused by the telescope’s high accel-
erations. In order to protect the drives from damage, the analog
acceleration limit was reduced until the stress was judged by its
audible signature to be acceptable. Though not carefully quanti-
fied, this was about an order of magnitude change, and the min-
imum time for a scan is therefore about a factor of three less.
Additionally, the maximum velocity was reduced by a factor of
two in the drive software.

Figure 2 illustrates the old (Season 2a) and new (Season 2b)
pointing patterns, with the new pattern being slightly wider and
around four times slower. The new realized pointing pattern is
now also closer to sinusoidal since the drives are better able to
’keep up’ with the sinusoidal pattern of the commanded position,
due to the slower velocity.

With the new actually sinusoidal scanning pattern, the inte-
gration time is less uniform across each field in each observa-
tion, as the telescope spends more time pointing near the edges
of the field than it previously did. However, co-adding across the
observing season does smooth out the uneven integration time,
based on the receiver field of view (each of the 19 feeds observes
the sky at a position that is offset from the others) and field rota-
tion (the telescope observes the fields at different angles as they
move across the sky).

2.5. Data storage

With 19 feeds, 4096 native frequency channels, and a sampling
rate of about 50 samples/sec, COMAP collects 56 GB/hour of
raw 24-bit integer data, stored losslessly as 32-bit floats. The
full set of these raw data (combined with telescope housekeep-
ing), named “Level 1”, currently spans about 800 TB of disk
space. These data are then filtered by our TOD pipeline into so-
called “Level 2” data (Foss et al. 2022), in which a key step is
to co-add the native frequency channels to 31.125 MHz width.
These downsampled channels form the basis of the higher-level
map-making and power spectrum algorithms. The total amount
of Level 2 data is about 50 TB. Both Level 1 and Level 2 files
are now losslessly compressed using the GZIP algorithm (Gailly
& Adler 1992), which achieves average compression factors of
2.4 and 1.4, respectively, reducing the effective sizes of the two
datasets to 330 TB and 35 TB. The lower compression factor of
the filtered data is expected because the filtering leaves the data
much closer to white noise, and therefore with a much higher
entropy.

The files are stored in the HDF5 format (Koranne 2011),
which allows seamless integration of compression. Both com-
pression and decompression happen automatically when writing
to and reading from each file. GZIP is also a relatively fast com-
pression algorithm, taking roughly one hour to compress each
hour of COMAP data on a typical single CPU core. Decompres-
sion takes a few minutes per hour of data, which is an insignifi-
cant proportion of the total pipeline runtime. HDF5 also allows
for arbitrary chunking of datasets before compression. Chunking
aids in optimizing performance since the Level 1 files consist of
entire observations (1 hour), but the current TOD pipeline imple-
mentation (see Sect. 3.9) reads only individual scans of 5 min-
utes each. We partition the data into chunks of 1-minute inter-
vals to minimize redundant decompression when accessing sin-
gle scans. Other compression algorithms have been tested, and
some, such as lzma3, achieve up to a 20 % higher compression
factor on our data. They are, however, also much slower at both
compression and decompression, and they interface less easily
with HDF5.

3. The COMAP TOD pipeline

This section lays out the COMAP time-domain pipeline, named
l2gen, focusing on the changes from the first generation
pipeline, which is described in detail by Foss et al. (2022). The
pipeline has been entirely re-implemented (see Sect. 3.9) for per-
formance and maintainability reasons but remains mathemati-
cally similar. Figure 3 shows a flowchart of the entire COMAP
pipeline, of which l2gen is the first step.

The purpose of the TOD pipeline is to convert raw de-
tector readout (Level 1 files) into calibrated time-domain data
(Level 2 files) while performing two key operations: substan-
tially reducing correlated noise and systematic errors, and cal-
ibrating to brightness temperature units. COMAP uses a filter-
and-bin pipeline, meaning that we perform as much data clean-
ing as possible in the time domain, before binning the data into
maps with naïve noise-weighting. This leaves us with a biased
pseudo-power spectrum, which can be corrected by estimating
the pipeline transfer function (Sect. 6).

The following sections will explain the main filters in the
TOD pipeline. The normalization (Sec. 3.3), 1/ f filter (Sec.
3.5), calibration and downsampling (Sect. 3.8) steps remain un-
changed from the ES pipeline, and are briefly summarized for
3 https://tukaani.org/xz/
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Fig. 3. Flowchart of the COMAP pipeline, from raw Level1 data to final power spectra. Data products are shown as darker boxes and pipeline code
as lighter arrows. l2gen performs the time-domain filtering, turning raw data into cleaned Level 2 files. accept_mod performs scan-level data
selection on cleaned data. tod2comap is a simple binned mapmaker. mapPCA performs a map-level PCA filtering. Finally, comap2fpsx calculates
power spectra as described by Stutzer et al. (2024).

completeness. We will denote the data at different stages of the
pipeline as d name

ν,t , where the ν, t subscript indicates data with both
frequency and time dependence.

3.1. System temperature calculation

The first step of the pipeline is to calculate the system tempera-
ture T sys

ν of each channel in the TOD. At the beginning and end
of each observation, a vane of microwave-absorbing material of
known temperature is temporarily moved into the field of view of
the entire feed array. The measured power from this “hot load”,
Phot
ν , and the temperature of the vane, T hot, are interpolated be-

tween calibrations to the center of each scan. Power from a “cold
load”, Pcold

ν , is calculated as the average power of individual sky
scans. The system temperature is then calculated as (see Foss
et al. (2022) for details)

T sys
ν =

T hot − T CMB

Phot
ν /Pcold

ν − 1
. (1)

under the approximation that the ground, sky, and telescope
share the same temperature.

3.2. Pre-pipeline masking

In ES, l2gen performed all frequency channel masking to-
wards the end of the pipeline. While some masks are data-driven
(specifically driven by the filtered data), others are not. We now
apply the latter category of masks prior to the filters, to improve
the filtering effectiveness. These are

– masking of channels that have consistently been found to be
correlated with systematic errors, and have been manually
flagged to always be masked;

– for data gathered before May 2022, masking of channels
with significant aliased power, as outlined in Sect. 2.3;

– masking of channels with system temperature spikes, as out-
lined in the section below.

3.2.1. System temperature spikes

The system noise temperature, T sys
ν , for each feed’s receiver

chain has a series of spikes at specific frequencies, believed to
result from an interaction between the polarizers and the corru-
gated feed horn (Lamb et al. 2022). The spikes are known to be
associated with certain systematic errors, and the affected fre-
quency channels are therefore masked out. The ES analysis used
a static system temperature threshold of 85 K for masking, but
the new version of l2gen applies a 400 channel-wide running
median kernel to the data and masks all frequencies with a noise
temperature of more than 5 K above the median. We repeat the
running median fit and threshold operation once on the masked
data, to reduce the impact of the spikes on the fit. The second
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Fig. 4. Example of T sys spike masking by running median. The system
temperature is shown in blue, the running median in orange, and the 5
Kelvin cut above the running median in red.

iteration uses a kernel width of 150 channels. The final running
median and threshold are illustrated in Fig. 4. As the system tem-
perature can vary quite a lot across the 4 GHz range, this method
fits the spikes themselves more tightly, while avoiding cutting
away regions of elevated but spike-free system temperature.

The spike frequencies vary from feed to feed, and we are
therefore not left with gaps in the redshift coverage of the final
3D maps. On average, we mask 6% of all frequency channels this
way. However, because the affected channels are, by definition,
more noisy, this only results in a loss of 3% of the sensitivity.

3.3. Normalization

The first filtering step in the TOD pipeline is to normalize the
Level 1 data by dividing by a low-pass filtered version of the
data and subtracting 1. The filter can be written as

dnorm
ν,t =

draw
ν,t

⟨draw⟩ν
− 1,

〈
draw〉

ν = F −1{W · F {draw
ν,t }},

W =
(
1 +

(
f

fknee

)α)−1

,

(2)

where F is the Fourier transform and F −1 is the inverse Fourier
transform, both performed on the time-dimension of the data,
and W is a low pass filter in the Fourier domain, with a spectral
slope α = −4, and a knee frequency fknee = 0.01 Hz. This has the
effect of removing all modes on 100 s timescales and longer. As
the COMAP telescope crosses the entire field in 5–20 seconds,
the normalization has minimal impact on the sky signal in the
scanning direction, but heavily suppresses the signal perpendic-
ular to the scanning direction, as the fields take 5–7 minutes to
drift across.

The filter is performed per frequency channel, and the pri-
mary purpose of the normalization is to remove the channel-
to-channel gain variations, making channels more comparable.
After applying this filter, the white noise level in each channel
will now be the same and common-mode 1/ f gain fluctuations
will be flat across frequency. As a secondary consideration, the
normalization also removes slow-running atmospheric and gain
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Fig. 5. Illustration of the effect of TOD normalization and 1/ f filtering for a single feed and scan. The raw Level 1 data (left) are dominated by
frequency-dependent gain variations, which correspond to the instrumental bandpass. After normalization (middle), the signal is dominated by
common-mode gain fluctuations. Finally, after the 1/ f filter is applied (right), the common-mode 1/ f contribution has been suppressed, and the
data are dominated by white noise. The horizontal gray stripes indicate channels that were masked by the pipeline. All three stages happen before
absolute calibration, and the amplitudes are therefore given in arbitrary units.

fluctuations on timescales greater than 100 s. The effect of the fil-
ter can be seen in the first two panels of Fig. 5, which shows the
TOD of a single scan in 2D before and after the normalization.
Before the normalization, the frequency-dependent gain domi-
nates, and the time variations are invisible. After normalization,
the data in each channel fluctuates around zero.

3.4. Azimuth filter

Next, we fit and subtract a linear function in azimuth, to re-
duce the impact of pointing-correlated systematic errors, first
and foremost being ground pickup by the telescope sidelobes.
This filter can be written as

daz
ν,t = dnorm

ν,t − aν · azt (3)

where aν is fitted to the data per frequency, and azt is the azimuth
pointing of the telescope. Unlike in the ES pipeline, this filter
is now fitted independently for when the telescope is moving
eastward and westward, to mitigate some directional systematic
effects we have seen.

In Season 1, we also employed Lissajous scans, meaning that
an elevation term was also present in this equation. As we now
only observe in constant elevation mode, this term falls away.

3.5. 1/ f gain fluctuation filter

After normalization, the data are dominated primarily by gain,
and secondarily by atmospheric fluctuations, and both are
strongly correlated on longer timescales. Although the normal-
ization suppresses power on all timescales longer than 100 sec-
onds, we observe that common-mode noise still dominates the
total noise budget down to ∼1 s timescales.

To suppress this correlated noise, we apply a specific 1/ f
filter4 by exploiting the simple frequency behavior of the gain
and atmosphere fluctuations. After we have normalized the data,
the amplitude of the gain fluctuations is the same across all fre-
quency channels, although fluctuating in time. The contribution
of the atmosphere, an approximate continuum source in temper-
ature, becomes almost linear in frequency in normalized units.
We therefore fit and subtract a first-order polynomial across fre-
quency for every time step;

d1/f
ν,t = dpoint

ν,t − (c0
t + c1

t · ν), (4)

4 The filter is referred to as the polynomial filter in our ES publications.

where c0
t and c1

t are coefficients fitted to the data each time step.
To ensure that the atmosphere can be well approximated as a
continuum, we fit a separate linear polynomial to the 1024 chan-
nels of each of the four 2 GHz sidebands.

This simple technique is remarkably efficient at removing
1/ f noise, and we observe that the correlated noise is suppressed
by several orders of magnitude, after which white noise domi-
nates the uncertainty budget. This is illustrated in the last two
panels of Fig. 5. After the normalization, the signal is completely
dominated by common-mode 1/ f noise. After the 1/ f filter, the
correlated noise is effectively suppressed, and we are left with
almost pure white noise, as can be seen in the right panel, and
further discussed in Sect. 3.10.

3.6. PCA filtering

Principal Component Analysis (PCA) is a common and powerful
technique for dimensionality reduction (Pearson 1901). Given
a data matrix mν,t, PCA produces an ordered basis wk

t for the
columns of mν,t, called the principal components of mν,t. The
component amplitude can then be calculated by re-projecting the
components into the matrix, as ak

ν = mν,t · wk
t . For our purposes,

mν,t is the TOD, with frequencies as rows, and time-samples as
columns. The ordering of the principal components wk

t is such
that the earlier components capture as much of the variance in
the columns of mν,t as possible, and for any selected number of
components Ncomp, the following expression is minimized:

∑

ν,t

mν,t −
Ncomp∑

k=1

ak
νw

k
t



2

. (5)

In other words, PCA provides a compressed version of mν,t,
which approximates mν,t as the sum of an ordered set of outer
products5

mν,t ≈
Ncomp∑

k=1

ak
νw

k
t . (6)

5 PCA has several equivalent interpretations and ways of solving for
the principal components. The principal components are, among other
things, the eigenvectors of the covariance matrix of mν,t. This is how we
introduced the PCA in our ES publications. It is, however, both a slow
way of solving for the PCA components in practice and not the best
interpretation for our purposes.
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PCA is often employed on a dataset where the rows are inter-
preted as different observations, and the columns are the multi-
dimensional features of these data. However, this is not a natural
interpretation for our purposes, and it makes more sense to sim-
ply look at PCA as a way of compressing a 2D matrix as a sum of
outer products – we have no special distinction between columns
and rows, and could equivalently have solved for the PCA of the
transpose of mν,t, which would swap aν and wt.

A PCA is often performed because one is interested in keep-
ing the leading components, as these contain much of the infor-
mation in the data. However, we subtract the leading compo-
nents, because many systematic errors naturally decompose well
into an outer product of a frequency vector and a time vector,
while the CO signal does not (and is very weak in a single scan).

In practice, we solve for the leading principal components
using a singular value decomposition algorithm (Halko et al.
2011), and then calculate the amplitudes as stated above. The
Ncomp leading components are then subtracted from the TODs,
leaving us with the filtered data

dPCA
ν,t = mν,t −

Ncomp∑

k=1

ak
νw

k
t . (7)

The Season 2 COMAP pipeline employs two time-domain
PCA filters, one of which was present in ES. In the following
subsection, we introduce both filters and then explain how to de-
cide the number of leading components, Ncomp, to subtract from
the data.

The process of calculating the principal components and sub-
tracting them from the data constitutes a non-linear operation
on the data. This has the advantage of being much more ver-
satile against systematic errors that are difficult to model using
linear filters, but the disadvantage is a more complicated im-
pact on the CO signal itself. This will be further discussed in
Sect. 6.4, where our analysis shows that the PCA filter behaves
linearly with respect to any sufficiently weak signal, and that, at
the scan-level, all plausible CO models (Chung et al. 2021) are
sufficiently weak by several orders of magnitude.

3.6.1. The all-feed PCA filter

The all-feed PCA filter, which was also present in the ES
pipeline, collapses the 19 feeds onto the frequency axis of the
matrix, producing a data matrix mν,t of the 1/ f -filtered data with
a shape of (Nfeed Nfreq,NTOD) = (19 × 4096,∼20 000) for a
scan with Nfeed feeds, Nfreq frequency channels, and NTOD time
samples. The PCA algorithm outlined above is then performed
on this matrix. Combining the feed and frequency dimensions
means that a feature in the data will primarily only be picked up
by the filter if it is common (in the TOD) across all 19 feeds.
This is primarily the case for any atmospheric contributions, and
potentially standing waves that originate from the optics com-
mon to all feeds. It is, however, certainly not the case for the CO
signal, which will be virtually unaffected by this filter.

Figure 6 shows a typical strong component wt picked up by
this filter in the top panel, with the component amplitudes aν for
three selected feeds in the bottom panel. This systematic error
appears to be consistent with a standing wave, i.e., appearing as
a ripple whose amplitude varies with frequency.

3.6.2. The per-feed PCA filter

The new per-feed PCA filter has been implemented to combat
systematic errors that vary from feed to feed. This filter employs
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Fig. 6. (Top:) Illustration of a significant all-feed PCA component.
(Bottom:) Frequency amplitudes of the above component across three
randomly selected feeds. The amplitudes show clear signs of a feed-
common standing wave. Since the filter is applied to normalized data,
the y-axis amplitudes are unitless.
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Fig. 7. Same as Fig. 6, but for a component of the per-feed PCA filter,
where the time-domain PCA component belongs to feed 14 alone. This
component has picked up some frequency structure localized around
32 GHz.

the PCA algorithm outlined above on each individual feed and is
performed on the output of the all-feed PCA filter. Additionally,
we found that downsampling the data matrix (using inverse vari-
ance noise weighing) by a factor of 16 in the frequency direction
before performing the PCA increased its ability to pick up struc-
tures in the data. The resulting data matrix mν,t gets the shape
(Nfreq/16,NTOD) = (256,∼20 000) for each feed. The downsam-
pling is only used when solving for the time-domain components
wt, and the full data matrix is used when calculating the fre-
quency amplitudes, aν.

Targeting each feed individually makes us more susceptible
to CO signal loss, but the low signal-to-noise ratio (SNR), com-
bined with the fact that the CO signal can not be naturally de-
composed into an outer product, makes the impact on the CO
signal itself minimal. This filter appears to primarily remove
components consistent with standing waves from the individual
optics and electronics of each feed.

Figure 7 demonstrates a large-scale fluctuation picked up by
the per-feed PCA filter for feed 14. The origin of the shape of the
systematic error is unknown, but it constitutes a typical behavior
of the component and amplitude of this filter.
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Fig. 8. (Top:) Largest singular values of the all-feed and per-feed PCA
filters, divided by λ, for a random selection of ten scans. PCA com-
ponents with relative values above one are removed from the data and
are marked with crosses in this plot. (Bottom:) Number of PCA compo-
nents subtracted across all scans. At least two components are always
subtracted by the all-feed PCA filter.

3.6.3. Number of components

In the ES pipeline, the number of PCA components was fixed at
four for the all-feed filter, and the per-feed filter did not exist. We
now dynamically determine the required number of components
for each filter, per scan. This allows us to use more components
when needed, removing more systematic errors, and fewer when
not needed, incurring a smaller loss of CO signal.

We subtract principal components until the components are
indistinguishable from white noise, which can be inferred from
the singular values of each component. Let λ be the expectation
value of the largest singular value of a (N, P) Gaussian noise ma-
trix (see Appendix A for how this value is derived). We subtract
principal components until we reach a singular value below λ.
However, for safe measure, we always subtract a minimum of 2
components for the all-feed PCA filter, as the signal impact of
this filter is minimal.

Figure 8 shows typical singular values, relative to λ, for a
random selection of scans, and a histogram of the number of
components employed across all scans. The average number of
PCA components subtracted is 2.3 and 0.5 for the all-feed and
per-feed PCA, respectively; the most common number of com-
ponents subtracted is the minimum allowed in each case: two and
zero. The top part of the figure also demonstrates that there is a
sharp transition between the singular values of the components
which actually pick up meaningful features from the signal, and
the remaining noise components.

3.7. Data-inferred frequency masking

After the PCA filters, we perform dynamic masking of frequency
channels identified from the filtered TOD. This mainly consists
of masking groups of channels that have substantially higher cor-
relations between each other than expected from white noise, ex-
plained in more detail in Foss et al. (2022). This is assumed to
be caused by substantial residuals of gain fluctuations or atmo-
spheric signal. We do this by calculating the correlation matrix
between the frequency channels, and then looking at boxes and
stripes of various sizes across this matrix, performing χ2 tests on
their white noise consistency. We also mask individual channels

with a standard deviation significantly higher than expected from
the radiometer equation.

After the frequency masking, the 1/ f filter and PCA filters
are reapplied to the data, to ensure that their performance was
not degraded by misbehaving channels. The normalization and
pointing filters do not need to be reapplied, as they work inde-
pendently on each frequency channel.

3.8. Calibration and downsampling

The final step of the pipeline is to calibrate the data to tempera-
ture units and decrease the frequency resolution. After the nor-
malization step, the data are in arbitrary normalized units. Using
the system temperature calculated in Sect. 3.1 we calibrate each
channel of the data,

dcal
ν,t = T sys

ν dPCA
ν,t . (8)

Finally, we downsample the frequency channels from 4096 na-
tive channels to 256 science channels. The Seasons 1 and 2a fre-
quency channels are 1.953 MHz wide, while they are 2.075 MHz
wide in Season 2b, after the change in sampling frequency
(Sect. 2.3). In both cases, the channels are downsampled to a grid
of 31.25 MHz, which exactly corresponds to a factor 16 down-
sampling for the older data. For the newer data, either 15 or 16
native channels will contribute to each science channel, decided
by their center frequency. The downsampling is performed with
inverse-variance weighting, using the system temperature as un-
certainty.

3.9. Implementation and performance

While the ES pipeline was written in Fortran, the Season 2
pipeline has been rewritten from scratch to run in Python.
Performance-critical sections are either written in C++ and ex-
ecuted using the Ctypes package or employ optimized Python
packages like SciPy. Overall, the serial performance is similar
to the ES pipeline, but the Season 2 pipeline employs a more
fine-grained and optimal MPI+OpenMP parallelization, making
it much faster on systems without a very large memory-to-core
ratio.

The pipeline is run on a small local cluster of 16 E7-8870v3
CPUs, with a total of 288 cores, in about a week of wall time,
totaling around 40,000 CPU hours for the full COMAP dataset.
The time-domain processing dominates this runtime, with a typ-
ical scan taking around 20–25 minutes to process on a single
CPU core.

3.10. Time-domain results

The Level 2 TODs outputted by l2gen are assumed to be al-
most completely uncorrelated in both time and frequency di-
mensions, such that the TOD are well approximated as white
noise. To quantify the correlations in the time domain we calcu-
late the temporal power spectrum of each individual channel for
all scans. Figure 9 shows this power spectrum averaged over both
scans and frequencies, compared both to the equivalent power
spectrum of un-filtered Level 1 data, and to that of a TOD ob-
tained by injecting pure white noise in place of our real data into
the TOD pipeline.

Since the pipeline filtering removes more data on longer
timescales, the white noise simulation (red) gradually deviates
from a flat power spectrum on longer timescales, until it falls
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Fig. 9. Average temporal power spectrum of unfiltered (green) and fil-
tered scans (blue), compared to correspondingly filtered white noise
simulations (red). The y-axis is broken at 1.06 and is logarithmic above
this. The data are averaged over scans, feeds, and frequencies, and are
normalized with respect to the highest k-bin. For context, the old and
new scanning frequencies (once across the field) are shown as vertical
lines (dot-dashed and dashed, respectively).

rapidly at timescales below ∼ 0.03 Hz due to the high-pass nor-
malization performed in the pipeline. The power spectrum for
the filtered real data (blue) also follows the same trend on short
timescales, but then increases on timescales around k = 0.2 Hz,
due to small residual 1/ f gain fluctuations and atmosphere re-
maining after the processing. Below ∼ 0.03 Hz, this power spec-
trum again falls rapidly due to the high-pass filter. The power
spectrum obtained from raw data which have not gone through
any filtering (green), simply increases on longer timescales as
expected, due to 1/ f gain and atmospheric fluctuations.

The difference between the blue and red spectra shows the
residual correlated noise left in the data. While there is some
residual correlated noise, it is an insignificant fraction of our final
noise budget. We find that our real filtered data have a standard
deviation only 1.7 % higher than that of the filtered white noise.
Compared to the amount of power we see in the unfiltered data,
we see that our pipeline is very efficient at suppressing correlated
noise.

4. Mapmaking & map domain filtering

4.1. The COMAP mapmaker

COMAP employs a simple binned inverse-variance noise-
weighted mapmaker, identical to the one in ES (Foss et al. 2022).
This can be written as

mν,p =

∑
t∈p dν,p/σ2

ν,t∑
t∈p 1/σ2

ν,t
, (9)

where mν,p is an individual map voxel6, dν,t represents the time-
domain data over time samples, σ2

ν,t is the time-domain white
noise uncertainty, and t ∈ p means all time-samples t which ob-
serves pixel p. We assume that the white noise uncertainty σν,t
is constant (for a single feed and frequency) over the duration of

6 A voxel here is the 3D equivalent of a pixel, with two angular dimen-
sions and a redshift/frequency dimension. Here we separate the voxel
dimensions into frequencies ν and pixels p.

a scan, and calculate it per scan as

σν =

√
Var(dν,t − dν,t−1)

2
, (10)

then letσν,t = σν for all time-samples within the scan. This value
is also binned into maps, and is used as the uncertainty estimate
of the maps throughout the rest of the analysis:

σ2
ν,p =

1∑
t∈p 1/σ2

t
. (11)

In practice, we calculate per-feed maps, both because the map-
PCA filter (introduced in the next section) is performed on per-
feed maps, and because the cross-spectrum algorithm utilizes
groups of feed-maps.

The reason for not using more sophisticated mapmaking
schemes, like destriping (Keihänen et al. 2010) or maximum
likelihood mapmaking (Tegmark 1997), is partially of necessity
– the COMAP TOD dataset is many hundreds of TB, making it-
erative algorithms difficult. However, the TOD pipeline has also
proven remarkably capable of cleaning most unwanted system-
atic errors from the data, especially correlated 1/ f noise, as we
saw from Fig. 9. As the main purpose of more sophisticated map-
making techniques is dealing with correlated noise, COMAP is
served well with a simple binned mapmaker.

The mapmaking algorithm is identical to the one used for the
ES analysis. However, as with l2gen the actual implementation
has been rewritten from scratch in Python and C++, with a fo-
cus on optimal parallelization and utilization of both MPI and
OpenMP.

4.2. Map-domain PCA filtering

The pipeline now employs a PCA filtering step also in the map
domain, in addition to the one we apply at the TOD level. This
technique is almost entirely analogous to the PCA foreground
subtraction often employed in 21cm LIM experiments (Chang
et al. 2010; Masui et al. 2013; Anderson et al. 2018), although we
do not employ it to subtract foregrounds. The primary purpose of
this filter is to mitigate a couple of pointing-correlated system-
atic errors (see the next subsection) which proved challenging
to remove entirely in the time domain. The method is similar to
the TOD PCA algorithm from Sect. 3.6, but instead of having the
TOD data matrix dν,t, we have a map mν,p with one frequency and
one (flattened) pixel dimension. The data matrix then gets the
shape (Nν,Np) = (256, 14400), with Nν = 256 being the number
of frequency channels in the map and Np = 120 · 120 = 14400
the number of pixels in each frequency slice (although many of
the pixels in each individual feed-map are never observed).

The technique we employ here is technically a slight gen-
eralization of the PCA problem, as we want to weigh individual
voxels by their uncertainty when solving for the components and
amplitudes7. This is not possible in the regular PCA framework
without also morphing the modes one is trying to fit, as we ex-
plain in Appendix B. As shown in Sect. 3.6, the first principal
component w0

p and its amplitude a0
ν are the vectors that minimize

the value of the expression
∑

ν,p

(mν,p − a0
νw

0
p)2. (12)

7 For the time-domain PCA, it was enough to weight individual chan-
nels, with all time-samples in that channel sharing the same weight.
This can be done with a normal PCA, as we show in Appendix B.
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In other words, they are the two vectors such that their outer
product explains as much of the variance in mν,p as possible. This
formulation of the PCA makes it obvious how to generalize the
problem to include weighting for individual matrix elements: we
can simply minimize the following sum,

∑

ν,p

(mν,p − a0
νw

0
p)2

σ2
ν,p

, (13)

where σν,p is the uncertainty in each voxel. Minimizing Eq. (13)
gives us the vectors a0

ν and w0
p for which the outer product a0

νw
0
p

explains as much of the variance in dν,p as possible, weighted
by σν,p. The resulting map dν,p − a0

νw
0
p represents the filtered

map. The process can then be repeated any number of times,
solving for and subtracting a new set of vectors. We minimize the
expression in Eq. (13) iteratively with an algorithm outlined in
Appendix B, where we also explain why this is not equivalent to
simply performing the PCA on a noise-weighted map dν,p/σν,p.
Due to the large similarity of our technique to a regular PCA, we
simply refer to this filter as a PCA filter.

As for the TOD PCA filter, a selected number of components
are subtracted from the data maps

mmPCA
ν,p = mν,p −

Ncomp∑

i=1

ak
νv

k
p (14)

This filtering is performed per feed, as the systematic errors
outlined in the next subsection manifest differently in different
feeds. We have chosen Ncomp = 5, which will be further ex-
plained in Sect. 4.3.3. Because the COMAP scanning strategy
stayed the same throughout Seasons 1 and 2a but changed with
the azimuth slowdown of Season 2b, we apply the map-PCA sep-
arately to the former and latter, as the pointing-correlated effects
we are trying to remove might also be different.

4.3. Newly-discovered systematic effects

The two most prominent new systematic errors discovered in
the second season of observations have been dubbed the “turn-
around” and “start-of-scan” effects. They have in common that
they are difficult to model in the time domain, subtle in individ-
ual scans, but strongly pointing-correlated, and therefore show
up as large-scale features in the final maps. Additionally, they
are present to varying extents in all feeds, have similar quan-
titative behavior in the map-domain, and can both be removed
effectively with the map-PCA. The effects are discussed in the
subsections below, with further analysis shown in Appendix C.

4.3.1. The turn-around effect

The so-called “turn-around” effect can be observed as strongly
coherent excess power near the edges of the scan pattern, where
the telescope reverses direction in azimuth. Illustrations of this
effect can be seen in the first row, and partially in the third row,
of Fig. 10. The feature manifests at the top and bottom of the
maps, as this is where the telescope turn-around happens for
Field 2 in equatorial coordinates. The feature oscillates slowly
across the frequency domain, and the leading theory of its origin
is some standing wave oscillation induced by mechanical vibra-
tions. The effect is somewhat less pronounced in Season 2b, after
the reduction in telescope pointing speed and acceleration, but it
is still present.
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Fig. 10. Selection of individual frequency maps from Field 2 before
(left) and after (right) the map-domain PCA filter. Because of the un-
even sensitivity among the pixels, and to emphasize the relevant sys-
tematic effects, all maps have been divided by their white noise uncer-
tainty. From top to bottom, each row shows maps that are dominated by
(1) the turn-around effect; (2) the start-of-scan effect; (3) both effects
simultaneously; and (4) neither effect. Both effects appear to manifest
twice, on two slightly offset maps. This offset effect originates from the
physical placement of the feeds, as they observe the fields as they are
both rising and setting on the sky. In the equatorial coordinate system of
these maps, the telescope scans vertically, and the field drifts from left
to right.

4.3.2. The start-of-scan effect

A related effect is called the “start-of-scan” effect, which is a
wave-like feature in frequency that occurs at the beginning of
every scan and decays exponentially with a mean lifetime of
around 19 sec. As the telescope always starts each scan at the
same side of each sky field, this systematic effect shows up in the
map domain as a strong feature on the Eastern edge of the map,
as can be seen in the second and third rows of Fig. 10. Next to
the strong positive or negative signal (this varies by frequency)
at the very edge of the map, the opposite power, at lower am-
plitude, can be observed as we move Westward across the map.
This opposite power is simply a ringing feature from the nor-
malization performed during the pipeline (see Appendix C for
details).
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The exact origins of the “start-of-scan” effect are unknown,
but the fact that it only happens at the beginning of scans (which
are separated by a repointing to catch up with the field), and
disappears during constant elevation scanning, suggests that a
potential candidate is mechanical vibrations induced by the re-
pointing. We also observe the effect to be mostly associated with
one of the four DCM1s (first downconversion module), namely
DCM1-2, relating to feeds 6, 14, 15, 16, and 17. The effect’s
strong correlation with DCM1-2 points to a possible source in
the local oscillator cable, shared by the channels in a DCM1
module; imperfect isolation of the mixer would cause a weak
common-mode resonance to manifest.

An important detail in this analysis is that, because of the
normalization and 1/ f filter in the TOD pipeline, any stand-
ing wave signal with a constant resonant cavity wavelength over
time will be filtered away. For a standing wave to survive the fil-
tering, it must have a changing wavelength. Prime suspects for
the origin of this effect are therefore optical cavities that could
expand or contract in size, or cables that could be stretched.

4.3.3. Effects of map-domain filtering

The map-domain PCA filtering was implemented in an attempt
to mitigate these systematic effects and it has proved to be effec-
tive at this task. The first PCA component alone subtracts both
effects to a level where they are not visible in the maps by eye.
This shows that both effects are well modeled as the outer prod-
uct of a pixel vector and a frequency vector.

Visually inspecting the PCA components, we usually see
some structure for the first 3–5 modes. Figure 11 shows an ex-
ample of the five leading PCA components and their amplitudes.
Here we can see that the first component has very clear structure
in both the map and frequency domain. The remaining modes
seem to absorb some residuals after this first mode, especially
on specific channels close to the edges of each of the two Bands
that divide the frequency range in two.

We have chosen to remove just five out of 256 PCA com-
ponents in the map-PCA filter, as no structure was visible by
eye in the worst-affected cases after this number of components
was removed, and the removal of more components did not sig-
nificantly affect the results of any subsequent analysis (such as
the power spectrum). With only five components being removed,
we also limit the potential for CO signal loss. We could have
employed a similar approach to the TOD PCA, with a dynamic
amount of components, but the noise properties of the maps are
more complicated than the TODs, and we have chosen to keep
a static number of components, postponing more fine-tuning to
future analysis. The filter is applied to the individual feed maps,
and to individual splits – both the elevation split used for the
cross power spectrum, and the individual map splits for the null
tests.

With the application of the map-PCA filter, we observe that
the start-of-scan and turn-around effects are suppressed well be-
low the white noise of the maps, as can be seen in Fig. 10.
We have also designed a null test to specifically target the
turn-around systematic effect, by splitting the maps at the TOD
level into east- and west-moving azimuthal directions. The turn-
around effect manifests very differently in each half of this split,
making it the basis for a sensitive null test. We find that the Sea-
son 2 data passes this test after the map-PCA filter has been ap-
plied (Stutzer et al. 2024).

The standard deviation of the maps only falls by 2% af-
ter applying the filter, as the noise still dominates the over-
all amplitude. However, smoothing the maps slightly will en-
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PCA component 3 PCA amplitude 3

PCA component 4 PCA amplitude 4
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Fig. 11. Leading PCA components vk (left) and their respective fre-
quency amplitudes ak (right) for Field 2 as observed by feed 6 prior to
the map-PCA filter; this feed is the most sensitive to pointing-correlated
systematics. All maps are divided by their respective uncertainties to
highlight the key morphology. All rows share the same color range and
y-axis scale, but the specific values have been omitted as they are not
easily interpretable.

hance large-scale correlations, while suppressing uncorrelated
noise. Smoothing both the filtered and unfiltered 3D maps us-
ing a Gaussian with σ = 3 voxels, the standard deviation is 67%
lower in the map-PCA filtered map. We can similarly observe
that the average correlation between neighboring pixels (of the
unsmoothed map), a good indication of the level of larger scale
structure, falls from 6.3% to −0.4% after applying the map-PCA.

The magnitude of these systematic effects is different be-
tween feeds and frequencies, as we saw from Figure 10. Per-
forming a χ2 white noise consistency test on the individual fre-
quency channel maps of each feed, we find that for the worst
feeds, namely those associated with DCM1-2 (feeds 6, 14, 15,
16 and 17), around 50 % of their channels fail this test at > 5σ.
The best-behaving feeds are 4, 5, 10, and 12, all with fewer than
5 % of channels failing at > 3σ. However, we want to empha-
size both that no feed is completely without these effects before
the map-PCA, and that after the map-PCA, there is no longer a
quantitative difference between the “good” and “bad” feeds, with
all feeds passing χ2-tests at expected levels.

The PCA filtering (both in the time and map domain) consti-
tutes the only non-linear processing in the pipeline. Non-linear
filtering makes it more difficult to estimate the resulting signal
bias and transfer function. In Sect. 6.4 we demonstrate that a
PCA filter applied on a noisy matrix behaves linearly with re-
spect to a very weak signal, and we find that any CO signal in
the data is well within this safe regime.
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Fig. 12. Histogram of all map pixel temperature values across all feeds
and frequencies, divided by their white noise uncertainty. The three
fields are shown separately, before and after application of the map
PCA filter. A normal distribution is shown in black; a completely white
noise map will trace this distribution. All three fields show excess high-
significance pixels before the map PCA. After the filter, all three fields
fall slightly below the normal distribution on the wings, because of the
slight over-subtraction of noise at various stages in the pipeline.

4.4. Final maps

Figure 12 shows the distribution of map voxel values for all three
fields, in units of significance, before and after the map-PCA.
Before the map-PCA, the distribution shows a clear excess on
the tails, while the cleaned maps are very consistent with white
noise. This is expected and desired, as the CO signal is so weak
that individual frequency maps are still very much dominated
by the system temperature. The noise level in the maps is, actu-
ally, about 2.5% lower than expected from the white noise uncer-
tainty, due to the filtering in the pipeline. This effect can be seen
in Fig. 12, with the histograms falling slightly below the normal
distribution.

Figure 13 shows the distribution of voxel uncertainties over
the three fields for this work and our ES maps. Each voxel has an
approximate size of 2 × 2 arcmin, which, together with the fre-
quency direction, corresponds to a comoving cosmological vol-
ume of ∼3.7 × 3.7 × 4.1 Mpc3. For Fields 2 and 3, the high sen-
sitivity < 50 µK region corresponds to a comoving cosmological
cube of around 150 × 150 × 1000 Mpc3 per field. Combining all
three fields, Season 2 has one million voxels with an uncertainty
< 50 µK, compared to one million voxels below < 125 µK for
Season 1. The footprint of the final maps have increased slightly
in size because of the wider scan pattern of Season 2b.

The sensitivity increase per field over Season 1 is 2.0, 2.6,
and 2.7, for Fields 1, 2, and 3, respectively. Fields 2 and 3 are
now the highest sensitivity fields, while Field 1 is noticeably
worse, from larger losses to data selection, especially Moon
and Sun sidelobe pickup. The uncertainties are estimated from
Eq. (11), and correspond well to the noise level observed in the
map, as we saw from Fig. 12. A figure showing the uncertainties
across the fields on the sky can be found in Appendix E, together
with a subset of the final maps.

5. Data selection

In addition to a three-fold increase in observational hours, the
second season also features a similar increase in data retention
compared to the ES results. Table 3 compares the data loss in
the ES results and this work. The table is split into three parts,
namely 1) observational losses, 2) time- and map-domain losses,
and 3) power spectrum domain losses. The Season 2 column
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Fig. 13. Histograms comparing the map voxel uncertainties of this work
(Season 2), and the ES publications (Season 1). The voxel values are for
feed-coadded maps.

only relates to data taken during Season 2, but we have also
reprocessed Season 1 data with the new pipeline for the final
results.

5.1. Observational data retention

The first three rows of Table 3 are observational inefficiencies
that have been corrected since the first season. Escan constitutes
the fraction of scans that were performed in constant elevation
mode, as opposed to Lissajous scans which were cut due to large
systematic effects (see Sect. 2.2). Efeed is the fraction of func-
tioning feeds, and Eel is the fraction of data taken at elevation
35◦–65◦ (see Sect. 2.1). Since Season 1, we no longer observe in
Lissajous mode, all feeds are functional and the observing strat-
egy has been optimized to maximize Eel. As a result, the total
data retention from these three cuts, which was 32% in the first
season, is now 100%.

5.2. Time and map domain data selection

In the next section in Table 3, Efreq refers to the frequency chan-
nel masking performed in l2gen, as discussed in Sect. 3.7. The
masking algorithm itself is virtually identical to in ES, with a few
changes. The shifting of aliased power into channels outside the
nominal frequency range (Sect. 2.3) means that, from Season 2b
onwards, we recover the 8% of channels masked in Season 1 and
2a. The inclusion of the new per-feed PCA filter in l2gen results
in slightly fewer data being masked by data-driven tests. How-
ever, we have also increased the number of manually flagged
channels that seem to be performing sub-optimally, leaving us
with a Efreq data retention only slightly higher than for ES.

Next, Estats constitutes the cuts performed in the
accept_mod script, which discards scans based on differ-
ent housekeeping data and summary statistics of the scans.
There are over 50 such cuts in total, most of them removing
a small number of outlier scans. Upon the completion of the
Season 2 null test framework (Stutzer et al. 2024), null tests
failed on five scan-level parameters. Cuts on these parameters
were tightened or implemented in accept_mod, and the null
tests now pass. The five new or tightened cuts are: 1) any rain
during the scan; 2) wind speeds above 9 m/s; 3) high average
amplitude of the fitted TOD PCA components; and 4–5) outliers
in the fknee of the 0th and 1st order 1/ f filter components8.
Additionally, all other accept_mod cuts from ES are continued,

8 The 1/ f filter fits the time-dependent components c0
t and c1

t , primar-
ily picking up correlated noise and changes in the atmosphere. We per-
form a 1/ f fit to the components as functions of time, and cut when the
fknee falls outside the typical range of values
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Table 3. Data retention overview.

Season 1 Season 2 Explanation

Escan 50.0% 100.0% Retained scans (CESs)

Efeed 84.2% 100.0% Functional feeds

Eel 75.6% 100.0% Inside good elevation range

Eobs 31.8% 100.0% Observational data retention

Efreq 72.8% 74.3% Frequency masking in l2gen.

Estats 57.4% 33.6% Cuts on accept-mod statistics

Eχ2
P(k)

72.2% 100.0% Per-scan auto-PS χ2-test

Ecuts 30.1% 24.9% Map-level data retention

Eχ2
C(k)

52.4% 100.0% Cross-spectrum χ2-test

EC(k) 94.7% 75.0% Cross-spectrum auto combinations

EPS 49.6% 75.0% Retained data at PS-level

Stot 6.8% 21.6%
Final PS-domain sensitivity, calcu-

lated as S tot =

√
E2

obsE
2
cutsEPS

Notes. Surviving fraction of data for different filtering steps of the
pipeline. The left column shows the values used for the ES analysis,
and the right column shows this work. The first 3 rows show individual
data losses to observational constraints, which are combined in the gray
row below. The three next rows show data retention to time and map
domain cuts, again combined below. Finally, the next two rows show
the losses in the power spectrum domain, also combined. The last row,
S tot shows the final fraction of theoretical power spectrum sensitivity
from the combined data retention (see the text for details). The losses
are multiplicative, such that multiplying E for all the individual losses
gives the retained data fractions shown in gray.

and the surviving data fraction has therefore fallen noticeably,
from 57.4 % to 33.6 %. No attempt has yet been made to tune
these cuts, presenting us with future potential for increased data
retention.

Finally, Eχ2
P(k)

is the last scan-level cut. Each scan is binned
to a very low-resolution 3D map, and a series of χ2-tests are per-
formed on different 2D and 3D auto power spectra calculated
from these maps. In the Season 2 pipeline, this cut is removed
entirely, for two reasons. Firstly, we found little evidence that
it helped us pass null tests or remove dangerous systematic er-
rors from the final data. Secondly, we found it difficult to calcu-
late robust pipeline transfer functions for each individual power
spectrum, as individual scans might vary a lot in sky footprint
and pointing pattern. We therefore saw little reason to keep this
cut in the pipeline.

5.3. Power spectrum level data selection

The last section of Table 3 shows the fraction of data retained
after cuts in the power spectrum domain; details on the power
spectrum methodology are described by Stutzer et al. (2024). In
summary, we calculate pseudo cross spectra between different
groups of feeds and across pointing elevations and then average
these spectra to get the CO power spectrum. However, some of
the cross-spectra are discarded before averaging, and this is the
loss discussed in this section. This loss in the power spectrum
domain has to be tracked separately from data loss in the map
and TOD domain, as the losses cannot naively be added together.
Since map values are squared when calculating the power spec-
trum, so is the map-domain data volume when calculating the

power spectrum sensitivity. The total power spectrum sensitivity

is therefore calculated as S tot =

√
E2

obsE
2
cutsEPS.

In this table section, Eχ2
C(k)

constitutes a χ2-test on the indi-
vidual feed-feed cross-spectra and cuts away any cross-spectrum
with an average significance above 5σ. In ES, we lost around
half the data to this cut. The cut has now been entirely removed,
for several reasons. First of all, we now have a much more rig-
orous null test framework, and find that we pass all null tests
without these cuts. Secondly, we strongly prefer moving all data-
inferred cuts to a point as early in the pipeline as possible, to re-
duce any potential biasing effects. It is therefore a considerable
pipeline improvement over ES that we now perform no data-
inferred cuts in the power spectrum domain.

Finally, EC(k) is the fraction of the cross power spectra which
are not auto-combinations between the same feeds. In ES we
performed cross-spectra between all 19 feeds, which resulted in
a loss of 19 out of 19 × 19 cross-spectra, or 5.3%. We now cal-
culate cross-spectra between four groups of feeds, for better mit-
igation of systematic effects and improved overlap, resulting in
a loss of 4 out of 4 × 4 feeds, or 25 %. This is a theoretical ap-
proximation of the sensitivity, as the varying degrees of overlap
between different feeds will interplay with the sensitivity.

5.4. Future prospects for data selection

Combining the retained map-level data with the retained PS-
level data we keep 21.6% of the theoretical sensitivity, compared
to 6.8% for ES, a more than three-fold increase. Most of this
increase comes from much higher observational data retention
Eobs, and the removal of the χ2

P(k) and χ2
C(k) cuts. We now have

no data-driven cuts in the power spectrum domain, where the
signal is the strongest, leaving us less susceptible to signal bias.

In order to pass null tests and allow for the removal of
other cuts, the data retention after cuts on accept_mod statis-
tics, Estats, has decreased quite substantially. We erred on the
side of caution when introducing the new cuts, and once the data
passed all the null tests we made no attempt at reclaiming any
data from these cuts. In future analysis, we are therefore confi-
dent that better tuning of these parameters, assisted by an even
better understanding and filtering of systematic effects, will al-
low us to substantially increase the amount of data retained at
this step.

The numbers in Table 3 are averages across fields, feeds, and
scans, and the combined data retentions, Emap, EPS and S tot are
for simplicity calculated by naively multiplying together the in-
dividual retentions. This ignores certain complications, like cor-
relations between the cuts, and the actual sensitivity might there-
fore differ slightly. It should also be noted that the right column
constitutes the efficiency of Season 2 data in combination with
the Season 2 pipeline, and re-analysis of Season 1 does not reach
a S tot of 21.6%, as the losses to Eobs will still apply even with the
improvements to the pipeline.

6. Pipeline signal impact and updated transfer
functions

The final maps are biased measurements of the CO signal, due
to signal loss incurred in observation and data processing, lead-
ing to a biased power spectrum. This effect can be reversed by
estimating a so-called transfer function T (k∥, k⊥), which quanti-
fies this signal loss at different scales. We separate the angular
modes k⊥ and the frequency/redshift modes k∥, as the impact on
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the CO signal is usually very different in these two dimensions.
In this section, we present updated versions of the three relevant
transfer functions:

– The pipeline transfer function Tp(k∥, k⊥): The time- and map-
domain processing will inevitably remove some CO signal.

– The beam transfer function Tb(k⊥): The size and shape of the
beam will suppress signal on smaller scales in the angular
dimensions.

– The voxel window transfer function Tv(k∥, k⊥): The finite res-
olution of the voxels suppresses signal on both angular and
redshift scales close to the size of the voxels.

6.1. Updated Beam and Voxel Window Transfer functions

In the ES analysis, the beam and voxel window transfer func-
tions were estimated using simulations (Ihle et al. 2022). How-
ever, because the voxel grid and beam of the COMAP instrument
are well understood we can also compute Tb(k⊥) and Tv(k∥, k⊥)
analytically. As the COMAP mapmaker simply uses nearest
neighbor binning of the TOD into equispaced voxels the map
is smoothed by a sinc2(x) function along each map axis. Specif-
ically, the voxel window can be expressed as9

Tv(k∥, k⊥) = Tfreq(k∥)Tpix(k⊥) = sinc2
(
∆x∥k∥

2π

)
sinc2

(
∆x⊥k⊥

2π

)
,

(15)

where ∆x⊥ and ∆x∥ are the voxel sizes in angular and fre-
quency directions. Specifically, we have voxel resolutions of
∆x⊥ ≈ 3.7 Mpc and ∆x∥ ≈ 4.1 Mpc. Note that since the angu-
lar pixel window is approximately radially symmetric we have
approximated T⊥(k⊥) ≈ TRA(kRA) ≈ TDec(kDec). Both the per-
pendicular and parallel voxel transfer functions can be seen in
Figs. 14 and 15.

In principle, we could reduce the voxel window signal im-
pact on smaller scales in both the angular and frequency dimen-
sions by binning the maps into higher resolution voxels, shift-
ing the decline of Tfreq(k∥) and Tpix(k⊥) to higher k-values. In
practice, however, the angular voxel window applies at a scale
where the beam transfer function already suppresses the sig-
nal beyond recovery. Similarly, line broadening is expected to
heavily attenuate the CO signal above ∼1 Mpc−1 (Chung et al.
2021), although the exact extent of line-broadening depends on
galaxy properties that are not yet well constrained. Additionally,
it would be more computationally costly to perform the analysis
in higher resolution.

Next, given the radial beam profile B(r) (see Fig. 2 of Ihle
et al. 2022) and the convolution theorem we can obtain the beam
transfer function as

Tb(k⊥) = |F {B(r)}|2, (16)

where r is the radius from the beam center, and F is the (2D)
Fourier transform. As we assume the telescope beam to be ra-
dially symmetric the resulting beam smoothing transfer function

will be a function of just k⊥ =
√

k2
RA + k2

Dec giving Tb(k⊥). The
main-beam efficiency is taken into account in the same manner
as Ihle et al. (2022) prior to computing the Fourier transform of
the beam. As we can see in Figs. 14 and 15 the beam is by far the
most dominant effect limiting our ability to recover the signal at
smaller scales.
9 Note that we use the convention where sinc(x) = sin(πx)

πx .
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Fig. 14. Effective one-dimensional transfer functions for the instrumen-
tal beam (blue curve), pixel window (black curve), and frequency win-
dow (red curve) resulting from spherical averaging over the correspond-
ing two-dimensional transfer functions shown in Fig. 15.

6.2. The signal injection pipeline

The last transfer function is that of the pipeline, which will in-
evitably remove some CO signal from the data. We estimate this
impact by a signal injection pipeline, similar to what was done
in ES (Foss et al. 2022).

We inject a simulated CO signal into the real Level 1 data
before any filtering. The data are then propagated through the
entire pipeline as usual, and the resulting mock observations are
then compared to the known, unfiltered input signal to estimate
the pipeline transfer function. We chose to inject the simulations
into the actual data, instead of simulating the entire observation,
in order to mimic the real systematic error and noise properties
as closely as possible.

For the simulations we use approximate cosmological
dark-matter-only simulations using the peak-patch method of
Bond & Myers (1996) with updates by Stein et al. (2019).
These are subsequently populated with CO emission using
the COMAP fiducial model derived in Chung et al. (2022)
(‘UM+COLDz+COPSS’), which describes CO luminosities as
a function of dark matter halo masses, LCO(Mhalo). These simu-
lated mock maps are then boosted by a factor of 20, to recover a
less noisy transfer function. This is counter-weighted by split-
ting the full dataset in 10 subsets, and passing each of these
separately though the pipeline. We denote the maps as smock

ν,θ ,
where ν and θ are the frequency (redshift) and angular (pixel)
dimensions, respectively. The TOD pipeline is quantitatively un-
affected by the injection of this weak CO signal – even after a
factor 20 boost, the brightest CO pixel in the simulation is still
more than four orders of magnitude below the system tempera-
ture. In the map-domain, the SNR is much higher, and the im-
plications of injecting a boosted signal will be discussed in Sect.
6.4, where we conclude that the map-PCA filter also behaves
predictably for our chosen boost strength.

Using the real telescope pointing P, and estimated gain G
and beam B, we get the signal-injected Level 1 data as

dmock
t,ν = GPBsmock

θ,ν + nt,ν, (17)

where nν,t represents the actual Level 1 data, which acts as the
noise term with respect to the injected mock CO signal. In order
to mimic the observed CO signal as closely as possible, we also
beam-smooth the maps used for the signal injection. The mock
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Fig. 15. Effective transfer functions used in the COMAP pipeline. From left to right, the five panels show 1) the filter transfer function, Tf(k),
quantifying signal loss due to pipeline filters; 2) the pixel window transfer function Tpix(k) resulting from binning the TOD into a pixel grid; 3) the
frequency window transfer function, Tfreq(k), resulting from data down-sampling in frequency; 4) the beam smoothing transfer function, Tb(k);
and 5) the full combined transfer function, T (k), corresponding to the product of the four individual transfer functions. The striped region to the
left is not used for our final analysis but is shown for completeness. Note that the leftmost panel has a colorbar that saturates at 0.4, unlike the
other four.

data dmock
ν,t are then filtered by the pipeline to produce a mock

map:

mmock
θ,ν = fmap

[
M

(
fTOD

[
dmock
ν,t

])]

= fmap

[
M

(
fTOD

[
GPBsmock

ν,t + nν,t
])]
,

(18)

where we let fTOD represent all time-domain filtering, M rep-
resents a noise-weighted binned map-maker, as described in
Sect. 4.1, and fmap represents the map-domain PCA filter. Ex-
amples of resulting maps are shown in Appendix D.

To make sure that the reference CO simulation smock
ν,θ is di-

rectly comparable to the filtered maps, we also perform some of
the same treatment on it: we beam-smooth it, read it into a TOD
with the real telescope pointing, and bin the TOD back into a
map with the same resolution as the real maps. The difference,
however, is that this is done completely without noise, and we
do not apply any of the filters. We can write this as

ŝmock
ν,θ = M

(
GPBsmock

ν,θ

)
. (19)

Doing it this way means that we isolate the filter transfer func-
tion, and the effect of the beam and pixelation are not included.
This is intentional, as we already estimated these impacts ana-
lytically in Sect. 6.1.

From these maps, we can now write the filter transfer func-
tion as

T =
C(mmock, ŝmock)

P(ŝmock)
, (20)

where the cross-spectrum, C in the numerator between the fil-
tered mock data, mmock, and the unfiltered mock signal, ŝmock,
picks up all common signal modes after filtering while cancel-
ing residual systematic effects and noise in the mock data. The
cross-spectrum is divided by the unfiltered signal auto spectrum,
Pk(ŝmock), to obtain a filter transfer function T .

Equation (20) represents a more robust estimator of the trans-
fer function than the one employed in ES (Foss et al. (2022) Eq.
34), both because it does not require an accurate estimation of
the noise power spectrum, and because using the cross-spectrum
estimator as opposed to the auto-spectrum estimator makes it
less susceptible to picking up signal in the data which does not
originate from the injected CO, e.g. from systematic effects.

For the signal injection, we use all scans from Seasons 1 and
2a for Field 2. Preliminary analysis of the transfer functions of
Fields 1 and 3, and the slower pointing scans of Season 2b, show
that they are very similar, especially in the k-regime included
in this work. As mentioned in the beginning of the section, we
divide the scans into 10 random and equally large parts. Different
dark matter halo simulations are injected into each part. This
both reduces the impact of sample variance in the simulations
and allows us to boost the signal a bit more without having to
worry about PCA non-linearity (see the next section). We then
average over the 10 resulting transfer functions, to get the final
transfer function estimate.

6.3. Updated filter transfer function

The left-most panel of Fig. 15 shows the full COMAP pipeline
transfer function, as described in the previous section, in parallel
and perpendicular directions (i.e., frequency/redshift and angu-
lar scale, respectively). The Season 2 publications (Stutzer et al.
2024; Chung et al. 2024) exclude some of the larger angular
scales accessible in the maps due to concerns about mode mixing
and unconstrained modes due to poor overlap. For reference, the
cutoff value for k⊥ at 0.93 MPc−1 corresponds to angular scales
of 36.4 arcmin.

Figure 16 shows the individual contributions of each filter
to the full transfer function. We are somewhat limited on large
angular scales by the normalization and pointing filters, and very
limited on large redshift scales by the 1/ f filter. The right-most
column is noisy because the beam suppresses most of the signal
at these small scales.

We also note that a small issue was discovered with the trans-
fer function analysis published in Ihle et al. (2022), relating to
how the mock signal was interpolated when injected into the
TOD. The effect was that the transfer functions from ES was
slightly underestimated, and the transfer function from Ihle et al.
(2022) peaked at around 0.8. This issue has now been solved,
and the new transfer function peaks correctly at almost 1.0.

6.4. Linearity of PCA filtering

All filters except the various PCAs constitute linear operations
on the data. Linearity makes transfer function estimation much

Article number, page 15 of 22
173



A&A proofs: manuscript no. aanda

0.04 0.1 0.2 0.5 1.0
k [MPc 1]

0.01

0.05

0.2

0.6

k
[M

Pc
1 ]

1. Normalization

0.04 0.1 0.2 0.5 1.0
k [MPc 1]

2. Pointing filter

0.04 0.1 0.2 0.5 1.0
k [MPc 1]

3. 1/f filter

0.04 0.1 0.2 0.5 1.0
k [MPc 1]

4. PCA filter

0.04 0.1 0.2 0.5 1.0
k [MPc 1]

5. Map-PCA filter

0.4 0.6 0.8 1.0
Tnorm(k , k )

0.4 0.6 0.8 1.0
Tpoint(k , k )

0.4 0.6 0.8 1.0
T1/f(k , k )

0.4 0.6 0.8 1.0
TPCA(k , k )

0.4 0.6 0.8 1.0
TmPCA(k , k )

Fig. 16. Transfer functions for each of the five individual filters used in the pipeline. The normalization and pointing filters suppress large angular
scales, while the 1/ f filter almost entirely eliminates parallel modes larger than k = 0.02 Mpc−1. The TOD PCA filter has almost no impact on the
signal, primarily because so few modes are subtracted. The map PCA has a more noticeable signal loss, but it remains relatively scale-independent
because the signal is still weak enough (see Sect. 6.4). The total pipeline transfer function shown in the leftmost panel of Fig. 15 is the product of
these. The striped region to the left is not used in Season 2 results.

simpler, as neither the choice of CO signal model nor its level
with respect to the noise impacts the resulting transfer function.
For the PCA filters, both these factors could in principle impact
the shape of the transfer function.

To quantify the sensitivity of the transfer function to such
factors, we constructed a simplified version of the signal-
injection pipeline. In order to be able to run many simulations,
we made the following alterations to the pipeline:

– We bypass the time domain, and perform the signal injection
in the map domain. This is the domain where the CO SNR is
the strongest, and the map-domain processing is much more
computationally efficient than that for the time-domain. The
map mocks are the same as in Sect. 6.2, with some boost
factor b.

– Instead of the real map, we use white noise simulations,
drawn from the white noise uncertainty of Field 2.

– The resulting transfer function is calculated using Eq. (20),
and then averaged across the simulations and feeds.

This process is repeated for 40,000 noise realizations for
each of the 19 feeds, with boosts between 0.3 and 300 relative to
the fiducial CO model of Chung et al. (2022). The variation of
the resulting average transfer functions with boost strength can
be seen in Fig. 17. The figure shows two distinct regimes. In the
low SNR regime to around SNR=0.02 (boost 10), the PCA filter
behaves linearly with respect to the CO signal. This is demon-
strated by the independence of the transfer function to the SNR
in this regime. Additionally, all the k-points lie on top of each
other around a value of 0.96, meaning that all scales are sup-
pressed at the same level because the PCA is simply fitting and
subtracting random white noise. In the second regime, at high
SNR, the transfer function is strongly scale-dependent but flat-
tens out as the signal dominates the noise.

In conclusion, for a noisy matrix with an accompanying sig-
nal, a PCA filter behaves linearly with respect to the signal for a
sufficiently weak signal. For us this means that when estimating
the transfer functions, we need to use a sufficiently low boost
value to avoid biasing our estimate of the transfer function. The
individual data chunks used to estimate the transfer function are
well within this linear regime, at an SNR of 0.004. The actual
CO signal is of course of unknown amplitude, but assuming
the fiducial model of Chung et al. (2022) results in an SNR of

0.002. If the CO signal were even close to the unsafe regime of
SNR > 0.02, we would already have made a strong detection of
it, as this would correspond to a 100 times brighter power spec-
trum than the fiducial model. We also note that in the future,
as the experiment’s sensitivity increases, we can simply perform
the map PCA on sub-divisions of the data to keep the SNR low,
as we already do on Season 1 + 2a and Season 2b, due to their
differing pointing strategy.

This analysis was performed on the map-domain PCA filter,
as the map domain is where the CO SNR is the strongest. Equiv-
alent analysis has been performed for the TOD PCA filter, but
the CO signal is so weak at the per-scan level that a boost factor
of 2000 or greater is required to make it behave non-linearly with
respect to the CO signal. The final transfer function is currently
estimated jointly for all filters, but in future work we intend to
estimate the transfer function for the mPCA separately from the
other filters, gaining higher sensitivity on the linear parts of the
pipeline that do not require as low a boost.

7. Summary and Conclusions

We have presented the improvements in data analysis, filtering,
and data selection which have enabled us to increase the power
spectrum sensitivity to 21.6% of the theoretical maximum, up
from 6.8% in the ES publications. Combined with an increased
integration time, the two most sensitive Season 2 fields both have
a voxel uncertainty of < 50 µK across ∼1.5◦ × 1.5◦ patches on
the sky. Across the three fields, this corresponds to a 2.5 times
decrease in the total map uncertainty.

The largest increase in data retention comes from improve-
ments in observational strategy. We now solely observe using
CES, whereas in Season 1 50% of observations used Lissajous
scans which proved prone to systematic effects and were not in-
cluded in our ES analysis. Additionally, we now observe within
elevation boundaries of 35◦–65◦, a region with minimal gradi-
ents in ground sidelobe pickup. In Season 1, 25% of scans fell
outside this range and were discarded.

Additional increases in data retention have come from the
removal of data cuts. In Season 1, power spectrum χ2 tests were
performed both on individual scan maps and on individual feed-
feed cross-spectra before averaging them. These cuts removed
(respectively) 28% of scans and 48% of cross-spectra, and are
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Fig. 17. Map PCA transfer function T (k) as a function of the voxel
SNR, with the different k-scales shown as differently colored lines. The
equivalent boost used to the fiducial CO model is shown as the top x-
axis. Modes with k-values that fall within the analysis bounds are shown
as solid, while modes outside the scope of COMAP Season 2 are shown
as striped. The horizontal green line shows the average transfer function
in the low-SNR regime, which is 0.96. The vertical blue line shows the
SNR that the maps would have if the fiducial model of Chung et al.
(2022) perfectly described the true CO signal.

now no longer applied. This also reduces the possibility of signal
bias owing to data-inferred cuts late in the pipeline.

In order to pass null tests and allow for the removal of other
cuts, scan-level data cuts were implemented on six new house-
keeping statistics, increasing the data lost to such cuts from 43%
to 66%. However, no attempt was made to reclaim data after the
null tests had passed, and the necessity of the cuts carried over
from the ES pipeline is largely untested. We are confident this
number can be greatly reduced in future work.

The removal of data cuts was also made possible by better
mitigation of systematic errors. The time-domain pipeline has
numerous smaller improvements, such as a new per-feed PCA
filter, dynamically determined number of PCA components, bet-
ter masking of the Tsys spikes, and more manual masking of con-
sistently problematic channels. Most impactful, however, was
the introduction of a map-level PCA filter, which proved essen-
tial to dealing with a couple of pointing-correlated systematic
errors that emerged due to increased sensitivity. We show that
the map PCA filter suppresses these effects to below the noise
level, and decreases the standard deviation of slightly smoothed
maps by 67%, to a level consistent with the expected white noise.

Although the PCA filters constitute non-linear filtering, we
have shown that the PCA filters behave linearly with respect to
any sufficiently weak signal. We find that the expected CO sig-
nal falls well within this regime, substantially simplifying trans-
fer function estimation. We repeat the signal-injection pipeline
transfer function estimation of the ES publications and ensure
that the injected signal is also weak enough to maintain the PCA
filters in their linear range. We have also replaced the simulation-
based estimates of the beam and voxel windows transfer func-
tions with more robust analytic expressions, improving their re-
liability at small scales.

COMAP has thus greatly increased its integration speed both
through observational improvements, better processing, and re-
duced data cuts. Our final sensitivity retention of 21.6% of the
theoretical maximum still leaves significant room for improve-
ment, and we aim to increase this further as the Pathfinder con-
tinues to observe.
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Appendix A: Dynamic PCA threshold

It is known that the largest singular value of a Gaussian
P × N matrix with variance σ2 can be approximated as
λ ≈ C(P,N) · σ(

√
P +
√

N) for large matrices (Geman 1980;
Rudelson & Vershynin 2010; Vershynin 2010), where C(P,N) ≈
1 is some correction-factor for which no reliable theoretical
model exists. We, therefore, simulated 50,000 noise matrices and
empirically solved for C(P,N) within the relevant regime of N
from 5,000 to 30,000, and P from 100 to 80,000, which captures
all matrix sizes our pipeline will encounter. We find that the cor-
rection factor can, in our size range, be well-modeled as

C(P,N) = 1.00476 − 0.00396 · log(P) · log(N)

+ 0.0000876 · log(P)2 · log(N)2. (A.1)

We have no doubt that this factor is unlikely to extrapolate sen-
sibly beyond the range we tested it in, but that is of no concern.
The relative error to the mean of our 50,000 simulations is less
than 0.1% within our defined bounds.

Appendix B: The map-domain PCA filter

Appendix B.1: The effect of noise-weighting on PCA

This section expands on the PCA discussion of Sect. 4.2, and we
keep the same variable and index names, for easier comparison.
The first principal component w1 and its amplitude a1 of a PCA10

for a data-matrix m are the vectors that minimize

f (a, v) =
∑

ν

∑

p

(mν,p − aνwp)2. (B.1)

We might, however, want to find these vectors while weighting
the elements of m, for example, if it is non-uniformly noisy. If
the weights themselves can be separated into an outer product,
such that we have row and column uncertainties σrow and σcol,
this can trivially be done by inverse-variance weighting the ma-
trix elements of the expression above. We now minimize

f (a,w) =
∑

ν

∑

p

(mν,p − aνwp)2

σrow
ν σ

col
p

, (B.2)

which can be expanded to

f (a,w) =
∑

ν

∑

p


mν,p√
σrow
ν σ

col
p

− aν√
σrow
ν

vp√
σcol

p



2

. (B.3)

This is still a valid PCA problem, on the same form as Eq. (B.1),
with a′ = a/σrow and w′ = w/σcol now being the amplitude
and component we fit for. If m contains a feature that can be
decomposed into an outer product, this will be recovered by w =
w′σrow and a = a′σcol.

However, if we want to weight every element of m with ar-
bitrary uncertainty σν,p, this no longer holds. We can still write
the problem simply as

f (a,w) =
∑

ν

∑

p

(mν,p − aνwp)2

σ2
ν,p

(B.4)

10 In the regular PCA formalism, the eigenvectors w are typically unit
vectors of length 1, which is not automatically the case throughout this
section. However, w can be normalized to 1 at any point by inversely
adjusting a. In a regular PCA, a (scalar) singular value is present in the
solution. In the formalism presented here, there is no explicit singular
value, and it can be absorbed into the amplitudes a.

which can be expanded to

f (a,w) =
∑

ν

∑

p

(
mν,p
σν,p

− aν√
σν,p

wp√
σν,p

)2

, (B.5)

but because aν/σν,p and wp/σν,p are now matrices and not vec-
tors, this minimization problem is no longer a PCA. We therefore
have no way of recovering the desired a and w corresponding to
the matrix m if we perform the regular PCA algorithm on the
matrix mν,p/σν,p, for a general σν,p. We must therefore find a
different way of minimizing B.4, which is discussed in the fol-
lowing section.

Appendix B.2: Generalization of the PCA algorithm

With the generalization of Eq. (B.4), we can no longer utilize the
usual methods of solving a PCA problem, such as the SVD. In-
stead we employ the technique suggested by Tamuz et al. (2005)
and Gabriel & Zamir (1979), where we iteratively make im-
proved guesses at w and a:

1. Make an initial guess at a and w, either completely random
or informed by some knowledge of the data.

2. Solve for the optimal a while holding the current w constant
by differentiating Eq. (B.4), holding d f (a,w)

da = 0, and solving
for a as

aν =

∑
p

mν,pwp

σ2
ν,p

∑
p

w2
p

σ2
ν,p

. (B.6)

3. Given the new a, calculate d f (a,w)
dw = 0, and solve for the new

optimal wp as

wp =

∑
ν

mν,paν
σ2
ν,p

∑
ν

a2
ν

σ2
ν,p

. (B.7)

4. Repeat 2. and 3. until the incremental changes in a and w are
below some chosen threshold ϵ.

Although we cannot prove that this is a convex problem and that
the optimal solution is guaranteed, we have never seen it con-
verge to an unreasonable solution. Additional robustness can be
achieved by repeating the fit with different initial guesses, and
confirming that they converge to the same solution.

The algorithm will converge on the same solution as the reg-
ular PCA in the case of uniform weights σν,p = 1, or where the
weights can be perfectly decomposed into an outer product of
weights in rows and columns, as in Eq. (B.2).

Appendix B.2.1: Multiple components

Using this decomposition, we can fit multiple components, sim-
ilar to the ordered set of principal components in the PCA, by
simply subtracting the previous components from the data. We
then simply define a(1)

i and m(1)
j as the results from the previous

section, and let

m(1)
ν,p = mν,p − a1

νw
1
p. (B.8)

We can then find a(2)
ν and w(2)

p by performing the procedure from
the previous section on m(1)

ν,p. This is again, in the case ofσν,p = 1,
entirely equivalent to finding the largest principal components of
mν,p.
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Fig. C.1. Filtered time-domain data stacked on the turn-around of the telescope, to emphasize the turn-around systematic effect, for four selected
feeds. The data is an average across all turn-arounds of all available Level 2 scans. The data is divided by the system temperature of the data in
each channel, and the values therefore represent the signal strength of the effect relative to the average white noise level in the scans.

Appendix C: Start-of-scan and turn-around effects

As outlined in Sect. 4.3, our increased sensitivity has revealed
two systematic effects in our maps which were not discovered in
our ES publications. We here explore these effects in more detail,
especially in the time-domain, where these effects are easier to
understand than in the map-domain. Note that the data shown in
this section has not been filtered by the map-PCA filter, and the
systematic effects demonstrated are (to the best of our analysis)
not present in our final maps.

Appendix C.1: The turn-around effect

The turn-around effect is a sharp feature located around the az-
imuth edges of the scanning pattern, where the telescope turns.
In Fields 2 and 3, which rise and set almost vertically across the
sky (see Figure 1) and are therefore observed at almost the same
angle at all times, this effect manifests as sharp edges on the top
and bottom (i.e. the highest/lowest declinations) of the equato-
rial coordinate maps. This can be seen in the first and third rows
of Fig. 10.

To better understand this systematic effect, we have extracted
the data around the telescope turn-arounds for all our scans, and
stacked the result on the turn-around time. Figure C.1 shows the
result for four selected feeds. For all four feeds, we see a fea-
ture that peaks around the turn but is also present both leading
up to and after the turn. In the frequency direction the feature
has a slow wave-like feature. The feature manifests differently
in different feeds and frequencies but has in common that it is
wave-like both in frequency and time and peaks in power around
the turn-around. As the telescope turn-arounds are the regions
with the highest acceleration, a likely origin of this effect is some
standing wave induced by the mechanical vibrations of the az-
imuth drive. Some feeds show significantly stronger manifesta-
tions of the turn-around effect than others, but all feeds are af-
fected to some extent, and no explanation has yet been found as
to why feeds are affected differently.

Attempts have been made to model this effect in the time-
domain. This has proven difficult, among other reasons because
the effect is actually very weak compared to the noise level in
a single scan. As seen from Fig. C.1, the effect peaks at more
than four orders of magnitude below the noise temperature of
the telescope. The effect is only visible in the final maps because
it seems strongly coherent across different scans. However, be-
cause we have to combine thousands of scans in order to observe
the effect, it is also difficult to assess if the effect is indeed per-
fectly coherent across all scans, or if we are simply observing the
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Fig. C.2. Same setup as Figure C.1, but stacked on the beginning of
each scan, to emphasize the start-of-scan systematic effect. Notice the
difference in the colorbar limits.

average impact of this effect. The efforts of modeling the effect in
the time domain was also made somewhat moot by how effective
the map-PCA was at removing the effect in the map-domain.

Appendix C.2: The start-of-scan effect

The start-of-scan effect is similar to the turn-around effect in that
it is also weak in individual scans, but coherently adds as we add
scans. Figure C.2 shows a plot similar to what was presented in
the previous section, but that stacks all available Level 2 scans
on the beginning of each scan. For Feed 15, we see a very strong
wave across frequency, which falls to zero around 17 seconds
after the start of the scan, and then switches from negative to
positive, or positive to negative power. This is simply an artifact
of the low-pass normalization we perform during TOD process-
ing, and the strong wave at the very beginning of each scan is
the real start-of-scan feature. This artifact explains why we, in
the second and third rows of Figure 10 (where the start-of-scan
effect can be seen), observe a similar switching of power as we
move from the right edge of the map and towards the center.

Looking at Feed 11 in Figure C.2 a much weaker, but similar,
start-of-scan feature can be seen. Generally, all feeds show very
similar behavior to either Feed 11 or 15: all Feeds associated
with DCM1-2 (Feeds 6, 14, 15, 16, and 17) have very similar
behavior, and all remaining Feeds show only a weak start-of-
scan effect, as appears in Feed 11. It is unclear why this clear
divide exists, and how it relates to DCM1-2.

The exact origin of the start-of-scan effect is unknown, but a
standing wave induced by mechanical vibration is also a strong
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Fig. D.1. Illustration of the signal-injection method for transfer function
analysis for different signal boost strengths. The top left plot shows the
signal-only CO simulation over the relevant patch. The remaining plots
show the resulting maps of the simulation injected into the real TOD
with different boost strengths and passed through the entire COMAP
pipeline. The boost is relative to the fiducial model of Chung et al.
(2022), used in the simulations. All four plots show the same frequency
slice centered at 26.953 GHz.

candidate for this systematic effect. The re-pointing that is per-
formed in between scans is currently the only time in the scan-
ning strategy the elevation drive is utilized, as our scans are per-
formed in constant elevation mode.

As with the turn-around effect, some effort was made to
model the start-of-scan effect in the time domain. This was fairly
successful, and fitting a decaying exponential function to the be-
ginning of each scan appeared to remove more than 90 % of
the signal induced by this effect. However, the map-PCA proved
much more effective than the time-domain efforts, and they are
therefore not employed.

Appendix D: Signal injection example maps

Figure D.1 illustrates the signal injection pipeline. The first fig-
ure shows the CO simulation itself, while the subsequent three
panels show the results of injecting this simulation into the real
data with different boost strengths. Note that the simulation is
injected into the TOD of the Level 1 data, and the maps shown
have gone through the entire pipeline.

Appendix E: Uncertainty and frequency maps

Figure E.1 compares the uncertainties of the Season 2 maps to
the Season 1 maps. The values are averages across all frequen-
cies, calculated by inverse-variance co-addition of the uncertain-
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Fig. E.1. Uncertainties across the three fields for Season 2 (S2) maps
published in this work (left), and the Season 1 (S1) maps published in
ES (right).

ties, as

σmean =

√
1

⟨1/σ2
ν⟩
. (E.1)

All frequencies have relatively similar uncertainties, with some
exceptions close to the Band edges. The center of the maps
have a uncertainties of around 25 µK, while the high-sensitivity
∼1.5◦ × 1.5◦ regions have an uncertainty of < 50 muK for Fields
2 and 3, with the Field 1 region being slightly smaller.

Figure E.2 shows feed-coadded individual frequency maps
for Field 2 across 32 GHz − 34 GHz (1/4th of all channels) for
all the data of Season 1 and 2 combined, processed with the Sea-
son 2 pipeline. All maps are noise dominated after the map-level
PCA filtering. The noise increases towards the highest frequen-
cies because of aliasing cuts on older data (see Sect. 2.3).
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ABSTRACT

We present updated constraints on the cosmological 3D power spectrum of carbon monoxide CO(1–0) emission in the redshift range
2.4–3.4. The constraints are derived from the two first seasons of Carbon monOxide Mapping Array Project (COMAP) Pathfinder line-
intensity mapping observations aiming to trace star-formation during the Epoch of Galaxy Assembly. These results improve on the pre-
vious Early Science (ES) results through both increased data volume and improved data processing methodology. On the methodolog-
ical side, we now perform cross-correlations between groups of detectors (“feed-groups”), as opposed to cross-correlations between
single feeds, and this new feed-group pseudo power spectrum (FGPXS) is constructed to be more robust against systematic effects. In
terms of data volume, the effective mapping speed is significantly increased due to an improved observational strategy as well as better
data selection methodology. The updated spherically- and field-averaged FGPXS, C̃(k), is consistent with zero, at a probability-to-
exceed of around 34 %, with an excess of 2.7σ in the most sensitive bin. Our power spectrum estimate is about an order of magnitude
more sensitive in our six deepest bins across 0.09 Mpc−1 < k < 0.73 Mpc−1, as compared to the feed-feed pseudo power spectrum
(FPXS) of COMAP ES. Each of these bins individually constrains the CO power spectrum to kPCO(k) < 2400 − 4900 µK2Mpc2 at
95 % confidence. To monitor potential contamination from residual systematic effects, we analyze a set of 312 difference-map null
tests and find that these are consistent with the instrumental noise prediction. In sum, these results provide the strongest direct con-
straints on the cosmological 3D CO(1–0) power spectrum published to date.

Key words. galaxies: high-redshift – radio lines: galaxies – diffuse radiation – methods: data analysis – methods: observational

1. Introduction

By collecting the combined redshift-dependent line emission
from all sources, both diffusely emitting gas and all galaxies,
bright and faint, line intensity mapping (LIM) aims to map the

⋆ e-mail: n.o.stutzer@astro.uio.no

Universe from large to small scales in three dimensions (see
Madau et al. 1997; Battye et al. 2004; Peterson et al. 2006; Loeb
& Wyithe 2008; Kovetz et al. 2017, 2019, and references therein
for details on LIM). Several emission lines of interest have been
proposed, among them 21 cm, carbon monoxide (CO), ionized
carbon ([C ii]), Lyα and Hα, each with different astrophysical

Article number, page 1 of 17

ar
X

iv
:2

40
6.

07
51

1v
2 

 [
as

tr
o-

ph
.C

O
] 

 1
4 

Ju
n 

20
24

183



A&A proofs: manuscript no. aanda

and cosmological goals (Kovetz et al. 2017, 2019; Bernal &
Kovetz 2022).

At the forefront of CO LIM is the CO Mapping Array Project
(COMAP), currently in its Pathfinder phase, which aims to mea-
sure the large-scale CO(1–0) line emission at redshifts z ∼
2.4–3.4, tracing the star-forming galaxies around the Epoch of
Galaxy Assembly (Cleary et al. 2022). The COMAP Pathfinder
instrument is a focal plane array of 19 detectors (which we refer
to as "feeds") each with independent receiver electronics, fielded
on a 10.4m Leighton telescope at the Owens Valley Radio Obser-
vatory. It observes in a frequency range of 26–34 GHz and is sen-
sitive to 115.27 GHz CO(1–0) rotational line emission at redshift
z ∼ 2.4–3.4. Based on the first year of observations (“Season 1”),
COMAP obtained the first direct limits on the 3D CO(1–0) clus-
tering power spectrum, already ruling out several models from
the literature. These results were published in a series of eight
Early Science (ES) papers, along with a preview of our ongo-
ing continuum survey of the Galaxy, a look at the prospects for
CO LIM at the Epoch of Reionization, and a cross-correlation of
ES data with an overlapping galaxy survey (Cleary et al. 2022;
Lamb et al. 2022; Foss et al. 2022; Ihle et al. 2022; Chung et al.
2022; Rennie et al. 2022; Breysse et al. 2022; Dunne et al. 2024).

In this paper, the second of a series of three, we update our
power spectrum results based on observations taken in our first
and second seasons (S2), following Ihle et al. (2022). We build
on the filtered and calibrated low-level COMAP data products
described in detail by Lunde et al. (2024). Implications for astro-
physical constraints and modeling are explored by Chung et al.
(2024).

As discussed by Lunde et al. (2024), the current experimen-
tal design is overall very similar to ES, but takes into account a
few important lessons learned. For example, COMAP Season 2
uses only constant elevation scans (CES), not Lissajous scans,
because one of the main conclusions of Ihle et al. (2022) was
that changes in elevation within a scan result in significant resid-
ual systematic effects from changes in the atmospheric and or
ground pickup signals. We also avoid elevations that are strongly
contaminated by ground radiation received in the sidelobes. In
addition, the instrument drive speed was decreased around May
2022 in order to reduce the stress on the telescope (Lunde
et al. 2024), and the effective instrumental properties therefore
changed notably about halfway through the second season. We
denote periods before and after the speed change the “fast-” and
“slow-moving azimuth scans”, respectively (and are equivalent
to the naming convention “Season 1+Season 2a” and “Season
2b” used by Lunde et al. (2024), where “a” and “b” denote the
period before and after the drive changes).

For consistency with previous COMAP publications, we
adopt the same ΛCDM cosmological model as Chung et al.
(2022) and Li et al. (2016) when converting distances in our map
cubes from angular and spectral frequency units into physical
units. Explicitly, we set Ωm = 0.286, ΩΛ = 0.714, Ωb = 0.047,
H0 = 100 h km s−1 Mpc−1 where h = 0.7, σ8 = 0.82 and
ns = 0.96, which is roughly consistent with WMAP (Hinshaw
et al. 2013). Unless otherwise stated all distances and distance-
derived quantities in megaparsecs carry an implicit h−1.

This paper is structured as follows: the power spectrum
methodology and updated null test framework are presented in
Sect. 2 and 3 respectively. In Sect. 4 we present the power spec-
trum transfer function used to account for signal loss from low-
level filtering and instrumental effects. Sections 5 and 6 show
the power spectrum results and the outcome of our null tests.
Our conclusions are presented in Sect. 7.

Table 1. Feed-groups used in the feed-group pseudo cross-power spec-
trum.

DCM1 (feed-group) Feeds
1 . . . . . . . . . . . . . . . . . . 1, 4, 5, 12, 13
2 . . . . . . . . . . . . . . . . . . 6, 14, 15, 16
3 . . . . . . . . . . . . . . . . . . 2, 7, 18, 19
4 . . . . . . . . . . . . . . . . . . 3, 8, 9, 10, 11

Notes. “Feed groups” and their associated first down-conversion
(DCM1) electronics.

2. Power spectrum methodology

The power spectrum fully characterizes the information con-
tained in a Gaussian random field and so is one of the most pow-
erful statistics for cosmological density fields. While the non-
linear physics of galactic emissions to which COMAP is sensi-
tive is not fully Gaussian, the power spectrum is still a useful
statistic, and complementary to other summary statistics such as
the Voxel Intensity Distribution (VID); (Breysse et al. 2017; Ihle
et al. 2019) or the Deconvolved Distribution Estimator (DDE);
(Breysse et al. 2023; Chung et al. 2023).

The COMAP Pathfinder uses three-dimensional maps of the
CO(1–0) emission to constrain models of star formation during
the Epoch of Galaxy Assembly. While the maps already rep-
resent the compression of hundreds of terabytes of raw time-
ordered data (TOD) into only a few gigabytes, it is possible to
encode and compress much of the relevant astrophysical and cos-
mological information contained within the maps even more by
using summary statistics like the power spectrum. As such the
power spectra are easier and more computationally efficient to
work with when constraining astrophysical and cosmological in-
formation of the mapped emission field.

In the COMAP ES paper series, Ihle et al. (2022) devised a
novel cross-power spectrum methodology, the feed-feed pseudo
cross-power spectrum (FPXS), constructed to be robust against
systematic errors. This work largely builds on the methodology
developed by Ihle et al. (2022) and lessons learned since the
ES data processing to improve the power spectrum constraints
of COMAP even further. In the following we summarize the
FPXS methodology used and outline what has changed from the
methodology developed by Ihle et al. (2022).

2.1. The Feed-Group Pseudo Cross-Power Spectrum

We begin by defining the general concepts of an auto- and cross-
power spectrum. The auto-power spectrum can simply be de-
fined as the variance of Fourier modes of a map. It can be written
as

P(k) =
Vvox

Nvox
⟨|F {mi}|2⟩ = Vvox

Nvox
⟨| fi(k)|2⟩, (1)

where Vvox is the volume of a voxel (i.e. three-dimensional pixel)
in units Mpc3, Nvox is the number of voxels and fi(k) are the
Fourier coefficients of the map mi at wavenumber k, in units
Mpc−1. For the Fourier transform F {mi} of the map mi we use
the same convention previously used in ES (Ihle et al. 2022; Har-
ris et al. 2020). We can safely use the regular Fourier basis in
the case of COMAP, instead of the more general spherical har-
monics, as the fields are only ∼ 2◦ in diameter and the flat-sky
approximation is sufficient. Note that, since our maps are three-
dimensional, so is the power spectrum derived from those maps.
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The auto-power spectrum will pick up all components that
contribute to the variance in the map: signal, noise and system-
atic effects. It can thus be decomposed into

P(k) = PCO(k) + Pnoise(k) + Psyst(k), (2)

showing contributions from CO signal1, noise and systematic ef-
fects, respectively. To obtain an unbiased estimate of the signal
power spectrum, the systematic effects and noise properties of
the map have to be understood and modeled.

Similarly to the auto-power spectrum, we can define a cross-
power spectrum between two maps to be the covariance of
Fourier coefficients of the two. It can be written as

Ci j(k) =
Vvox

Nvox

〈
Re{ f ∗i (k) f j(k)}

〉
, (3)

where fi and f j represent Fourier coefficients of two different
maps i and j. The cross-power spectrum reduces to the auto-
power spectrum if the two maps i and j are chosen to be identi-
cal.

As opposed to the auto-power spectrum, a cross-power spec-
trum will only be sensitive to correlated common modes between
the two maps. Independent noise and independent systematic ef-
fects will therefore be canceled out and we can decompose the
cross-spectrum as

Cij(k) = PCO(k) +Ci j,common(k), (4)

where Ci j,common(k) represents the cross-spectrum contribution
from some common systematic effect between the two maps.

We can now see a powerful property of the cross-spectrum: if
we can choose two maps with independent noise properties and
statistically unique systematic effects, giving Ci j,common(k) = 0,
the cross-power spectrum will yield an unbiased estimator for
the signal power spectrum PCO(k).

This is the main property that the feed-feed pseudo cross-
power spectrum (FPXS) developed by Ihle et al. (2022) is built to
exploit. Because the COMAP Pathfinder measures the sky with
19 feeds, each with its own receiver signal chain, the maps from
different detectors will have independent noise properties. Ad-
ditionally, several systematic effects are believed to be unique
to each feed, or specific group of feeds. Therefore, a cross-
spectrum between two detector maps will not be biased by the
noise contribution of the detectors or feed-specific systematic
contamination.

In this work, rather than cross-correlating individual feeds,
we instead cross-correlate groups of feeds. In particular, we
group feeds by their shared first down-conversion (DCM1) lo-
cal oscillator (Lamb et al. 2022). Table 1 shows the feeds that
are grouped together in a given “feed-group”.

The reason for this change is that some of the systematic
effects uncovered with the improved sensitivity of the current
data volume are correlated with the DCM1 feed-groups as shown
by Lunde et al. (2024). Applying the original FPXS, involving
cross-correlation of feeds from the same feed-group, would not
have been effective in canceling such systematic effects since
they are common-mode for a given feed-group.

Instead, by grouping all feeds in a given feed-group together,
detectors from the same feed-group are never cross-correlated
1 Note that technically PCO(k) in this notation would include contribu-
tions from both cosmic CO and all other astrophysical components with
non-trivial frequency structure that are not subtracted out by the low-
level data analysis steps, e.g. potential interloper line emission. How-
ever, for CO(1–0) at z = 2–3 there are very few, if any, interloper lines
that could be picked up and we therefore use a CO-only notation.

when computing the average feed-group pseudo cross-power
spectra (FGPXS). This effectively cancels the systematic effects
that are common to each feed-group, while retaining the CO sig-
nal. Additionally, grouping together detectors in this way pro-
duces effective detector maps that have more sky overlap. Thus
when cross-correlating these maps we obtain better constraints
on large-scale power spectrum modes and less mode-mixing due
to a larger cross-map footprint. The result from a lower degree
of mode mixing is is also a lower amount of large-scale system-
atic effects that can leak into the small- and intermediate-scale
power. This is especially important, as we know from Lunde
et al. (2024) that our most dominant systematic effects are large-
scale modes in the maps.

However, even though the FGPXS is slightly more robust to
systematic effects, this comes at the price of a slight decrease
in sensitivity. The expected loss in sensitivity when using FG-
PXS as opposed to FPXS should in theory follow the upper limit
found by Ihle et al. (2022):

σ
Nsplit

C(k) ≥
√

1
1 − 1/Nsplit

σP(k), (5)

where the uncertainty of a cross-spectrum, σNsplit

C(k) , is given by the
number of cross-correlated data splits, Nsplit, compared to the
optimal sensitivity, σP(k), one can obtain when using all avail-
able data in an auto-power spectrum. To give some intuition on
Eq. (5), we show a grid of possible feed-group and elevation
split combinations. Equation (5) can be obtained from the ra-
tio between the total number of split combinations (i.e the opti-
mal auto-spectrum sensitivity σP) and the number of all cross-
combinations that do not constitute auto-combinations between
feeds or elevations (respectively dark and light gray shading).
From this, we should expect there to be a loss in sensitivity in
the FGPXS compared to FPXS of ∼ 12 %2.

Nevertheless, we conservatively cluster feeds into the afore-
mentioned feed-groups to avoid systematic effect contamination,
at the price of a minor loss in sensitivity. Note that, apart from the
reasons stated above, there is in principle no difference between
the FPXS and FGPXS algorithmically; for instance it would be
trivial to group the feeds in a different configuration if that were
found to be advantageous in the future for some reason. We can
thus describe the two methods using the same algorithmic repre-
sentation shown in the following.

After splitting the data into feeds or feed-groups, we split
the data additionally into halves, each with independent system-
atic effect contributions, e.g. high/low elevation as done by Ihle
et al. (2022), which further eliminates unwanted contributions to
the cross-spectrum. We can write the main steps of the FGPXS
algorithmically as follows.

1. Split the data into two halves A and B. As done by Ihle et al.
(2022), we chose elevation as the main cross-correlation
variable to eliminate potential sidelobe pickup from the
ground.

2. For parts A and B respectively make maps of each feed-group
i. We denote these by, e.g., mA2 for a map of part A with feed-
group 2.

3. For each combination of feed-groups i and j, and data splits
A and B, compute cross-power spectra.

2 Note that this number in practice tends to be a little larger because
we exclude auto-combinations between feed(-groups) and these contain
the largest fraction of the optimal total auto-spectrum sensitivity due to
better overlapping cross-sky maps.
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4. Compute a noise weighted average FGPXS of all the result-
ing Nfeed−group × (Nfeed−group − 1) (with Nfeed−group = 4 when
using feed-groups and Nfeed−group = 19 if computing the ES
FPXS) individual FGPXS that do not involve the same de-
tector or elevation:

C(k) =

∑
Ai,B j

CAi B j (k)

σ2
CAi B j

(k)

∑
Ai,B j

1
σ2

CAi B j
(k)

, (6)

with corresponding uncertainty

σC(k) =
1√∑

Ai,B j
1

σ2
CAi B j

(k)

(7)

This is what we refer to as the mean feed-group pseudo
cross-power spectrum (FGPXS) or feed-feed pseudo cross-
power spectrum (FPXS), if (respectively) feed-groups or
feeds are used as effective detectors.

In Fig. 1 we illustrate a grid of possible feed-group and ele-
vation combinations used for an average FGPXS. Those shaded
dark and light gray represent auto-feed and auto-elevation com-
binations (respectively). The combinations that cross neither
feed-groups nor elevations, indicated with examples of 2D FG-
PXS combinations, are used in the final average FGPXS in Eq.
(6).

Due to the non-uniform coverage of our sky fields, as well
as a non-trivial survey footprint (see Lunde et al. 2024, for ex-
amples of maps), the maps are weighted prior to computing their
Fourier coefficients. We use the same weighting scheme as Ihle
et al. (2022), given for a cross-power spectrum by

wAiB j ∝
1

σAiσB j

, (8)

where σYx represents the uncertainty estimate in each voxel of a
feed-group and elevation split map mYx . These weights are then
applied to the map, m̃i = wimi, before power spectrum estima-
tion with the Fourier coefficients f̃i(k) = F {wimi} in Eq. (3). Re-
gions outside the map footprints are assigned zero weights. The
power spectra of these weighted maps are commonly referred-to
as pseudo power spectra (Hivon et al. 2002). The pseudo power
spectra are a biased power spectrum estimator because differ-
ent Fourier modes become coupled via the applied weights (see
Hivon et al. 2002; Leung et al. 2022, for details on mode mix-
ing). Note that we will use P̃(k) to denote pseudo spectra in the
later results sections, but we use the notation P(k) (without the
tilde) in the methods sections as most of the methodology is
equivalently written for unbiased and pseudo spectra. A detailed
discussion of the COMAP-specific mode mixing can be found in
Fig. 1 and Appendix D of Ihle et al. (2022), which shows that the
effect is ≤ 20 % over our k-range. Reversing the mode-mixing
will thus be left as a future exercise and is beyond the scope of
this work.

2.2. The binned power spectrum estimator

As COMAP produces line-intensity maps spanning three-
dimensional redshift-space volumes, the resulting power spec-
tra also span three-dimensional Fourier-space volumes. It can,
however, be easier to work with a power spectrum spherically
averaged down to one dimension. For the spherically-averaged
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Fig. 1. Example grid of possible feed-group (FG1–4) and eleva-
tion (high and low) split combinations. Combinations with dark and
light gray shading, respectively, represent auto-feed-group and auto-
elevation combinations which are not used in the final averaged FGPXS.
The cross-combinations containing examples of a 2D cross-spectrum
are kept in the final average FGPXS as neither identical feed-groups,
nor elevations, are crossed.

power spectrum to contain all relevant information in the full
three-dimensional power spectrum, the emission field is tech-
nically required to remain statistically isotropic on large scales
and stationary across the mapped redshift range. This is not
strictly known to be true for the CO emission field. Cosmic
star-formation, especially dust-obscured star-formation history
traced in the IR, is poorly constrained in our targeted redshift
range of z = 2.4–3.4 (see Madau & Dickinson 2014, for a review
of cosmic star-formation history). As a consequence the extent to
which the mapped CO emission field is stationary is largely un-
known. The spherically-averaged power spectrum of a dynamic
field will not be sensitive to changes of the CO emission across
cosmic time, but it will measure the time-averaged properties of
the targeted CO structures. However, the distinction is moot for
the current COMAP signal-to-noise ratio (SNR), as no clear CO
excess is observed in the power spectra. Thus we present the
spherically-averaged, 1D power spectrum as our main science
product.

Additionally, in practice, the angular and the redshift axes
are observed in fundamentally different ways, and the low-level
filtering applied to the data (Lunde et al. 2024) as well as red-
shift space distortions and line-broadening (Chung et al. 2021)
can affect the signal and sensitivity differently along each axis.
Therefore, the angular and line-of-sight dimensions are conve-
nient to separate, and we bin the 3D power spectrum C(k), with
k = (kx, ky, kz), into both a cylindrical and spherically-averaged
power spectrum. The former of these conserves the structures
perpendicular and parallel to the line-of-sight by only merging
the two angular axes

ki = (k⊥, k∥) =
(√

k2
x + k2

y , kz

)
. (9)
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Meanwhile, the latter will average the 3D power spectrum into
1D bins of the form

ki =

√
k2

x + k2
y + k2

z . (10)

The binned cylindrically-averaged power spectrum estimator
will then become

C(k) ≈ Cki =
Vvox

NvoxNmodes

∑

k∈ki

〈
Re{ f ∗1 (k) f2(k)}〉 , (11)

where the number of Fourier modes in bin ki is given as Nmodes.
The equation is completely analogous when binning to the
spherically-averaged power spectrum. We henceforth refer to the
cylindrically and spherically-averaged power spectrum estima-
tors as “2D” and “1D” due to the number of axes needed to dis-
play them, but note that they still represent averages of a 3D
density field.

The bin edges are chosen to cover the scales to which
COMAP is most sensitive and correspond to those used in the
COMAP ES power spectra (Ihle et al. 2022), but due to our large
increase in sensitivity and better understanding of the origin of
correlations on large angular scales we conservatively excise all
perpendicular scales k⊥ ≲ 0.1 Mpc−1 for this publication. On
these scales we are dominated by sub-optimal cross-map over-
lap, which results in poor constraining power of the large-scale
structure as well as the possibility of large-scale residual sys-
tematic effect leakage through mode mixing into the small-scale
power spectrum modes (see Lunde et al. 2024, for examples of
our map-domain systematic effects). In the future, we aim to re-
cover the large scales at k⊥ ≲ 0.1 Mpc−1. Lastly, we also mask
the bins corresponding to the highest k⊥ and k∥ used by Ihle
et al. (2022) to prevent issues with aliasing near the Nyquist fre-
quency of the two respective dimensions: kNyquist

⊥ ≈ 1.22 Mpc−1

and kNyquist
∥ ≈ 0.74 Mpc−1.

2.3. Uncertainty estimation from randomized null maps

In order to compute the mean FGPXS and its errors, as shown
in Eqs. (6) and (7), we need the power spectrum uncertainties
for each feed-group and elevation cross-combination, σ2

CAi B j
(k).

This can be done via two basic approaches: simulations and
data-driven methods. Here, we first detail some problems with a
simulation-based approach used previously in COMAP ES (Ihle
et al. 2022) and subsequently argue for why a data-driven ap-
proach was chosen in this work.

In COMAP ES, Ihle et al. (2022) chose a simple simu-
lation approach where the power spectrum uncertainties were
computed from an ensemble of simple white noise maps,
mnoise,i ∼ N(0,σ), drawn from a zero-mean Gaussian distribu-
tion N with the voxel uncertainties σ. These were then propa-
gated to the power spectrum level. The main advantage of this
approach is its computational efficiency. However, it can only
reflect the white noise level within the map, while residual cor-
related noise and the effect of the pipeline filters on the noise
will not be contained in the uncertainty from these simple white
noise maps (see, for instance, the power spectral density (PSD)
of TOD in Fig. 9 of Lunde et al. 2024, for an illustration of
the noise properties of the filtered data). The simplified simu-
lations proved an adequate method given the sensitivity of our
ES data. With the increased sensitivity achieved at the end of S2,
obtaining suitable power spectrum errors, σCk , through simula-
tions would require the sampling of noise from the time-ordered

data (TOD) domain (ideally with additional ground-up model-
ing of all contributing systematic effects), propagating it all the
way through the low-level pipeline (Lunde et al. 2024) up to the
power spectrum. However, this would be computationally ex-
pensive because the low-level pipeline filters would have to be
re-run for each ensemble, and require significant additional data
modeling.

Given the drawbacks with both the white noise and a poten-
tial TOD-level simulation-based approach, a data-driven method
was instead chosen for this work as it represents a relatively com-
putationally inexpensive method of estimating the power spec-
trum uncertainties that automatically reflects all the properties
of the data. In particular, we will draw from the simple idea that
we can cancel the signal and systematic effects in a subtraction
between data-half maps, while leaving the correct noise proper-
ties. In our case, we estimate σCk by what we will refer to as an
ensemble of Randomized Null Difference (RND) maps.

The first step in the RND calculation is to divide the set of
all scans in the data into two randomized halves, A and B, from
which we subsequently make maps mRND

A,i and mRND
B,i . This is

done for all random split realizations i. Both mRND
A,i and mRND

B,i
should contain the same signal, and due to the randomization of
the splits also the same systematic effects. Hence we can cancel
both the signal and systematic effects by computing the differ-
ence between the two maps;

∆mRND
i =

mRND
A,i − mRND

B,i

2
. (12)

The difference maps ∆mRND
i now optimally capture the white

and correlated noise properties and biases (from low-level filters,
the instrumental beam, etc.) of the real maps, but are without any
of the signal or systematic effects. As such they reflect the true
properties of the data to a high degree.

Finally, to obtain the uncertainty of the power spectrum σCk

we need to compute the FGPXS of each difference map ∆mRND
i .

From the resulting ensemble of such feed-group cross-spectra,
CRND
∆mi

(k), we can compute the uncertainties σRND(k) by taking
the standard deviation over the ensemble. These can then be used
when co-adding together feed-group spectra to obtain the final
mean FGPXS as explained in Eqs. (6) and (7).

3. Power spectrum null tests

With the increased effective COMAP data volume and the result-
ing increased sensitivity comes the need for more effective null
tests to ensure the data quality of our final power spectra.

As we explain in this section, the null tests devised in this
work are based on difference maps in a similar way to the
RND method used for uncertainty estimation described earlier
in Sect. 2.3, except we are now splitting the maps on meaningful
parameters instead of randomly. The goal then becomes finding
null variables (e.g. high/low humidity or left/right moving scans;
see Table C.2 for list of all chosen variables) that correlate to
systematic effects in one of the null variable halves by which we
split the data.

We can write the difference map of some null variable j as

∆mnull
j =

mA, j − mB, j

2
, (13)

where the maps mA, j and mB, j represent the maps of the two
halves of the data respectively. If the chosen null variable corre-
lates to a systematic effect, the difference map ∆mnull

j will con-
tain the systematic effect but cancel the signal. The difference
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maps can then be used to perform a null test, with the null hy-
pothesis being that the null maps are consistent with the general
noise properties of the maps. The associated voxel uncertainty
of the null map is then given by

σnull
∆mj
=

√
σ2

mA, j
+ σ2

mB, j

2
, (14)

for uncertainties σmA, j and σmB, j of the maps mA, j and mB, j re-
spectively.

For each of the null variables j we then take the difference
between the two maps as described by Eqs. (13) and (14). As we
use a cross-elevation FGPXS we must compute a difference map
for both high and low elevation. The data are therefore split into
four parts, two elevation ranges and two null variables halves,
where we subtract across the latter in the map domain and cross-
correlate the resulting null maps across the former using the FG-
PXS method described earlier. With the set of resulting null test
FGPXS Cki

∆m j
we can perform a χ2-test, with a null hypothesis

that the difference maps are consistent with noise, by first com-
puting

χ2
null, j =

∑

ki


Cki
∆m j
− µki
∆m j

σCki
∆m j



2

=
∑

ki


Cki
∆m j

σCki
∆m j



2

, (15)

with the expectation value of the null FGPXS µki
∆m j
= 0 under the

null hypothesis. Here σCki
∆m j

is the uncertainty of the null FGPXS

Cki
∆m j

in bin ki for null variable j, which is estimated using the
RND method described earlier in Sect. 2.3.

Thereafter we can compute the probability-to-exceed (PTE)
which quantifies the probability to obtain a value χ2

null, j or higher.
The PTE is defined as

PTE(χ2) = 1 − CDF(χ2), (16)

where for a given probability distribution function P(χ2) of the
χ2

null, j values the corresponding cumulative distribution function
is denoted as CDF(χ2).

In our case, P(χ2) does not follow the usual analytical χ2-
distribution because the noise properties of the FGPXS are not
completely known analytically (see Watts et al. 2020; Nadarajah
& Pogány 2016; Gaunt 2019, for some examples of how cross-
spectrum noise properties can look). We thus compute the PTEs
numerically by using an ensemble of RND maps equivalent to
those we already use for estimating uncertainties as these will
perfectly reflect the noise properties and biases in the data, as
well as obey the null hypothesis. For each data processing run we
compute 244 RND maps of which we use 61 for power spectrum
uncertainty estimation and the remaining 183 for measuring the
numerical χ2-distribution.

4. Transfer functions

As described by Foss et al. (2022) and Ihle et al. (2022) the
COMAP maps are not unbiased as the low-level filtering of the
data, the binning of the data into voxels, and the finite resolution
of the telescope beam will attenuate the signal in the maps. In
this section, we explain how we de-bias our power spectrum es-
timates using transfer functions for each of the main effects that
result in signal loss. The beam and voxel window smoothing of

the signal is corrected using analytically computed transfer func-
tions, while the low-level filtering attenuation is quantified using
simulations. Details on how each transfer function is estimated
are discussed by Lunde et al. (2024).

4.1. Power spectrum transfer functions

When performing a power spectrum analysis of our maps as de-
scribed in Sect. 2 we obtain an estimate of the signal that is bi-
ased by several different effects. To see how the signal is biased
we can write the FGPXS signal estimator as

Ck = T (k)PCO
k = T f (k)Tb(k⊥)Tp(k⊥)Tν(k∥)PCO

k , (17)

where the transfer function T (k) is the product of the filter trans-
fer function T f (k), the beam smoothing transfer function Tb(k⊥)
as well as the pixel and spectral channel windows, Tp(k⊥) and
Tν(k∥). The transfer function can be written in this multiplica-
tive form in the Fourier domain because the low-level filtering
and the smoothing of small-scale structures due to the instru-
mental beam and voxel window of the map grid can all (approx-
imately) be expressed as a convolution in map domain. In Fig. 2
we show the full transfer function product T (k), while the indi-
vidual transfer function elements are shown in detail in Sect. 6.
of Lunde et al. (2024).

Using our transfer function estimate we can de-bias the FG-
PXS by deconvolution;

PCO
k =

Ck

T (k)
, (18)

with the uncertainties of the signal estimator being affected in a
similar manner,

σCO
Pk
=
σCk

T (k)
, (19)

becoming large whenever the transfer function T (k) becomes
small.

5. Power spectrum results

In this section, we present the main power spectrum results of
this paper. The raw data going into the power spectra are filtered,
calibrated and binned into maps after a set of data selection steps
which remove scans that are likely contaminated by systematic
effects. This is described in detail by Lunde et al. (2024).

As one of the main lessons learned from COMAP ES was
to employ only constant elevation scans (CES), and no longer
use a Lissajous scanning strategy, the data presented here consist
only of CES data (Foss et al. 2022; Ihle et al. 2022). Specifically,
we include all data obtained up to November 2023, both the ES
(Season 1) CES data as well as all data gathered in S2. The data
volume obtained in S2 is, as explained by Lunde et al. (2024),
effectively around eight times larger than the Season 1 CES data
after data selection. In addition, the ES analysis of Season 1 data
excluded several detectors that were either offline or excluded
due to clear signs of systematic excess in reduced χ2-tests or
in visual inspections of feed cross-spectra. We are able to in-
clude these in the S2 analysis because all feeds were functioning
during S2 and the map-domain PCA described in Lunde et al.
(2024) strongly suppresses detector-specific systematic effects.

We note that in the ES analysis Ihle et al. (2022) removed
feed-feed cross-spectra both through a reduced χ2-test, and man-
ual inspection of misbehaving feed combinations. Due to better
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Fig. 2. Full power spectrum transfer function used to account for the sig-
nal losses due to the low-level filtering pipeline, the instrumental beam
smoothing and the voxel window of the maps (see Lunde et al. 2024,
for details on each individual transfer function). Thin green contours
indicate the bin edges of the (1D) spherically-averaged FGPXS.

low-level data processing we were able to remove all data-driven
cuts in the power spectrum domain, with the increased set of null
tests since ES working as an additional safeguard against sys-
tematic effects (see Sect. (6) for discussion of null test results).

Lastly, in Appendix D, we show a simple end-to-end sig-
nal injection test as a qualitative test of our pipeline’s ability to
recover a known signal’s amplitude within the estimated experi-
mental errors and power spectrum transfer function.

5.1. The cylindrically averaged power spectrum result

In Fig. 3 we show the cylindrically-averaged (2D) mean FGPXS
for all three fields separately, as well as in combination. The fig-
ure also shows the sensitivity per (k⊥, k∥)-bin as well as the FG-
PXS in units of the sensitivity.

When looking at the 2D FGPXS in Fig. 3 we note that the
noise blows up on small scales, particularly so in the angular
direction, due to the COMAP transfer function seen in Fig. 2
(Lunde et al. 2024). However, we see no obvious patterns in the
2D FGPXS that would indicate a systematic effect. In fact, the
spectra resemble white noise.

As mentioned earlier, in Sect. 2.2, we want to avoid issues
with poorly constrained large-scale modes, strong mode mixing
and possible residual large-scale systematic effects. We mitigate
these issues by excluding 2D bins at k⊥ < 0.1 Mpc−1. An exam-
ple of spurious fluctuations induced by poor overlap can be seen
in the COMAP ES cylindrically-averaged FPXS of Field 1 (see
Ihle et al. 2022, noting that Field 1 is especially susceptible to
poor detector overlap due to its position at declination zero) as
correlated structures along constant k⊥ at scales k⊥ < 0.1 Mpc−1.
These correlations have since been understood to originate from
sub-optimal detector overlap, and are pushed to larger scales due

to a larger sky overlap when computing cross-spectra between
feed-groups instead of individual feeds. In interim estimates we
found the average of the maximum correlations between a bin
and all the others to be around 15 % at scales k⊥ ≥ 0.1 Mpc−1,
while the correlations at k⊥ ≤ 0.1 Mpc−1 are somewhere in the
30–70 % regime. Improved modeling of these correlations will
be the aim of future work.

5.2. The spherically-averaged power spectrum result

As interpreting the 2D cylindrically-averaged FGPXS can be
somewhat unintuitive we can bin the spectra into 1D by per-
forming a full spherical averaging. This is done as described
in Sect. 2.2 where the 1D bin-edges are indicated as thin green
contours in Fig. 3. When doing so we obtain the spherically-
averaged FGPXS for the three fields, as well as the combination
thereof, as seen in Fig. 4.

As discussed in Sect. 5.1, we excluded scales k⊥ <
0.1 Mpc−1 from the power spectrum analysis to avoid issues with
poor cross-map overlap, mode mixing and large correlations be-
tween large scale bins. Therefore, Fig. 4 only shows FGPXS
data points on scales k > 0.1 Mpc−1. Similar to the discussion in
Sect. 5.1, we estimate the average of the maximum correlation
between a 1D bin and all the others, on scales k > 0.1 Mpc−1,
to be ≲ 10 % after excluding the large k⊥ scales and performing
the spherical averaging. Given this ≲ 10 % level we will assume
for Season 2 analyses downstream that the spherically-averaged
1D FPGXS bins are approximately uncorrelated. As with the 2D
FGPXS discussed in Sect. 5.1, we intend to improve the exact
modeling of these correlations in future work.

When looking at Fig. 4 we note that Fields 2 and 3 have the
highest sensitivity, while Field 1 has around 50 % larger errors
than the two other fields. This is because, of the three COMAP
fields, Field 1 is most affected by the low-level data cuts (see
Lunde et al. 2024), and due to its location at zero declination, is
particularly susceptible to poor detector overlap. In addition, by
rejecting poorly overlapping detector combinations, which are
also the least sensitive, we prevent the resulting strong mode
mixing and potential consequent leakage of systematic effects
into smaller scales at the cost of a relatively minimal loss in sen-
sitivity. As a consequence, we keep 2/3 of the feed-group cross-
spectra of Field 1 in the analysis.

As we can see from Fig. 4, the cross-spectra are largely con-
sistent with zero to within 2σ in most bins. However, perhaps
the most notable feature is the high power in the second and
most sensitive k-bin, at 0.12 Mpc−1 < k < 0.18 Mpc−1, which is
respectively at around 2.3σ and 3σ significance above zero for
Fields 1 and 2. Meanwhile for Field 3 the same bin is consistent
with zero power. When combining the three fields, the co-added
data point in the second k-bin has a value that is 2.7σ away
from zero. For each of the spherically-averaged FGPXS of the
three fields, we compute their χ2 probabilities-to-exceed (PTE)
to check their constancy with zero power. In doing so, we obtain
PTEs of, respectively, 33.2 %, 19.5 % and 82.7 % for Fields 1–
3. The field-combined spherically-averaged FGPXS results in a
34 % probability-to-exceed. As for the null tests, the PTE is es-
timated from the numerical RND χ2 ensemble. While the com-
bined 1D ∼ 2.7σ power in 0.12 Mpc−1 < k < 0.18 Mpc−1 bin is
interesting, we do not consider it a statistically significant excess
given the estimated PTEs. Thus we will have to wait for future
analyses, and more data, to answer definitively whether this ex-
cess is simply noise or not.

Although we do not consider the field-combined 2.7σ point
statistically significant, the agreement between two of the three
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Fig. 3. Cylindrically-averaged (2D) feed-group pseudo cross-spectra. Columns show, from left to right, the full spectra, the corresponding 1σ
uncertainty, and the ratio between the two. Rows show, from top to bottom, Fields 1, 2, 3, and all three combined. The approximate angular scale,
assuming the central COMAP redshift at z = 2.9, corresponding to each k⊥ is shown as a twin-axis on the upper row of plots. Thin green contours
indicate the bin edges of the (1D) spherically-averaged FGPXS.
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Fig. 4. Spherically-averaged FGPXS with 1σ uncertainties for Fields 1, 2 and 3 (orange, red and blue respectively) as well as the combination of
the three (black) in units µK2Mpc2 (upper panel) and in units of the 1σ power spectrum uncertainties (lower panel). The data points have been
slightly offset from their true k-position to increase readability (see Table B.1 in Appendix B for overview over bin centers, FGPXS values and
uncertainties).

fields is interesting to note. As Fields 1 and 2 are quite differ-
ent in terms of their path across the sky as seen from the tele-
scope (Field 1 being a zero declination field while Field 2 is at
a declination of 52.30◦; see Foss et al. (2022) for details on the
fields) they also are expected to have some independent system-
atic effects. However, Fields 2 and 3 are more alike and would
be expected to share certain systematic effects.

5.3. Comparison to COMAP Early Science and COPSS

Having computed the spherically- and field-averaged FGPXS
from the data we can compare it to the previous COMAP re-
lease as well as COPSS, the only other comparable CO(1–0)
LIM survey in the literature with published data (Keating et al.
2016; Kovetz et al. 2017, 2019; Bernal & Kovetz 2022). This
is illustrated in Fig. 5 where the field-averaged FGPXS is plot-
ted together with the COMAP ES constant-elevation-scan FPXS
of Ihle et al. (2022) and the individual COPSS data-points from
Keating et al. (2016).

The first thing we notice when considering Fig. 5 is the dra-
matic reduction in the uncertainty of the current measurement
compared to that from our ES phase (Ihle et al. 2022). Com-
pared to the Ihle et al. (2022) FPXS the current level of sensitiv-
ity has increased by a factor ∼ 6–8 across our six most sensitive
bins at 0.09 Mpc−1 < k < 0.73 Mpc−1. This illustrates the signif-
icant increase in the effective data volume by around a factor
of eight. Even though the low-level data selection procedure de-
tailed by Lunde et al. (2024) is somewhat more strict than the one
in COMAP ES (Foss et al. 2022; Ihle et al. 2022), this is more
than compensated by the lack of data cuts in the power spectrum
domain, resulting in a significant increase in sensitivity overall.
In other words, we have demonstrated that uncertainties in the
power spectra integrate down in accordance with expectations
for noise-dominated data.

The two highest k-bins have somewhat larger errors in the
current result compared to the COMAP ES spectrum. This is

due to a combination of the analytical beam transfer function
now applied and a stricter 2D k-space mask. The beam trans-
fer function now applied is somewhat more strict than the nu-
merically computed one of Ihle et al. (2022) on scales closer to
the Nyquist limit in the angular direction. Additionally, to avoid
problems with aliasing we have masked the outer-most bins in
both k∥ and k⊥. As a result, the outer-most 1D k-bins contain a
lower number of samples than they would have for the same 1D
bins of Ihle et al. (2022).

The COPSS power spectrum estimate (Keating et al. 2016)
primarily covers scales smaller than COMAP, but the two ex-
periments overlap at 0.3 Mpc−1 ≲ k ≲ 1.0 Mpc−1, where they
are largely consistent with each other. The only noteworthy dis-
agreement between COPSS and the field-combined FGPXS is a
mild ∼ 2.5σ tension in terms of the combined error between the
two power spectrum estimates at k ∼ 0.6 Mpc−1. As we can see
from Fig. 5 this point of mild tension coincides with one of the
two COPSS points in which they reported a 2.5σ excess above
zero.

Albeit with large uncertainties, we see that compared to
COPSS and COMAP ES the updated COMAP data points clus-
ter significantly closer to, and are consistent with, the two bright-
est models that were not already excluded in ES (Chung et al.
2022), i.e. the COMAP fiducial model3 and the Li-Keating
model of Keating et al. (2020). For more discussion of the con-
sistency of COPSS with the current COMAP result, including
modeling implications, we refer the interested reader to Chung
et al. (2024).

When comparing the power spectrum sensitivity of COMAP
to that of COPSS, we must take into account the smaller k-bins
in the COPSS analysis. Although the two experiments have a
certain region of overlap in k-space, the different bin sizes of

3 A double power-law model relating halo masses in cos-
mological simulations to CO luminosities; see specifically
“UM+COLDz+COPSS” in Table 1 of Chung et al. (2022) for
their fiducial model definition.
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Fig. 5. (Upper panel:) Spherically-averaged FGPXS with 1σ uncertainties for the field-combined data presented in this paper (black), the COMAP
ES field-averaged FPXS (blue; Ihle et al. 2022), and the COPSS power spectrum (orange; Keating et al. 2016). (Lower panel:) Corresponding
power spectra divided by their respective 1σ uncertainty. (Inset:) Zoom-in of the COMAP data points and two comparable models from the
literature, namely the fiducial second season COMAP model (Chung et al. 2022) and the Li-Keating model Li et al. (2016); Keating et al. (2020)
model. None of the models includes any line-broadening discussed by Chung et al. (2021). Our data points and those of COMAP ES have been
slightly offset from their true k-position to increase readability (see Table B.1 in Appendix B for overview over bin centers, FGPXS values and
uncertainties).

COPSS and COMAP result in a different intrinsic within-bin
variance. To mitigate this effect we can define the normalized
sensitivity ξk = σk

√
∆Vk, where ∆Vk is the volume of a spher-

ical k-shell defined by the bin k in k-space. Two bins with the
same value for ξk would have the same sensitivity, σk, if they
were binned to a standardized bin size. In other words, ξk traces
the underlying continuous sensitivity of each experiment and k-
scale, and as a result, the normalized sensitivity across k-bins
and surveys becomes comparable. We illustrate the normalized
sensitivity, ξk, in Fig. 6 for all data points shown in Fig. 5. The
figure nicely illustrates the scales to which COMAP and COPSS
are most sensitive. We see that COMAP is most sensitive on
large scales at 0.1 Mpc−1 < k < 0.3 Mpc−1, while COPSS is most
sensitive on small scales, 0.5 Mpc−1 < k < 1.0 Mpc−1, where the
COMAP beam starts to dominate. However, the current FGPXS
result has a peak sensitivity increase of around a factor of eight
and ten compared to COMAP ES and COPSS respectively (see
Table A.1 in Appendix A for a detailed list of exact normalized
sensitivity improvements). This improvement in relative sensi-
tivity compared to COPSS and COMAP ES is expected to in-
crease further as the COMAP instrument gathers more data, and
illustrates our ability to remove systematic effects to below the
noise level and integrate the noise of the incoming data. In fact,
as COPSS to-date remains the only comparable CO(1–0) LIM
experiment with published data, COMAP currently provides the
most sensitive CO(1–0) LIM constraints in the field.

5.4. Upper limits on the power spectrum

Given the factors of, respectively, eight and ten times the sen-
sitivity of our power spectrum result compared to the COMAP
ES and COPSS data, it is interesting to consider the upper limits
(UL) at 95 % confidence on a non-zero CO(1–0) power spec-
trum that can be derived from the data-points. These are shown
in Fig. 7 for the spherically- and field-averaged COMAP FG-
PXS, the COMAP ES (Ihle et al. 2022) data-points as well as the
COPSS (Keating et al. 2016) power spectrum estimate. As we
are at the level of sensitivity where it becomes more informative
to look at the ULs per k-bin we only consider the ULs derived per
k-bin in this work. We show only bin-wise derived ULs from the
COMAP ES (Ihle et al. 2022) and COPSS (Keating et al. 2016)
data to facilitate a direct comparison to our result. All ULs are
computed under the assumption that the astrophysical CO sig-
nal must be positive. For comparison, two of the closest models
from the literature are included in the plot; the COMAP fiducial
model from Chung et al. (2022) and the Li-Keating model – a
version of the Li et al. (2016) model from Keating et al. (2020).
Note that, while the 0.12 Mpc−1 < k < 0.18 Mpc−1 FGPXS bin
has a 2.7σ excess above zero, we still present it as a 95 % up-
per limit in Fig. 7 as we do not consider the excess statistically
significant.

As in Fig. 6, the ULs we present in Fig. 7 reflect k-
regions in which each survey is most sensitive. The 95 %
ULs of this work and those derived from COMAP ES (Ihle
et al. 2022) are most constraining in the six most sensitive
COMAP bins at 0.09 Mpc−1 < k < 0.73 Mpc−1. Meanwhile
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Fig. 6. Comparison of volume-normalized sensitivity, ξk, for the new
COMAP FGPXS (black); the previous COMAP ES FPXS (blue; Ihle
et al. 2022), and COPSS (orange; Keating et al. 2016). The deepest
COMAP k-bin is roughly an order of magnitude more sensitive than
the deepest COMAP ES and COPSS bins; for tabulated values, see Ta-
ble A.1.

the COPSS Keating et al. (2016) ULs are at their lowest around
0.7 Mpc−1 < k < 1.6 Mpc−1, beyond where the COMAP beam
and voxel window dominate and blow up the noise. Compared
to COMAP ES, we see a significant improvement in the current
ULs per k-bin. Specifically, each of our six most sensitive k-bins
can individually constrain kPCO(k) < 2400 − 4900 µK2Mpc2 at
95 % confidence. The maximum improvement between the two
COMAP releases is around a factor 9 in the k ∼ 0.4 Mpc−1 bin.
Note that the UL estimates are sensitive to both the uncertainty
of a data point and its value. As the field-averaged FGPXS in the
k ∼ 0.4 Mpc−1 bin is around −1.5σ below zero the resulting UL
becomes the deepest even though according to Fig. 6 it is not the
most sensitive k-bin.

When comparing COPSS to COMAP in Fig. 7 we see that
where COMAP and COPSS have overlapping areas of high sen-
sitivity, at k < 0.8 Mpc−1, our 95 % ULs are significantly lower
than those derived from the COPSS data points. This reflects the
increased sensitivity of the COMAP FGPXS estimate already
observed in Fig. 6. While none of the updated 95 % ULs are
touching any of the two included models, a significantly larger
region of the power spectrum space is excluded compared to
only using the COPSS and COMAP ES limits, and our 95 % ULs
are starting to encroach on the models that are not already ex-
cluded, including the fiducial model (Chung et al. 2022). Given
our demonstrated ability to control systematic effects, and the
constraints already achieved, detection of a CO power spectrum
close to the fiducial model is within reach with further observa-
tions.

To conclude the discussion of the power spectrum results, the
current COMAP power spectrum is the state-of-the-art CO LIM
power spectrum dataset with around an order of magnitude more
sensitivity and comparatively lower ULs at 95 % confidence than
COPSS and COMAP ES, the only comparable CO(1–0) line-
intensity mapping datasets in the literature. The presented power
spectrum data points and resulting 95 % ULs further exclude a
significant portion of the parameter space of possible CO models
and provide the current best direct 3D constraints on the CO(1–

0) power spectrum in the literature (Kovetz et al. 2017, 2019;
Bernal & Kovetz 2022).

6. Null test results

As described in Sect. 3 we performed a set of null tests by com-
puting the average cross-elevation FGPXS of a set of difference
maps. All null tests were performed with the same pipeline and
data selection as the power spectrum data shown in Sect. 5. The
differencing variables chosen for the null tests were selected to
test for correlations owing to a variety of potential systematic
effects, e.g., environmental effects like weather, sidelobe pickup
and pipeline diagnostics. In Table C.2 we show an overview of
the selected null variables.

In total, 312 effective null tests were performed: 26 null test
variables across three fields, cylindrical- and spherical-averaged
FGPXS as well as separate tests for fast and slow azimuth data
respectively. All of these can have different associated system-
atic effects. For instance, given that the telescope’s scanning
speed was changed to a lower azimuthal speed in May 2022,
the fast and slow azimuth data (May 2022 – November 2023)
may have very different mechanical vibrations that could cause
spurious patterns in the maps (see Lunde et al. 2024, for exam-
ples).

For each of the effective null tests we calculate correspond-
ing χ2 probabilities-to-exceed (PTE), as described in Sect. 3. We
provide a detailed list of these in Appendix C (see Table C.1).

Of the 312 null tests that we performed, the two lowest PTEs
were found to be ∼ 0.6 %, which amounts to a random bino-
mial probability of 27 %. Two of the null test χ2-values were
slightly outside the RND simulated χ2-distribution and we there-
fore only have a lower limit of 99.5 % on their PTEs (because
the numerical resolution of the simulation-based approach is
1/183 ≈ 0.5 %); this could be improved somewhat by using
more RND realizations.

The PTEs are expected to follow a uniform distribution. As
a consistency check, we therefore consider the PTE distributions
of the performed null tests. In Fig. 8 we show the combined
PTE-distribution for all separately performed null test (the cor-
responding distributions for each separately performed category
of null tests can be seen in Fig. C.1 of Appendix C). To further
gauge the uniformity of the histograms a Kolmogorov-Smirnov
(KS) test was performed to see if the null test χ2 PTEs were con-
sistent with the null hypothesis of being drawn from a uniform
distribution. The KS-test PTE-values are found in Table 2 (and
also in the bottom row of Table C.1 of null test χ2 PTEs in Ap-
pendix C). The lowest KS-test PTE of 5.5 %, corresponds to a
binomial probability of around 35 % for the 12 performed KS
tests. The maximum KS-test PTE is around 79 %, and the uni-
formity the uniformity of the entire set of PTEs is at the 58.7 %
level.

We can therefore conclude that all the null tests and PTE
uniformity tests have been passed and are consistent with the
expected instrumental noise. As we do not claim any detection
at this stage, the number and type of null tests performed are
more than enough to ensure a sufficient data quality for our upper
limits.

7. Conclusion

We have presented updated constraints on the cosmological
CO(1–0) power spectrum at 2.4 < z < 3.4, derived from the lat-
est COMAP observations. These measurements are based on a
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Fig. 7. Comparison of upper 95 % confidence limits (ULs) on the CO power spectrum as derived from the new COMAP data set (black), the
COMAP ES analysis (blue; Ihle et al. 2022), and from COPSS (orange; Keating et al. 2016). The corresponding data points for each bin are shown
in Fig. 5, and all ULs are derived using a positivity prior. The theoretical model predictions indicated by green and purple lines are the same as in
Fig. 5. Note that because the data point of the FGPXS and COMAP ES centered at k = 1.27 Mpc−1 in Figs. 4 and 5 have large uncertainties the
corresponding 95 % UL are outside y-range of the figure.

Table 2. Kolmogorov-Smirnov uniformity test probabilities-to-exceed on the null test χ2 probabilities-to-exceed.

Kolmogorov-Smirnov probabilities-to-exceed (KS PTEs) [%]
Spherically-averaged (1D) Cylindrically-averaged (2D)

Field 1 Field 2 Field 3 Field 1 Field 2 Field 3
Combined Fast Slow Fast Slow Fast Slow Fast Slow Fast Slow Fast Slow
58.7 5.5 9.7 16.9 24.1 41.8 48.9 32.1 8.4 61.9 78.7 70.9 72.0

Notes. Probabilities-to-exceed of Kolmogorov-Smirnov (KS PTE) uniformity test of the null tests χ2 PTEs (found in Table C.1 of Appendix C) in
units percent of all three Fields, fast- and slow-moving azimuth scans (denoted as “Fast” and “Slow”) as well as the spherically- and cylindrically-
averaged FGPXS.
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PTE

0.
5
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5

P(
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Fig. 8. Normalized distribution, P(PTE), of χ2 probabilities–to-exceed
(PTEs) for all null tests performed on Field 1-3 combined. The PTE
values corresponding to this histogram are found in Table C.1 in Ap-
pendix C. The Kolmogorov-Smirnov (KS) uniformity test on the sam-
ples contained in the illustrated distribution was found to yield a KS
PTE of 58.7 % (see Table 2).

novel mean averaged feed-group pseudo cross-power spectrum
(FGPXS) estimator, which is a slight modification of the feed-
feed pseudo cross-power spectrum (FPXS) estimator used in the
COMAP ES analysis (Ihle et al. 2022). The difference between

these two estimators is that while the previous estimator evalu-
ated cross-correlations between any two detector feeds, the new
estimator evaluates cross-correlations between groups of feeds
defined by common first downconversion (DCM1) local oscilla-
tors. The motivation for this is that feeds in these groups share
some common instrumental systematic effects, and the new esti-
mator is therefore more robust against such effects.

Quantitatively, all power spectrum bins were consistent with
zero up to ∼ 2σ, except for k ∼ 0.15 Mpc−1 which showed a
2–3σ excess in Fields 1 and 2; averaging over all three fields
yields an excess of 2.7σ. Despite this single-bin excess, the to-
tal probabilities-to-exceed (PTE) with respect to a zero-signal
model are 33.2 %, 19.5 % and 82.7 % for Fields 1–3, respec-
tively, and 34 % when combining the data across fields. The re-
sulting FGPXS spectrum derived from the latest COMAP data
is thus statistically consistent with instrumental noise, and a de-
tailed suite of null tests show no signs of residual systematic
effects. At the same time, the slight excess at k ∼ 0.15 Mpc−1

is noteworthy; it could just be a regular noise fluctuation or the
signature of some yet-to-be-discovered systematic effect. How-
ever, it could also be a small first hint of true cosmological CO
fluctuations. More data are needed to determine its true nature.

Comparing with previous results, we find that the new
COMAP power constraints are almost an order of magnitude
stronger than the previous ES results (Ihle et al. 2022). In ad-
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dition, when considering the power spectrum data points alone,
the COPSS power spectrum (Keating et al. 2016) was found to
be mostly consistent with the COMAP FGPXS, with only a mild
∼ 2.5σ tension in one of the bins. The volume-normalized sen-
sitivity of the COMAP FGPXS was found to be around ten times
that of the COPSS power spectrum estimate when comparing the
respective most sensitive bins of the two experiments.

We developed a null test framework involving the difference
between half-data maps that are split under variables believed to
be associated with systematic effects. With the 26 split variables,
three fields, the cylindrically- and spherically-averaged FGPXS
as well as the fast- and slow-moving scans a total of 312 effec-
tive null tests were performed. Of these all passed within the
expected instrumental uncertainties, ensuring the quality of our
final data products.

To conclude, our power spectrum estimates and the result-
ing 95 % upper limits provide the most sensitive constraints on
cosmic CO emission at z ∼ 2 − 3 published to date and sig-
nificantly reduce the allowed parameter space of possible CO
emission models, the implications of which we explore further
in the companion work of Chung et al. (2024). These results are
a strong demonstration of COMAP’s powerful capabilities and
performance in terms of systematic effect mitigation, and the fil-
tered data are still dominated by white noise even after three
years of integration. Regular operations are still ongoing, and
the data currently being gathered will put further pressure on
possible CO emission models.
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Appendix A: Normalized CO power spectrum
sensitivity

Table A.1 provides a comparison of the volume-normalized CO
power spectrum sensitivity for the new COMAP data set with
those power spectra derived from COMAP ES and COPSS; these
are visualized in Fig. 6. The volume-normalized sensitivity is
defined as

ξk = σk

√
∆Vk, (A.1)

where σk is the uncertainty of a spherically-averaged power
spectrum bin k with shell volume ∆Vk. This definition elimi-
nates the effect of within-bin variance at each k-bin and provides
a volume-independent measure that may be used to compare
sensitivities between non-overlapping power spectrum bins and
surveys. We see that the current COMAP power spectrum con-
straints reach a maximum sensitivity of one order of magnitude
higher than the most sensitive COPSS (Keating et al. 2016) and
COMAP ES (Ihle et al. 2022) bins. In addition, it is important
to note that the regimes of maximum sensitivity differ between
COMAP and COPSS, and this is due to their different instrumen-
tal designs and effective angular resolutions; COMAP is more
sensitive in the large-scale clustering regime, while COPSS is
more sensitive in the small-scale shot-noise regime.

Appendix B: Power spectrum data point values

For the interested reader we provide a list of power spec-
trum values and uncertainties, kC̃(k) and kσC̃(k) respectively, of
the spherically- and field-averaged FGPXS data points seen in
Fig. 5. These can be found in Table B.1.

Appendix C: Null test probabilities-to-exceed

In the following, we present a summary of the χ2 probabilities-
to-exceed (PTE) for each of our effective 312 null tests per-
formed. The PTEs are found in Table C.1 and each null vari-
able, and the corresponding acronyms are explained in detail in
Table C.2.

Table C.1 is structured as follows: each row shows a different
null variable in which the data was split in two, e.g. ambient tem-
perature (ambt) or right and left moving azimuth sweeps (azdr).
The columns are grouped into a hierarchical structure, as we per-
formed null tests separately on spherically- and cylindrically-
averaged FGPXS, for each field (Fields 1-3) as well as for data
that was gathered before and after May 2022 when the scanning
speed of the telescope was reduced. That is, because the fast-
and slow-moving azimuth scans may have different associated
systematic effects from, for example, mechanical vibrations in
the telescope.

We present the distributions of PTEs of each separately per-
formed null test in Fig. C.1 (see Fig. 8 in Sect. 6 for distribu-
tion of all null test PTEs considered jointly). As the distribu-
tion of PTEs is expected to be uniform we also performed a
Kolmogorov-Smirnov (KS) test to find how probable it is that
the PTE samples are drawn from a uniform distribution. These
are shown for each separate null test category in the very last row
of Table C.1 (and also in Table 2 in Sect. 6). For a discussion on
the null test results see Sect. 6.
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Fig. C.1. Normalized distribution, P(PTE), of χ2 probabilities–to-
exceed (PTEs), separately, for all null tests performed on Field 1-3. The
PTE values corresponding to this histogram are found in Table C.1. The
Kolmogorov-Smirnov (KS) uniformity test results for the χ2-samples
of each of the separate PTE distributions can be found in Table 2 or the
bottom row of Table C.1. The individual histograms are slightly offset
w.r.t. each other for increased readability.

Appendix D: A simple end-to-end signal injection
test

The same type of simulations used to estimate the filter transfer
function (see Sect. 4.1) can also be used to perform a rudimen-
tary end-to-end signal injection test to confirm the detectability
of signal given our transfer function estimate. The signal injec-
tion pipeline is explained in more detail in Sect. 6.1 of Lunde
et al. (2024), and we here limit the scope to the application
thereof.

Appendix D.1: The signal injection tests

As the signal and noise in the raw data are affected by both the
low-level analysis and instrumental effects described by Lunde
et al. (2024), an important question to answer is whether we
would be able to reconstruct the amplitude of an amplified CO
signal within the estimated uncertainties using the earlier de-
scribed FGPXS method. For instance, we know that several of
the PCA filters in the low-level pipeline detailed by Lunde et al.
(2024) can in principle act non-linearly if the CO-SNR becomes
too high. One therefore has to verify that the filters remove equal
amounts of signal at any given k-mode of the map in the filter
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Table A.1. Normalized sensitivity in each COMAP and COPSS bin

Survey k-center
[Mpc−1]

k-min
[Mpc−1]

k-max
[Mpc−1]

normalized sensitivity
ξk [103µK2Mpc3/2] ξmin

COPSS/ξk

This work

0.1 0.09 0.12 1.25 7.3
0.15 0.12 0.18 0.89 10.2
0.21 0.18 0.25 1.24 7.3
0.3 0.25 0.36 1.47 6.2
0.44 0.36 0.51 2.6 3.5
0.62 0.51 0.73 5.42 1.7
0.89 0.73 1.05 181.92 0.0499
1.27 1.05 1.5 9.3 × 106 9.7 × 10−7

COMAP ES

0.1 0.09 0.12 6.47 1.4
0.15 0.12 0.18 7.32 1.2
0.21 0.18 0.25 9.16 1.0
0.3 0.25 0.36 12.41 0.7
0.44 0.36 0.51 21.28 0.4
0.62 0.51 0.73 39.6 0.2
0.89 0.73 1.05 91.5 0.0993
1.27 1.05 1.5 28000 0.0003

COPSS bins

0.4 0.36 0.45 23.27 0.39
0.5 0.45 0.57 12.04 0.754
0.64 0.57 0.71 9.08 1.0
0.8 0.71 0.9 9.16 0.991
1.01 0.9 1.13 12.66 0.718
1.27 1.13 1.42 23.16 0.392
1.61 1.42 1.79 51.08 0.178
2.02 1.79 2.84 277.81 0.033
3.2 2.84 3.57 2060.78 0.004

Notes. Volume-normalized sensitivity, ξk, of each of our field-averaged power spectrum bins as well as the COPSS measurement (Keating et al.
2016). The normalized sensitivity ratio of COMAP (i.e. this work), COMAP ES (Ihle et al. 2022) and the individual COPSS bins relative to the
most sensitive COPSS bin (Keating et al. 2016) (also seen in Fig. 7 as an orange marker) is given by ξmin

COPSS/ξk.

Table B.1. Overview of FGPXS bin values and uncertainties.

k-center
[Mpc−1]

kC̃(k)
[103µK2Mpc2]

kσC̃(k)

[103µK2Mpc2]
0.1. . . . . . . . . . . . 0.36 1.82
0.15 . . . . . . . . . . 2.9 1.09
0.21 . . . . . . . . . . 0.59 1.27
0.3. . . . . . . . . . . . 1.19 1.26
0.44 . . . . . . . . . . −2.37 1.86
0.62 . . . . . . . . . . −2.48 3.24
0.89 . . . . . . . . . . 101.5 90.9
1.27 . . . . . . . . . . −5.05 × 105 3.9 × 106

Notes. Bin values and uncertainties (respectively in the last two
columns) of the spherically- and field-averaged FGPXS corresponding
to our data points seen in Fig. 5.

transfer function estimation and for the actual signal estimation
from the data. Otherwise, the final signal estimate computed ob-
tained from the data would be biased.

We generate mock signal maps to use in this injection mech-
anism by applying the fiducial halo model to dark matter halos
simulated with the peak-patch technique (Bond & Myers 1996;
Stein et al. 2019). Furthermore, we use a raw COMAP data vol-
ume corresponding to all the fast-moving azimuth scans of Field
3. This roughly corresponds to the largest independently filtered
data volume; i.e. the highest possible CO-SNR. We then boost

the injected signal by a factor of three before injecting it into the
raw time stream to ensure the signal is detectable above the in-
strumental noise. Subsequently, the TOD are filtered and binned
into maps using the pipeline described by Lunde et al. (2024),
before we compute the FGPXS signal estimate to see whether
the injected signal was successfully recovered. Note, that only
one signal realization is used because these high-realism mocks
are expensive to produce. However, the test still functions as a
simple qualitative “sanity check” that the pipeline works as in-
tended. Future work will expand on this modest check by includ-
ing further signal realizations and COMAP fields.

The resulting mock FGPXS data points as well as the auto-
power spectrum of the input simulation can be seen in Fig. D.1.
We can clearly see a high-significance excess that appears con-
sistent the power spectrum of the input signal within the esti-
mated error bars (which are estimated using the RND method-
ology as described in Sec. 2.3). The excess is large enough to
place the computed χ2-value of the mock data far outside the
computed RND χ2-distribution. Therefore, to assign a quantita-
tive value to the significance of this mock detection, we instead
use the simplified assumptions of approximately Gaussian un-
certainties. When doing so, we obtain an estimated ≈ 6σ de-
tection of non-zero power. Meanwhile, testing against the input
signal we get a 1.5σ significance away from the model, meaning
we recover the input signal within at most mild tension.

This exercise demonstrates that we can recover the input sig-
nal within the experimental errors, indicating that our pipeline,
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Table C.1. Detailed overview of null test χ2 probabilities-to-exceed.

χ2 probabilities-to-exceed [%]
Spherically-averaged (1D) Cylindrically-averaged (2D)

Field 1 Field 2 Field 3 Field 1 Field 2 Field 3
Null variable Fast Slow Fast Slow Fast Slow Fast Slow Fast Slow Fast Slow
ambt . . . . . . . . 57 33 8 13 76 22 77 45 49 26 70 74
wind . . . . . . . . 43 17 46 29 83 40 77 7 45 26 17 87
wint . . . . . . . . 41 49 64 93 17 62 7 24 90 91 47 76
half . . . . . . . . . 86 16 21 6 14 43 49 3 87 39 25 68
odde . . . . . . . . 86 48 38 91 38 66 54 14 9 91 95 43
dayn . . . . . . . . 61 87 86 77 29 11 73 7 76 79 3 79
dtmp . . . . . . . . 25 19 38 49 92 ≥ 99.5a 14 27 36 83 27 42
hmty . . . . . . . . 95 52 98 70 51 17 90 41 81 79 29 44
pres . . . . . . . . . 52 92 32 23 35 76 9 43 2 99 61 20
wthr . . . . . . . . 69 79 67 37 38 28 37 15 45 62 63 68
sune . . . . . . . . 89 58 95 27 96 28 40 78 79 8 7 42
modi . . . . . . . . 34 46 16 27 72 48 83 51 88 42 90 37
sudi . . . . . . . . . 91 55 16 27 97 94 26 24 20 96 44 80
tsys . . . . . . . . . 26 42 33 93 17 28 9 88 61 44 54 93
fpoO . . . . . . . . 44 97 11 3 64 62 60 56 62 83 74 52
fpoI . . . . . . . . . 39 45 44 73 49 3 62 74 44 89 53 25
apoO. . . . . . . . 50 72 42 92 86 44 60 98 73 27 17 0.6
apoI . . . . . . . . 68 58 87 71 67 25 ≥ 99.5a 18 1 8 76 21
spoO. . . . . . . . 74 17 95 76 24 61 81 38 92 57 97 69
spoI . . . . . . . . . 51 9 37 27 70 37 96 58 57 13 11 11
npca . . . . . . . . 89 51 19 80 86 98 92 49 16 45 74 55
pcaa . . . . . . . . 58 30 64 60 97 19 35 67 27 42 32 24
s01f . . . . . . . . . 61 42 33 16 44 37 88 3 89 24 60 80
fk1f . . . . . . . . . 85 16 1 20 36 49 78 56 1 68 11 17
al1f . . . . . . . . . 30 14 50 16 83 62 81 48 90 67 49 39
azdr . . . . . . . . . 43 42 34 98 93 71 0.6 27 18 20 11 3
KS-test . . . . . 5.5 9.7 16.9 24.1 41.8 48.9 32.1 8.4 61.9 78.7 70.9 72.0

Notes. Null test χ2 probabilities-to-exceed (PTE) in units percent. All tabulated PTE values, for all three Fields, fast- and slow-moving azimuth
scans (denoted as “Fast” and “Slow”), are numerically computed from the RND ensemble. The last row indicates the Kolmogorov-Smirnov (KS)
uniformity test PTE. The KS uniformity PTE of the entire table of PTEs is 58.7 %.
(a) The χ2-value of this null test was slightly outside the simulated RND χ2-distribution and we hence only have a lower limit of 99.5 % on the
numerical PTE as the numerical resolution of the simulated distribution is roughly 1/183 ∼ 0.5 % from the RND ensemble size.

the full transfer function, and error bar estimation work as ex-
pected.

0.1 0.2 0.4 0.8
k  [Mpc 1]

0.
5

0.
0

0.
5

1.
0

kC
(k

)  
[1

04
K2 M

pc
2 ]

Simulation auto-power spectrum
Mock FGPXS

Fig. D.1. Example of the spherically-averaged FGPXS (black points)
resulting from injecting a mock CO signal realization (blue input power
spectrum) of the (line-broadened) COMAP fiducial model (Chung et al.
2021, 2022) with a boost factor of three into all fast-moving azimuth
data of Field 3.
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Table C.2. Detailed overview and explanation of null test variables

Null variable Explanation
ambt . . . . . . . . . . . . . . . . . . . . . Ambient temperature at telescope site, as recorded by a nearby weather station.
wind . . . . . . . . . . . . . . . . . . . . . Wind speed, as recorded by a nearby weather station.
wint . . . . . . . . . . . . . . . . . . . . . Winter/summer split, the time difference to the middle of winter (15th of January).
half . . . . . . . . . . . . . . . . . . . . . . Half-mission split, early versus late scans.
odde . . . . . . . . . . . . . . . . . . . . . Odd versus even scans.
dayn . . . . . . . . . . . . . . . . . . . . . Day/night split, time difference to 2 AM.
dtmp . . . . . . . . . . . . . . . . . . . . . Dew temperature, as recorded by a nearby weather station.
hmty . . . . . . . . . . . . . . . . . . . . . Humidity, as recorded by a nearby weather station.
pres . . . . . . . . . . . . . . . . . . . . . . Air pressure, as recorded by a nearby weather station.
wthr . . . . . . . . . . . . . . . . . . . . . Bad weather and cloud coverage, predicted by a neural network trained on the raw data.
sune . . . . . . . . . . . . . . . . . . . . . Sun elevation.
modi . . . . . . . . . . . . . . . . . . . . . Average angular distance from the center of the field to the moon during the scan.
sudi . . . . . . . . . . . . . . . . . . . . . . Average angular distance from the center of the field to the sun during the scan.
tsys . . . . . . . . . . . . . . . . . . . . . . Average system temperature, as measured by the vane calibration, during the scan.
fpo0 . . . . . . . . . . . . . . . . . . . . . fknee value of a 1/ f fit on the 0th-order 1/ f gain fluctuation filter coefficient.a
fpo1 . . . . . . . . . . . . . . . . . . . . . fknee value of a 1/ f fit on the 1st-order 1/ f gain fluctuation filter coefficient.a
apo0 . . . . . . . . . . . . . . . . . . . . . α value of a 1/ f fit on the 0th-order 1/ f gain fluctuation filter coefficient.a
apo1 . . . . . . . . . . . . . . . . . . . . . α value of a 1/ f fit on the 1st-order 1/ f gain fluctuation filter coefficient.a
spo0 . . . . . . . . . . . . . . . . . . . . . σ0 value of a 1/ f fit on the 0th-order 1/ f gain fluctuation filter coefficient.a
spo1 . . . . . . . . . . . . . . . . . . . . . σ0 value of a 1/ f fit on the 1th-order 1/ f gain fluctuation filter coefficient.a
npca . . . . . . . . . . . . . . . . . . . . . Number of PCA components subtracted in the TOD filtering pipeline.
pcaa . . . . . . . . . . . . . . . . . . . . . Average amplitude of the fitted PCA components in the TOD filtering pipeline.
s01f . . . . . . . . . . . . . . . . . . . . . σ0 value of a 1/ f fit on the sideband-averaged time-domain data.
fk1f . . . . . . . . . . . . . . . . . . . . . . fknee value of a 1/ f fit on the sideband-averaged time-domain data.
al1f . . . . . . . . . . . . . . . . . . . . . . α value of a 1/ f fit on the sideband-averaged time-domain data.
azdr . . . . . . . . . . . . . . . . . . . . . Scans split internally in left- vs right-moving pointing, in azimuth.

Notes. Explanation of the null test split variables. For all variables we show the abbreviation used in Table C.1 and a more detailed explanation of
the null test variable
(a) As part of the TOD filtering a first order polynomial is fitted across the frequency bands for each time-sample. The 0th- and 1st-order polynomial
components (as functions of time) tend to follow a 1/ f spectrum, and a fit is performed on their TOD power spectra. See Lunde et al. (2024); Foss
et al. (2022) for details.
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ABSTRACT

The Carbon monOxide Mapping Array Project (COMAP) Pathfinder survey continues to demonstrate the feasibility of line-intensity
mapping using high-redshift carbon monoxide (CO) line emission traced at cosmological scales. The latest COMAP Pathfinder power
spectrum analysis is based on observations through the end of Season 2, covering the first three years of Pathfinder operations.
We use our latest constraints on the CO(1–0) line-intensity power spectrum at z ∼ 3 to update corresponding constraints on the
cosmological clustering of CO line emission and thus the cosmic molecular gas content at a key epoch of galaxy assembly. We first
mirror the COMAP Early Science interpretation, considering how Season 2 results translate to limits on the shot noise power of
CO fluctuations and the bias of CO emission as a tracer of the underlying dark matter distribution. The COMAP Season 2 results
place the most stringent limits on the CO tracer bias to date, at ⟨Tb⟩ < 4.8 µK. These limits narrow the model space significantly
compared to previous CO line-intensity mapping results while maintaining consistency with small-volume interferometric surveys of
resolved line candidates. The results also express a weak preference for CO emission models used to guide fiducial forecasts from
COMAP Early Science, including our data-driven priors. We also consider directly constraining a model of the halo–CO connection,
and show qualitative hints of capturing the total contribution of faint CO emitters through the improved sensitivity of COMAP data.
With continued observations and matching improvements in analysis, the COMAP Pathfinder remains on track for a detection of
cosmological clustering of CO emission.

Key words. galaxies: high-redshift – radio lines: galaxies – diffuse radiation
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1. Introduction

Line-intensity mapping (LIM) surveys map the large-scale struc-
ture of the Universe in large cosmological volumes, but not
through discrete resolved tracer sources. Rather, LIM surveys
achieve this through unresolved emission in specific spectral
lines, including lines associated with different phases of the star-
forming interstellar medium (ISM) such as carbon monoxide
(CO) and the [C ii] line from singly ionized carbon (see Kovetz
et al. 2019 and Bernal & Kovetz 2022 for recent reviews). As part
of a range of emerging interferometric and single-dish LIM sur-
veys from radio to sub-millimeter wavelengths, the CO Mapping
Array Project (COMAP; Cleary et al. 2022) is building a dedi-
cated centimeter-wave LIM program to map the cosmic clus-
tering of emission in the CO(1–0) and CO(2–1) lines from the
epochs of galaxy assembly (z ∼ 3, just before so-called “cos-
mic noon”) and reionization (z ∼ 7, “cosmic dawn”). COMAP
science will encompass both the astrophysics of the assembly of
molecular gas at these key epochs of galaxy evolution, and ulti-
mately the cosmological implications of observed high-redshift
large-scale structure traced by CO emission.

The first phase of COMAP is the COMAP Pathfinder, a 26–
34 GHz spectrometer comprising a single-polarization 19-feed
array of coherent receivers on a single 10-meter dish at the
Owens Valley Radio Observatory (Lamb et al. 2022). The fo-
cus of the Pathfinder survey is on CO(1–0) emission from z ∼ 3,
or a lookback time of ∼ 11.5 Gyr. Around this “cosmic half-
past eleven”, we survey galaxies assembling towards the “cos-
mic noon” of peak cosmic star-formation activity (Somerville
& Davé 2015; Förster Schreiber & Wuyts 2020). Following the
Early Science analysis of Foss et al. (2022) and Ihle et al. (2022)
based on the first season of observations (Season 1), the Season 2
data analysis by Lunde et al. (2024) and Stutzer et al. (2024) en-
compasses three years of observations and improved data clean-
ing methods for almost an order-of-magnitude increase in power
spectrum sensitivity.

With such progress continuing to demonstrate the feasibility
of CO LIM survey operations and low-level data analysis, we
present here the corresponding update on our understanding of
CO(1–0) emission at z ∼ 3. We carry out a high-level analysis of
the power spectrum constraints of Stutzer et al. (2024) to answer
the following questions:

– How much does the increased data volume improve con-
straints on the clustering and shot noise power of cosmolog-
ical CO(1–0) emission at z ∼ 3?

– Can COMAP Season 2 data better constrain the empirical
connection between CO emission and the underlying struc-
tures of dark matter?

We structure the paper as follows. In Sect. 2 we outline our
methodology for interpretation, including but no longer limited
to methods previously used in Chung et al. (2022). We discuss
the results of our analysis in Sect. 3, and implications for under-
standing CO emission and interpreting past and future CO LIM
surveys in Sect. 4. We end with our primary conclusions and fu-
ture outlook in Sect. 5.

We assume a ΛCDM cosmology with parameters Ωm =
0.286, ΩΛ = 0.714, Ωb = 0.047, H0 = 100h km s−1 Mpc−1 with
h = 0.7, σ8 = 0.82, and ns = 0.96, to maintain consistency
with previous COMAP simulations (starting with Li et al. 2016).
Distances carry an implicit h−1 dependence throughout, which
propagates through masses (all based on virial halo masses, pro-
portional to h−1) and volume densities (∝ h3). Logarithms are
base-10 unless stated otherwise.

2. Methods

The primary target of the COMAP Pathfinder is the power spec-
trum of spatial-spectral emission after subtraction of contin-
uum emission and systematic effects. Any residual fluctuations
should predominantly arise from clustered populations of CO-
emitting high-redshift galaxies, meaning that we interpret any
constraints on the residual emission as constraints on these CO
emitters. In the simplest possible model, the power spectrum as
a function of comoving wavenumber k consists of the matter
power spectrum Pm(k) scaled by some amplitude Aclust, plus a
scale-independent shot noise amplitude Pshot:

P(k) = AclustPm(k) + Pshot. (1)

The matter power spectrum describes the distribution of mat-
ter density contrast across comoving space, and evolves with
redshift as large-scale structure forms and grows. The spatial-
spectral fluctuations in CO brightness temperature across cos-
mological scales trace the clustering of the underlying matter
fluctuations with some bias, which informs the clustering am-
plitude Aclust. In combination with halo models of CO emission
that postulate average CO luminosities per halo of collapsed dark
matter, constraining Aclust (or related quantities) and Pshot allows
us to understand not just the global cosmic abundance of CO,
but also the relative contribution of different sizes of halos and
thus of galaxies. Estimation of the CO line power spectrum P(k)
is thus a key target of COMAP low-level analyses.

The goal of this section is to outline methods for the kind
of analyses suitable for the current level of sensitivity achieved
by the COMAP dataset. First, Sect. 2.1 reviews the COMAP
Season 2 power spectrum results in relation to previous work.
Then, Sect. 2.2 reviews a simple two-parameter analysis as car-
ried out by Chung et al. (2022) for COMAP Early Science, con-
straining the clustering and shot noise amplitudes and only in-
directly using halo models to support physical interpretation.
Finally, Sect. 2.3 outlines a five-parameter analysis to directly
constrain a halo model of CO emission, as carried out by Chung
et al. (2022) to derive priors for COMAP Early Science but in-
corporating COMAP data for the first time.

2.1. Foundational data: COMAP Season 2 power spectrum
constraints

The present work makes use of the results of Stutzer et al. (2024),
which derived updated power spectrum constraints based on
COMAP Pathfinder survey data collected across 17500 hours
over three fields of 2–3 deg2 each, between its commissioning
in May 2019 and the end of the second observing season in
November 2023. We also make use of the prior work of the CO
Power Spectrum Survey (COPSS; Keating et al. 2016), which
performed a pilot CO LIM survey targeting largely the same ob-
serving frequencies, but with an interferometric dataset probing
smaller scales. The COMAP observations are subject to the ef-
fects of instrument and pipeline response, such as filtering, pix-
elization, and beam smoothing. However, the results as consid-
ered in this work correct for these effects by applying the inverse
of the estimated power spectrum transfer function per k-bin. We
expect mode mixing in COMAP data is still at the level of Ihle
et al. (2022) at most, that is to say less than 20% for the comov-
ing wavenumber range of k ≳ 0.1 Mpc−1 that we consider.

Fig. 1 shows these results alongside the range of expecta-
tions for the z ∼ 3 CO(1–0) emission power spectrum from em-
pirical modeling in the decade leading up to this dataset (Pullen
et al. 2013; Li et al. 2016; Padmanabhan 2018; Keating et al.
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Fig. 1. COMAP Season 2 95% upper limits (given P(k) > 0) on the z ∼ 3 CO(1–0) power spectrum, with analogous limits from COPSS (Keating
et al. 2016) and COMAP Season 1 (Chung et al. 2022). Some k-bins in COPSS and COMAP Season 2 data show marginal excesses, influencing
analyses in this work; we thus show 1σ intervals for these bins unlike in Stutzer et al. (2024). We also show predictions based on Chung et al.
(2022), Padmanabhan (2018), Pullen et al. (2013), Li et al. (2016), and Yang et al. (2022), plus a variation on the Li et al. (2016) model from Keating
et al. (2020), and the Keating et al. (2020) re-analysis of COPSS constraining clustering (triangles) and shot-noise amplitudes (dashed line).

2020; Chung et al. 2022; Yang et al. 2022). These models ei-
ther postulate a connection between dark matter halo properties
and CO luminosity via intermediate galaxy properties like star-
formation rate (SFR), or directly model the halo–CO connection
constrained by observed CO luminosity functions and CO LIM
measurements.

Of the models shown in Fig. 1, only the models of Padman-
abhan (2018) and Chung et al. (2022) fall into the latter category.
Keating et al. (2020) also provide empirical estimates for the
clustering and shot noise amplitudes, but this is simply based on
decomposing the COPSS measurement of Keating et al. (2016)
into clustering and shot noise components, rather than a detailed
halo model. In a different context Keating et al. (2020) do pro-
vide a halo model, which we term the Li et al. (2016)–Keating
et al. (2020) model, varying the Li et al. (2016) model by using
the same halo–SFR connection from Behroozi et al. (2013a,b)
but replacing the SFR–CO connection (via infrared luminosity)
derived from a compilation of local and high-redshift galaxies
(Carilli & Walter 2013) with one based on a local sample ob-
served by Kamenetzky et al. (2016).

Even before any detailed analyses, compared to COMAP
Season 1 we clearly see an increasing rejection of Model B
of Pullen et al. (2013) and of the Padmanabhan (2018) model
with CO emission duty cycle fduty = 1. We refer the reader to the
Early Science work of Chung et al. (2022) for the implications

of excluding these models. As with COMAP Early Science, we
exclude these models in the clustering regime, rather than the
shot-noise dominated scales surveyed by COPSS. However, the
COMAP Season 2 sensitivity is sufficient to exclude these mod-
els clearly in individual k-bins of width ∆(log k Mpc) = 0.155,
rather than having to rely on a co-added measurement across
all k as was necessary in Early Science. For reference, we show
in Appendix A the original data points behind these upper lim-
its, in a way that more closely resembles Fig. 4 of Stutzer et al.
(2024).

Note also a weak tension against the previous positive
COPSS measurement in overlapping k-ranges. The original
COPSS analysis of Keating et al. (2016) measured the CO
power spectrum at k = 1h Mpc−1 to be P(k) = (3.0 ± 1.3) ×
103h−3 µK2 Mpc3, for a best estimate of P(k = 0.7 Mpc−1) =
8.7 × 103 µK2 Mpc3. This is co-added across the entire k-range
spanned by COPSS, with the highest sensitivity achieved around
k = 0.5h–2h Mpc−1. By contrast, in a single k-bin spanning k =
0.52–0.75 Mpc−1, the present COMAP data places a 95% upper
limit of 7.9 × 103 µK2 Mpc3, lying below the COPSS co-added
best estimate. However, the COPSS result is itself only a ten-
tative one at ≈ 2.3σ significance, and so there is no statistically
significant discrepancy. COMAP data are also entirely consistent
with the estimate of Pshot = 2.0+1.1

−1.2 × 103h−3 µK2 Mpc3 from the
later re-analysis of COPSS data by Keating et al. (2020), which
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marginalized over the possible contribution to P(k) from cluster-
ing. In fact our power spectrum results show a marginal excess
at k ≈ 0.15 Mpc−1 that, while well below the upper limit im-
plied by the direct COPSS re-analysis of Keating et al. (2020),
does tentatively indicate a preference for models like the Li et al.
(2016)–Keating et al. (2020) model. The remainder of this work
will establish this preference more quantitatively, and consider
other implications of these results.

2.2. Two-parameter analysis: Constraining CO tracer bias
and shot noise

The most direct way to analyze the COMAP Season 2 con-
straints is to decompose the CO power spectrum into clustering
and shot noise terms as in Eq. (1), with a fixed cosmological
model and no assumptions around detailed astrophysical model-
ing. The COMAP data then constrain the possible range of val-
ues for Aclust and Pshot, which we may then compare to model
predictions for these amplitudes for the clustering and shot noise
contributions to the power spectrum.

However, physical interpretation requires some amount of
guidance from models. Consider a halo model of CO emission
where halos of virial mass Mh emit with CO luminosity L(Mh).
Suppose that we know the halo mass function dn/dMh describ-
ing the differential number density of halos of mass Mh, and the
bias bh(Mh) with which the halo number density contrast traces
the continuous dark matter density contrast. Then the cosmologi-
cal fluctuations in CO(1–0) line temperature trace the underlying
dark matter fluctuations with a linear scaling of

⟨Tb⟩ ∝
∫

dMh
dn

dMh
L(Mh)bh(Mh). (2)

This should be understood as a mean line temperature–bias prod-
uct, with appropriate normalization factors applied to convert lu-
minosity density to brightness temperature. We may also ascribe
a dimensionless bias b to CO emission contrast by dividing out
the average line temperature or luminosity density:

b =

∫
dMh (dn/dMh) L(Mh)bh(Mh)
∫

dMh (dn/dMh) L(Mh)
. (3)

Furthermore, any halo model of L(Mh) will predict the shot
noise, proportional to the second bias- and abundance-weighted
moment of the L(Mh) function rather than the first moment:

Pshot ∝
∫

dMh
dn

dMh
L2(Mh)bh(Mh). (4)

The quantity Pshot directly describes the shot noise amplitude,
but the same is not true of ⟨Tb⟩ in relation to the clustering am-
plitude. In real comoving space we would expect Aclust = ⟨Tb⟩2,
but redshift-space distortions (RSD) enhance the clustering term
as large-scale structure coherently attracts galaxies (Kaiser 1987;
Hamilton 1998). In the linear regime of small k, and given that
Ωm(z) ≈ 1 at COMAP redshifts,

Aclust ≈ ⟨Tb⟩2
(
1 +

2
3b
+

1
5b2

)
. (5)

Based on prior modeling efforts, we consider b > 2 to be a
fairly conservative lower bound on CO tracer bias, as outlined
by Chung et al. (2022). This bound on b in turn allows us to
bound ⟨T ⟩ = ⟨Tb⟩ /b based on an upper bound on Aclust.

We consider two variants of a two-parameter analysis of the
COMAP data, the same carried out in Chung et al. (2022).

1. The first variant is a model-agnostic evaluation of the like-
lihood of different values of Aclust and Pshot given the P(k)
data points available from the COPSS results of Keating et al.
(2016) and/or from COMAP data through Season 2. We only
invoke a conservative limit of b > 2 to obtain an upper bound
on ⟨T ⟩ from our constraint on Aclust.

2. The second variant assumes that given values for ⟨Tb⟩2 and
Pshot, we can expect specific values for b and for an effective
line width veff describing the suppression of the high-k CO
power spectrum from line broadening (Chung et al. 2021).
Exploration of an empirically constrained model space in-
forms fitting functions for b and veff given only ⟨Tb⟩2 and
Pshot, as provided in Appendix B of Chung et al. (2022),
which then enter into calculation of the redshift-space P(k)
accounting for RSD and line broadening. We can directly
compare this P(k) to our P(k) data to evaluate the likelihood
of different values of ⟨Tb⟩2 and Pshot. We refer to this variant
as the “b- and veff-informed” analysis, versus the first “b- and
veff-agnostic” version.

We may then compare likely and unlikely regions of this two-
parameter space to model predictions.

2.3. Five-parameter analysis: Directly constraining the
halo–CO connection

Neither variant of our two-parameter analysis truly directly con-
strains the physical picture of CO emission, only a clustering
term and a shot noise term. Given a fixed set of power spectrum
measurements, the two-parameter analysis will broadly project
likelihood contours favouring either high clustering and low shot
noise, or low clustering and high shot noise. Yet physical mod-
els should impose a strong prior such that clustering and shot
noise co-vary, given that the shot noise also tracks with luminos-
ity density, albeit at a higher order – cf. Eq. (4).

Directly modeling and constraining L(Mh) thus has its uses.
While dark matter halos are not themselves the direct source of
CO emission or indeed any baryonic physics, a halo model of CO
emission still serves as a simple way to physically ground inter-
pretation of our CO measurements and introduce priors based on
other empirical constraints on the galaxy–halo connection.

2.3.1. Parameterization and derivation of “UM+COLDz”
posterior

To model L(Mh), we use the same parameterization and data-
driven procedure as in Chung et al. (2022). One of the datasets
driving this procedure is provided by the CO Luminosity Den-
sity at High-z (COLDz) survey (Pavesi et al. 2018; Riechers et al.
2019), which identified line candidates at z ∼ 2.4 through an un-
targeted interferometric search. In Chung et al. (2022) we also
introduced somewhat informative priors based loosely on the
work of Behroozi et al. (2019), which devised the UniverseMa-
chine (UM) framework for an empirical model of the galaxy–
halo connection by connecting halo accretion histories to a min-
imal model of stellar mass growth. We thus once again combine
these “UM” priors with COLDz data and a basic L(Mh) parame-
terization, just as in Chung et al. (2022).

We assume a double power law for the linear average L(Mh).
In observer units,

L′CO(Mh)

K km s−1 pc2
=

C
(Mh/M)A + (Mh/M)B . (6)
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For CO(1–0),

LCO(Mh)
L⊙

= 4.9 × 10−5 × L′CO(Mh)

K km s−1 pc2
. (7)

We also model stochasticity albeit in a highly simplistic fash-
ion, assuming some level of log-normal scatter σ (in units of
dex) about the average relation. We inherit this practice from
the common use of log-normal distributions to model intrinsic
scatter in, e.g., the halo–SFR connection (e.g.: Behroozi et al.
2013a,b) and the halo–CO connection as modeled for previous
early COMAP forecasts (Li et al. 2016).

The somewhat informative “UM” priors for the five free pa-
rameters of L(Mh) are as follows:

A = −1.66 ± 2.33, (8)
B = 0.04 ± 1.26, (9)

log C = 10.25 ± 5.29, (10)
log (M/M⊙) = 12.41 ± 1.77. (11)

For log-normal scatter, we assume an initial prior ofσ = 0.4±0.2
(dex), taking cues from Li et al. (2016) for the central value and
slightly broadening the prior.

We then narrow these priors further by matching the lumi-
nosity function constraints of the COLDz survey. The match-
ing procedure is similar to that used in Chung et al. (2022).
However, that procedure used a snapshot from the Bolshoi–
Planck simulation, used by (Behroozi et al. 2019) but slightly
discrepant against our fiducial cosmology. Here, we use our own
peak-patch mocks (Stein et al. 2019) with virial masses matched
to the halo mass function of Tinker et al. (2008). We extract
halos from z ∈ (2.35, 2.45) (or χ ∈ (5720.37, 5844.19) Mpc)
from these peak-patch mocks, since we are specifically trying
to match a luminosity function constraint at z ∼ 2.4. We thus
obtain 161 independent realizations of a halo catalogue from a
1140 × 1140 × 124 Mpc3 = 0.16 Gpc3 box, comparable to the
Bolshoi–Planck snapshot with a box size of (250/0.678) Mpc (or
a volume of 0.05 Gpc3). A Markov chain Monte Carlo (MCMC)
procedure identifies the posterior (narrowed prior) based on a
likelihood calculation in addition to the mildly informative pri-
ors outlined above. At each step:

– We use the sampled L(Mh) parameters to convert a random
peak-patch realization of halo masses into CO luminosities.

– We then fit a Schechter function to the resulting CO lumi-
nosity function of that randomly chosen peak-patch box.

– We calculate the log-likelihood by comparing the Schechter
function fit against the COLDz posterior for the Schechter
function parameters via a kernel density estimator.

The MCMC uses 250 walkers for 4242 steps, and we discard
the first 1000 steps as a burn-in phase.

The result is an informed distribution, which we call the
“UM+COLDz” posterior, for the five parameters {A, B,C,M, σ}
of our L(Mh) model.

2.3.2. Derivation of posteriors incorporating CO LIM data

To derive posteriors based on CO LIM power spectrum mea-
surements, we rerun the same MCMC procedure used to derive
the “UM+COLDz” distribution with additional contributions to
the likelihood from any discrepancy with the CO LIM results. In
other words, we introduce additive log-likelihood terms,

∆(logL) ∝ −
∑

k

[Pmodel(k) − Pdata(k)]2

σ2[Pdata(k)]
, (12)

evaluated against each dataset Pdata(k) with error σ[Pdata(k)] for
the model Pmodel(k) drawn at each MCMC step.1

Using our fiducial cosmology and the halo mass function
of Tinker et al. (2008), we numerically evaluate closed-form ex-
pressions describing the CO power spectrum at z ∼ 2.8. We
evaluate the above log-likelihood terms against the predicted
Pmodel(k) without imposing positivity priors, which would be re-
dundant with the always positive predictions of our P(k) model.

We consider three (combinations of) datasets:

– The “UM+COLDz+COPSS” posterior derives from consid-
ering only the addition of COPSS data points as shown
in Keating et al. (2016).

– The “UM+COLDz+COPSS+COMAP S1” posterior derives
from considering both COPSS and COMAP Early Science
P(k) constraints from Season 1 data.

– The “UM+COLDz+COPSS+COMAP S2” posterior derives
from considering constraints from both COPSS and the
present work on COMAP Pathfinder data through Season 2.

While the MCMC procedure itself evaluates posteriors for
{A, B,C,M, σ}, we can use the resulting sampling of parame-
ter space to obtain posterior distributions for derived quantities
like L(Mh), ⟨T ⟩, b, and Pshot, and we will look for how (if at
all) the “UM+COLDz+COPSS+COMAP S2” posterior distin-
guishes itself from posteriors based on only previous data.

3. Results

Having outlined the datasets and methods used in the analyses,
we now review the results in relation to previous models and re-
sults. We consider outcomes of the two-paramater analysis iden-
tifying overall amplitudes for clustering and shot noise power
in Sect. 3.1, followed by outcomes of the five-parameter analy-
sis fitting for the L(Mh) relation in Sect. 3.2.

3.1. Two-parameter analysis

We summarize the results of the two-parameter analysis of the
COMAP results in Table 1, and show in Fig. 2 the probability
distributions when considering only COMAP data up to Season
2 (“COMAP S2” in Table 1). We find a factor of 5 improvement
in our ability to constrain Pshot from above with COMAP data
alone up to Season 2 compared to COMAP Early Science alone,
and a factor of 2 improvement in upper limits for the cluster-
ing amplitude. In fact, framing sensitivity to clustering purely
in terms of the upper limit achieved downplays our gain. Where
the COMAP Early Science analysis effectively gave a maximum
a posteriori (MAP) estimate of zero for Aclust and ⟨Tb⟩2, Fig. 2
shows that the likelihood distributions peak at positive values of
these parameters under COMAP Season 2 constraints.

We also show in Fig. 2 model predictions for Aclust and
Pshot, or for ⟨Tb⟩2 and Pshot. As expected, all models not shown
to be excluded by the COMAP Season 2 data at 95% confi-
dence in Fig. 1 are consistent to within 2σ of the MAP estimate
from the COMAP Season 2 likelihood analysis, including the
COMAP Early Science fiducial model from Chung et al. (2022).
That said, the most favoured model (within 1σ of the MAP es-
timate) is the Li et al. (2016)–Keating et al. (2020) model used

1 This approximates the likelihood as Gaussian and independent be-
tween k-bins, which we consider to be a reasonable approximation at
least for COMAP Season 2 data. In obtaining the P(k) result, Stutzer
et al. (2024) found that on average, any single k-bin correlated with any
other k-bin at a level of ≲ 10%.
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b- and veff-agnostic: b- and veff-informed: b- and veff-agnostic: b- and veff-informed:
Aclust Pshot/103 ⟨Tb⟩2 Pshot/103 ⟨T ⟩ ρH2/108 ⟨T ⟩ ρH2/108

Data (µK2) (µK2 Mpc3) (µK2) (µK2 Mpc3) (µK) (M⊙Mpc−3) (µK) (M⊙Mpc−3)
COPSS < 630 5.7+4.2

−3.6 < 345 12.1+7.5
−6.4 < 11. < 7.4 < 9.3 < 6.4

COMAP S1 < 66 < 19 < 49 < 24 < 3.5 < 2.4 < 3.5 < 2.5
COMAP S1+COPSS < 69 6.8+3.8

−3.5 < 51 11.9+6.8
−6.1 < 3.5 < 2.5 < 3.6 < 2.5

COMAP S2 < 31 < 3.7 < 23 < 4.9 < 2.4 < 1.6 < 2.4 < 1.7
COMAP S2+COPSS < 30 < 4.8 < 23 < 6.1 < 2.3 < 1.6 < 2.4 < 1.7

Table 1. Results from two-parameter analyses of CO power spectrum measurements for clustering amplitude (Aclust or ⟨Tb⟩2) and shot noise power
(Pshot), assuming any deviation from zero describes CO(1–0) emission at z ∼ 3. For comparison, we also show results from using only COPSS
data or COMAP data through Season 1; we indicate in bold type the results from using COMAP data through Season 2 (without COPSS data).
We quote 68% intervals for Pshot in the “COPSS” and “COMAP S1+COPSS” analyses; otherwise we quote 95% upper limits.
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Fig. 2. Likelihood contours and marginalized probability distributions
for the clustering and shot-noise amplitudes of the CO power spectrum,
conditioned on COMAP Season 2 data, in b- and veff-agnostic (upper)
and -informed (lower) analyses. Black solid lines plotted with the 1D
marginalized distributions indicate the 95% upper limits for each pa-
rameter. The solid and dashed 2D contours are meant to encompass 39%
and 86% of the probability mass (delineated at ∆χ2 = {1, 4} relative to
the minimum χ2, corresponding to 1σ and 2σ for 2D Gaussians). We
show the clustering and shot noise amplitudes for a subset of the mod-
els plotted in Fig. 1. Models shown in Fig. 1 but not shown here have
values of Aclust or ⟨Tb⟩2 well beyond the 2σ regions shown.

to explain the results of the mm-wave Intensity Mapping Exper-
iment (mmIME; Keating et al. 2020). This finding is consistent
between the b- and veff-agnostic and -informed analyses.
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Fig. 3. Same as Fig. 2, but with a combination of COMAP Season 2 and
COPSS data conditioning the likelihood.

The resulting constraints on ⟨T ⟩ given b > 2 are also con-
sistent between these analyses to within a few percent. Going
forward we will quote ⟨Tb⟩ < 4.8 µK or ⟨T ⟩ < 2.4 µK, consis-
tent with both of our “COMAP S2” standalone analyses as well
as both of the “COMAP S2+COPSS” joint analyses as we show
in Table 1. As in Chung et al. (2022) we can convert any estimate
of ⟨T ⟩ into an estimate for cosmic molecular gas density:

ρH2 = αCO ⟨T ⟩H(z)/(1 + z)2. (13)

We show the resulting bounds on ρH2 in Table 1 alongside the
original bounds on ⟨T ⟩, given αCO = 3.6 M⊙ (K km s−1 pc2)−1

and the Hubble parameter H(z) at the central COMAP redshift
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of z ∼ 2.8. Although some works have advocated for values
of αCO (Bolatto et al. 2013; Scoville et al. 2016) higher by as
much as a factor of two, our chosen value follows the one most
commonly used by previous CO line search and line-intensity
mapping analyses (e.g.: Riechers et al. 2019; Decarli et al. 2020;
Lenkić et al. 2020; Keating et al. 2020), with this value orig-
inally identified in three z ∼ 1.5 galaxies (Daddi et al. 2010).
Our top-line result of ⟨T ⟩ < 2.4 µK corresponds to a bound of
ρH2 < 1.6 × 108 M⊙Mpc−3.

When we use COPSS data in combination with COMAP
Season 2 data, the results change to favour higher shot noise
values as shown in Fig. 3. The constraints on the clustering am-
plitude, whether phrased as Aclust in a b-/veff-agnostic analysis
or ⟨Tb⟩2 in a b-/veff-informed analysis, is essentially the same
under COMAP Season 2 constraints with or without COPSS
data. Note however that in the Early Science analyses of Chung
et al. (2022), the COPSS data dominated the constraint on Pshot
and weakly favoured a positive value, with the b/veff-agnostic
2D probability distribution between Aclust and Pshot resembling a
2D Gaussian distribution just truncated at the 2σ contour by the
Pshot = 0 boundary. This is no longer the case, with the corre-
sponding distribution in the upper portion of Fig. 3 resembling a
2D Gaussian distribution truncated inside the 1σ contour.

What greater allowance remains for higher Pshot values still
comes from the way in which the b-/veff-informed analysis
adds an attempted correction for line broadening. Previous work
by Chung et al. (2021) showed that the finite widths of line pro-
files can attenuate the power spectrum by ∼ 10% at scales rele-
vant to COMAP but at a higher ∼ 30% level at scales surveyed
by interferometric surveys like COPSS. By correcting for this
attenuation, the b-/veff-informed “COMAP S2+COPSS” analy-
sis obtains an upper limit of Pshot < 4.8 × 103 µK2 Mpc3, which
is 27% higher than the upper limit from the b-/veff-agnostic
“COMAP S2+COPSS” analysis of Pshot < 6.1 × 103 µK2 Mpc3.
This difference is within the possible range of attenuation ex-
pected for the COPSS k-range given our modeling.2

While a combination of low clustering amplitude and high
shot noise can certainly explain the current data, the b-/veff-
informed COMAP S2+COPSS analysis shown in Fig. 3 assigns
significant probability mass within the 2σ contour to regions of
parameter space with high clustering-to-shot noise ratios (partic-
ularly at low ⟨Tb⟩2 values) that do not correspond to any known
model. This analysis mode may thus be running into an un-
physical parameter space without being grounded in a properly
phrased halo model. For instance, by not marginalizing properly
over possible values of veff, and merely assuming a fixed aver-
age for each parameter space point, we potentially incorrectly
de-bias against line broadening. We therefore move to consider
the five-parameter analysis constraining L(Mh), as opposed to
nonspecific clustering and shot noise amplitudes.

3.2. Five-parameter analysis

Fig. 4 and Fig. 5 summarize the results of our five-parameter
analysis in terms of derived quantities; we also show the
posterior distributions in the original parameter space in Ap-
pendix B. First, comparing the “UM+COLDz” distribution with
2 Curiously, however, the upward correction is similar between the
COMAP S2 standalone analyses – in fact, it ends up slightly larger
at 32%. This is not entirely insensible. Even small amounts of atten-
uation allowable within uncertainties at lower wavenumbers will corre-
spond to a large possible range of corrections for attenuation of the shot
noise component, and this lever arm from low k to high k is larger with
COMAP data alone than with COPSS data added to the analysis.
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Fig. 4. 68% intervals (lighter curves) and median values (darker curves)
for L′CO(Mh) from the five-parameter MCMC described in the main text.
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Fig. 5. Derived posterior distributions for ⟨Tb⟩ and Pshot based on the
five-parameter MCMC described in the main text. The inner (outer)
contours of each distribution show the 1σ (2σ) confidence regions.

“UM+COLDz+COPSS+COMAP S1”, we do not see tangible
differences in the derived quantities. The COPSS data on their
own push the parameter space towards slightly higher σ, lower A
(so a steeper faint-end slope for the L(Mh) relation), and overall
a brighter signal as shown in the posteriors for ⟨Tb⟩ and Pshot.
However, the COMAP Season 1 non-detection essentially re-
verses many of these changes, even suggesting a slightly dimmer
faint end of the halo mass–CO luminosity relation.

The COMAP Season 2 results push expectations for the sig-
nal back up, albeit only marginally. By pushing the double power
law pivot mass M to lower values and pushing A (the opposite
of the faint-end slope) to higher values, the COMAP Season 2
analysis suggests a brighter population of low-mass halos than
our previous data would allow, as shown in Fig. 4. This is also
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Fig. 6. Constraints on the cosmic molecular gas mass density ρH2
based on CO abundance measurements across redshifts 0–4. We show
COMAP Season 1 and Season 2 constraints on ⟨T ⟩ converted based
on Eq. (13), including both the two-parameter analysis upper limit
and the five-parameter UM+COLDz+COPSS+COMAP S2 result. For
comparison, we also show past results from untargeted interfero-
metric CO line searches (boxes) – ASPECS (Decarli et al. 2020),
PHIBBS2 (Lenkić et al. 2020), and COLDz (Riechers et al. 2019) –
as well as interferometric CO LIM surveys (uncapped error bars) –
COPSS (Keating et al. 2016) and mmIME (Keating et al. 2020). In ad-
dition, we show a best-fit model describing results from stacked 850 µm
luminosities of galaxies at redshifts 0–2.5 (Garratt et al. 2021). All re-
sults use αCO = 3.6 M⊙ (K km s−1 pc−2)−1 (cf. Daddi et al. 2010) except
COPSS, which uses a conversion of αCO = 4.3 M⊙ (K km s−1 pc−2)−1

(cf. Bolatto et al. 2013), and Garratt et al. (2021), who use αCO =
6.5 M⊙ (K km s−1 pc−2)−1 as promoted by Scoville et al. (2016).

apparent in Fig. 5, where the “UM+COLDz+COPSS+COMAP
S2” posteriors for the derived quantities ⟨Tb⟩, and Pshot show
a systematic shift towards higher ⟨Tb⟩ – for the first time
markedly pushing away from the lower limit implied by the
UM+COLDz distribution – in addition to a less extended right
tail for Pshot. These shifts in the posterior distribution suggest
that the COMAP Pathfinder survey is approaching the point of
making statements about the faint end of the CO luminosity
function by accessing its contribution to the clustering of CO
emissivity on cosmological scales, something no other survey
on the horizon will do.

Finally, we note that the “UM+COLDz+COPSS+COMAP
S2” estimate for ⟨T ⟩ – which incorporates prior information and
should not be considered a COMAP “detection” of any kind – is
0.72+0.45

−0.30 µK. This corresponds to a cosmic molecular gas density
of ρH2 = 5.0+3.1

−2.1×107 M⊙Mpc−3, which we discuss further in the
next section.

4. Discussion

Phrased in terms of constraints on ρH2, the COMAP Season 2 re-
sults show the progress that COMAP – and thus single-dish CO
LIM as a technique – has made in growing into an independent
probe of cosmological CO emission and thus of cosmic molecu-

lar gas content. We illustrate this graphically in Fig. 6, showing
the present work’s COMAP results in the context of previous
work. The results from prior literature are mostly the same as
those Chung et al. (2022) collated for their Fig. 9.

– Deep surveys have leveraged community interferometers to
observe pencil beam volumes and identify CO line emission
candidates from the integrated data cubes in a serendipitous
fashion. Of surveys used for such untargeted line searches,
only the COLDz survey previously discussed in Sect. 2.3 di-
rectly observes high-redshift CO(1–0) line emission.

– Two other deep interferometric surveys – the ALMA SPEC-
troscopic Survey in the Hubble Ultra Deep Field (AS-
PECS; Decarli et al. 2020) and the Plateau de Bure High-z
Blue Sequence Survey 2 (PHIBBS2; Lenkić et al. 2020) –
include 3 mm observations sensitive to a range of CO lines
including CO(3–2) at z ≈ 2–3. These constraints on CO lu-
minosity density, and thus ρH2, are subject to an additional
conversion to CO(1–0) luminosity from higher-J CO lines.

– Community interferometers have also hosted key pilot small-
scale CO LIM surveys, namely the previously mentioned
COPSS and mmIME.

As an additional reference point, we also overplot the best-fitting
model from Garratt et al. (2021) to stacked 850 µm luminosi-
ties of near-infrared selected galaxies at redshifts 0–2.5. That
work took advantage of a tight empirical correlation identified
by Scoville et al. (2016) between the 850 µm luminosity and
CO(1–0) luminosity of both low-redshift galaxies and z ∼ 2 sub-
millimeter galaxies. This stands in contrast to the other results
assembled, which directly survey CO lines in some fashion, al-
though not always specifically CO(1–0).

While COMAP Season 2 data are in weak disagreement with
the COPSS results, this does not translate into a disagreement
in the space of ρH2. This is due to the way in which Keating
et al. (2016) derived ρH2 from the COPSS results. The deriva-
tion involved a number of stringent model assumptions includ-
ing a linear relation between halo mass and CO luminosity, a
linear relation between halo mass and molecular gas mass frac-
tion, and the introduction of a prior on the log-normal scatter
σ that suppressed the preferred amount of CO luminosity per
halo mass versus what an unconstrained analysis would have
found. Such assumptions motivate the analyses carried out in
the present work, analysing multiple datasets through common
modeling frameworks with shared assumptions. Compare, for
instance, our own COPSS re-analysis which found an upper limit
of ρH2 < 6.4–7.4 × 108 M⊙Mpc−3 in Sect. 3.1, versus our own
COMAP S2 upper limit of ρH2 < 1.6 × 108 M⊙Mpc−3.

As mentioned at the end of Sect. 3.2, our best estimate for
ρH2 when combining COMAP Season 2 with external prior in-
formation is ρH2 = 5.0+3.1

−2.1 × 107 M⊙Mpc−3. We show in Fig. 6
that this “UM+COLDz+COPSS+COMAP S2” estimate lies
squarely between constraints from CO line searches, which clus-
ter lower, and constraints from interferometric CO LIM surveys,
which cluster higher. These two different families of experiments
informed two different sets of forecasts of COMAP Pathfinder
five-year results in Chung et al. (2022), one using the fiducial
data-driven “UM+COLDz+COPSS” model3 and the other using

3 Although this model originated from a data-driven prior that also
used COPSS, the COLDz data clearly dominated the information
content reflected in the prior. We see this again in the present
work from the minimal difference between the “UM+COLDz” and
“UM+COLDz+COPSS” posteriors in Sect. 3.2.
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Fig. 7. Constraints on ρH2 just before “cosmic noon”, showing 95%
upper limits and confidence intervals standardized to 68% when pos-
sible. In addition to constraints shown before in Fig. 6 from line
searches (Riechers et al. 2019; Lenkić et al. 2020; Decarli et al. 2020),
previous CO LIM analyses (Keating et al. 2016, 2020; Chung et al.
2022), and the present work, we also show COMAP Pathfinder five-
year forecasts from Chung et al. (2022).

the Li et al. (2016)–Keating et al. (2020) model originally formu-
lated to explain mmIME results. Our best estimate thus also lies
between these two models from COMAP Early Science and the
forecasts that used them, which we show alongside previous and
current results in Fig. 7.

As COMAP continues to move forward as a single-dish ex-
periment, its large-scale imaging will complement interferomet-
ric surveys in important ways. This includes not only COPSS
and mmIME but also resolved line candidate searches like AS-
PECS, since COMAP relies on statistical large-scale fluctua-
tions rather than individual sources. For example, ASPECS-Pilot
detected 14 high-redshift [C ii] line candidates (Aravena et al.
2016) only to show in the subsequent ASPECS Large Program
observations that every single one was spurious (Uzgil et al.
2021). The importance of having independent single-dish LIM
experiments like COMAP in the conversation will only increase
as COMAP accrues further data.

The other important focus of COMAP that is salient to the
wider landscape of CO abundance measurements is its focus on
low-J CO lines, specifically CO(1–0) at z ∼ 3 in the case of the
Pathfinder survey. For example, comparing the results of Garratt
et al. (2021) against those of ASPECS or PHIBBS2 would re-
quire accounting for not only uncertainties in quantities like αCO,
but also the respective conversion from the original measure-
ment into CO(1–0) luminosity density – the Scoville et al. (2016)
850 µm–CO(1–0) conversion in the case of Garratt et al. (2021),
and the conversion to CO(1–0) from higher-J CO lines observed
by ASPECS and PHIBBS2 (though for ASPECS see Riechers
et al. 2020). Future COMAP constraints will entirely bypass this

last uncertainty by directly constraining the CO(1–0) luminosity
density – and across all faint and bright galaxies in the survey
volume, not constrained to any specific galaxy selection.

For now our best estimates remain consistent with all exper-
iments, but our sensitivity to the clustering of CO has clearly
improved to the point of providing upward revisions to expecta-
tions for the average CO luminosities of low-mass halos. While
the current sensitivities of COMAP data to the tracer bias and
average line temperature are at best marginal against our infor-
mative priors, they will continue to grow as we accrue more data.
As Lunde et al. (2024) note and as we have already noted in the
Introduction, the COMAP Pathfinder achieved nearly an order-
of-magnitude increase in power spectrum sensitivity per k-bin
despite only a 3.4× increase in raw data volume. With contin-
ued improvements in data cleaning and analysis, we remain op-
timistic that the amount of usable data will increase nonlinearly
with further observing seasons and allow the COMAP Pathfinder
to meet its targets for five-year sensitivities. As it does so, the
resulting constraints will readily lend itself to very straightfor-
ward joint analyses with other measurements of cosmic CO(1–
0) emissivity or molecular gas content in the vein of other LIM
surveys, line scan surveys, or even analyses like that of Garratt
et al. (2021), enhancing our understanding of how the rise and
fall of cosmic star-forming gas relates to its depletion through
the rise and fall of cosmic star-formation activity.

5. Conclusions

With the above results and discussion, we now have firm answers
to the questions posed in the Introduction to this work:

– How much does the increased data volume improve con-
straints on the clustering and shot noise power of cosmo-
logical CO(1–0) emission at z ∼ 3? The COMAP Season 2
dataset represents a five-fold improvement in upper bounds
on CO shot noise power and a halving of the upper bound on
the CO clustering amplitude over COMAP Early Science.
This increased sensitivity introduces tension against the pre-
vious COPSS result, which will evolve with future analyses.

– Can COMAP Season 2 results better constrain the empirical
connection between CO emission and the underlying struc-
tures of dark matter? While COMAP Season 2 data only pro-
vide marginal improvements in constraining this connection,
we see hints of the COMAP Pathfinder’s basic capability in
capturing the clustering of low-mass CO emitters in ways
that other experiments cannot.

The present work has taken an extremely conservative ap-
proach to high-level analysis, with generic models for either
the power spectrum or the halo–CO connection. By making
even stronger model assumptions we can make statements about
semi-analytic models of galaxy formation and the connec-
tion between star-formation activity and molecular gas content
(cf. Breysse et al. 2022). We leave this to a future collaboration
work currently in preparation.

The outlook for the COMAP Pathfinder remains strongly
positive as it continues past three years of data acquisition. The
improvements demonstrated in Season 2, not only in observing
efficiency but also in data cleaning and processing as demon-
strated by the papers that this work accompanies (Lunde et al.
2024; Stutzer et al. 2024), will continue to grow with further
Pathfinder operations. The collaboration thus continues to be on
track for the outcome forecast by Chung et al. (2022): a high-
significance detection of cosmological CO clustering sometime
in the next few years.
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Appendix A: Alternative presentation of observed
power spectra

Fig. A.1 provides an alternate presentation of the LIM observa-
tions shown in Fig. 1 as part of Sect. 2.1. Namely, we represent
all P(k) datasets not as upper limits given positivity priors, and
instead as data points on a linear scale. In this case we take the
feed or feed-group pseudo cross-power spectrum data C̃(k) de-
rived in Ihle et al. (2022) and Stutzer et al. (2024) as the best
COMAP Season 1 and Season 2 estimates for the astrophysi-
cal P(k). We also show credible ranges of P(k) values from the
two-parameter analyses of Sect. 3 rather than specific models as
in Fig. 1.

While the Early Science work of Chung et al. (2022) repre-
sented COMAP Season 1 and COPSS data as co-added results
across their respective k-ranges, we will not adopt such repre-
sentation in future work. Inter-bin correlations, interacting with
imposition of a positivity prior on the co-added result versus on
the individual P(k) points, could result in differences between
co-added and per-bin results impossible to make sense of. For
COMAP Season 2 data, we have explicitly verified that inter-bin
correlations are ≲ 10% for our chosen k-binning (Stutzer et al.
2024). Even so, the choice of how to represent a co-added re-
sult is fraught with many choices with respect to the averaging
scheme, the central k-value, and can lead to misleading visual
comparisons when plotting model power spectra alongside co-
added results without the same weighting used to average the
observed power spectra.

Appendix B: Full five-parameter MCMC posterior
distributions

In Fig. B.1 we show the full five-parameter posterior distribu-
tions from the analysis of Sect. 2.3, from which we obtain dis-
tributions for the derived quantities shown in Sect. 3.2. Com-
pared to Fig. 5, the changes due to COMAP Season 2 data are
more subtle in this higher-dimensional space but nonetheless dis-
cernible.
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Fig. A.1. Same as Fig. 1, but with all LIM P(k) results shown with 1σ uncertainties per k-bin and on a linear scale. Furthermore, instead of the
specific models shown in Fig. 1, we show the typical range of allowable power spectrum values based on the two-parameter analyses of Sect. 3,
with the b-/veff-informed variations showing attenuation for line broadening left uncorrected. These allowable ranges shown should not be taken
to represent a detection as they assume non-negative P(k) values by definition.
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Fig. B.1. MCMC posterior distributions for the five parameters of our L′CO(Mh) model, obtained from the analysis described in Sect. 2.3 of the main
text. The inner (outer) contours of each 2D distribution show the 39% (86%) or roughly 1σ (2σ) confidence regions. The grey triangle in the 2D
probability distribution between A and B shows a never-accessed region where A > B; the MCMC treats the two parameters as an interchangeable
pair, with the smaller (larger) of the two always subjected to the prior for A (B). Dashed lines represent the loosely informative “UM” priors
discussed in Sect. 2.3.
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ABSTRACT

End-to-end simulations play a key role in the analysis of any high-sensitivity cosmic microwave background (CMB) experiment, providing high-
fidelity systematic error propagation capabilities that are unmatched by any other means. In this paper, we address an important issue regarding
such simulations, namely, how to define the inputs in terms of sky model and instrument parameters. These may either be taken as a constrained
realization derived from the data or as a random realization independent from the data. We refer to these as posterior and prior simulations, respec-
tively. We show that the two options lead to significantly different correlation structures, as prior simulations (contrary to posterior simulations)
effectively include cosmic variance, but they exclude realization-specific correlations from non-linear degeneracies. Consequently, they quantify
fundamentally different types of uncertainties. We argue that as a result, they also have different and complementary scientific uses, even if this
dichotomy is not absolute. In particular, posterior simulations are in general more convenient for parameter estimation studies, while prior simula-
tions are generally more convenient for model testing. Before BeyondPlanck, most pipelines used a mix of constrained and random inputs and
applied the same hybrid simulations for all applications, even though the statistical justification for this is not always evident. BeyondPlanck
represents the first end-to-end CMB simulation framework that is able to generate both types of simulations and these new capabilities have
brought this topic to the forefront. The BeyondPlanck posterior simulations and their uses are described extensively in a suite of companion
papers. In this work, we consider one important applications of the corresponding prior simulations, namely, code validation. Specifically, we
generated a set of one-year LFI 30 GHz prior simulations with known inputs and we used these to validate the core low-level BeyondPlanck
algorithms dealing with gain estimation, correlated noise estimation, and mapmaking.

Key words. cosmic background radiation – cosmology: observations – diffuse radiation

1. Introduction

High-fidelity end-to-end simulations play a critical role in the
analysis of any modern cosmic microwave background (CMB)
experiment for at least three important reasons. Firstly, during
the design phase of the experiment, simulations are used to
optimize and forecast the performance of a given experimen-
tal design and ensure that the future experiment will achieve its
scientific goals (e.g., LiteBIRD Collaboration 2023). Secondly,
simulations are essential for validation purposes, since they may
be used to test data-processing techniques as applied to a real-
istic instrument model. Thirdly, realistic end-to-end simulations
play an important role in bias and error estimations for tradi-
tional CMB analysis pipelines.

Simulations played a particularly important role in the data
reduction of Planck and massive efforts were invested in imple-
menting efficient and re-usable analysis codes that were gen-
erally applicable to a wide range of experiments. This work
started with the LevelS software package (Reinecke et al. 2015)

? Corresponding author: M. Brilenkov,
e-mail: maksym.brilenkov@astro.uio.no

and culminated with the Time Ordered Astrophysics Scalable
Tools1 (TOAST), which was explicitly designed to operate in
a massively parallel high-performance computing environment.
TOAST was used to produce the final generations of the Planck
Full Focal Plane (FFP) simulations (Planck Collaboration XII
2016), which served as the main error propagation mechanism in
the Planck 2015 and 2018 data releases (Planck Collaboration I
2016, 2020).

For Planck, generating end-to-end simulations have repre-
sented (by far) the dominant computational cost of the entire
experiment, accounting for 25 million CPU-hrs in the 2015 data
release alone. In addition, the production phase required massive
amounts of human effort, in terms of preparing the inputs, exe-
cuting the runs, and validating the outputs. It is of great interest
for any future experiment to optimize and streamline this simula-
tion process, and reuse both validated software and human work
whenever possible.

In this respect, the BeyondPlanck end-to-end Bayesian
analysis framework (BeyondPlanck Collaboration 2023) offers
a novel approach to generating CMB simulations. While the
1 https://github.com/hpc4cmb/toast
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primary goal of this framework is to draw samples from a full
joint posterior distribution for analytical purposes, it is useful to
note that the foundation of this approach is simply a general and
explicit parametric model for the full time-ordered data (TOD).
When exploring the full joint posterior distribution, this model
is compared with the observed data in the TOD space. The anal-
ysis phase is as such numerically equivalent to producing a large
number of TOD simulations and comparing each of these with
the actual observed data. In this framework, each step of the anal-
ysis and simulation pipelines are thus fully equivalent, and the
primary difference is simply based on whether the input model
parameters are assumed to be constrained by the data or not.

This latter observation is in fact a key point regarding end-
to-end simulations for CMB experiments in general, and a main
goal of the current paper is to clarify the importance of choosing
input parameters for a given simulation appropriately. Specifi-
cally, we argue in this paper that two fundamentally different
choices are available: we can either choose parameters that are
constrained directly by the observed data (as is traditionally done
for the CMB Solar dipole or astrophysical foregrounds) or we
can choose parameters that are independent from the observed
data (as is traditionally done for CMB fluctuations or instrumen-
tal noise). We further argue that this choice will have direct con-
sequences for the specific scientific questions the resulting sim-
ulations are optimized to address.

It is important to note that these ideas were discussed
broadly, but not systematically, within the Planck community
before building the FFP simulations. For instance, one proposal
was to base the large-scale CMB temperature fluctuations at ` ≤
70 from constrained WMAP realizations (Bennett et al. 2013),
and thereby integrate knowledge about the real sky into the sim-
ulations. Another proposal was to use the actually observed LFI
gain measurements to generate the simulations. A third and long-
standing discussion has revolved around which values to adopt
for the CMB Solar dipole.

The BeyondPlanck framework offers a novel systematic
view on these questions, as our Bayesian approach provides for
the first time statistically well-defined constrained realizations
for all parameters in the sky model – and not just a small sub-
set. Furthermore, when comparing the correlation structures that
arise from the posterior samples with those derived from tra-
ditional simulations, obvious and important differences appear,
both in terms of the frequency maps (Basyrov et al. 2023) and
CMB maps (Colombo et al. 2023).

The first main goal of the current paper is to explain these
differences intuitively and in that process, we introduce the con-
cepts of “posterior simulations” and “prior simulations”2. Pos-
terior simulations are random samples drawn from P(ω|d), and
represent simulations that are constrained by the observed data;
these are thus identical to the posterior samples described by
BeyondPlanck Collaboration (2023). In contrast, prior simula-
tions drawn from a prior distribution, P(ω), and are, as such,
unconstrained by the data. We note that a similar distinction has
recently been made in terms of a so-called “Bayesian workflow”
by Betancourt3 and Gelman et al. (2020).

The second main goal of this paper is simply to demonstrate
in practice how the BeyondPlanck machinery may be used
to generate prior simulations, on a similar footing as TOAST,
and we will use these simulations for one important application,

2 Other possible names could be “Bayesian” and “frequentist”
simulations.
3 https://betanalpha.github.io/assets/case_studies/
principled_bayesian_workflow.html

namely code validation. As discussed by Galloway et al. (2023a)
and Gerakakis et al. (2023), the Commander code that forms the
computational basis of the BeyondPlanck pipeline is explic-
itly designed to be re-used for a wide range of experiments. It
is therefore critically important that this implementation is thor-
oughly validated with respect to statistical bias and uncertainties.
We do so by analyzing well-controlled simulations in this paper.

At the same time, we note that the use of prior simulations is
not a requirement for the validation study, as any one of the pos-
terior simulations would have served equally well as an input
for the TOD generation process. Rather, our main motivation
for using prior simulations for this particular task is simply that
the posterior simulations have already been used extensively in
many companion papers.

The rest of the paper is organized as follows. We first provide
a brief overview of the BeyondPlanck framework and data
model in Sect. 2. In Sect. 3, we introduce the concept of pos-
terior and prior simulations, and we discuss their difference. In
Sect. 4, we describe the input parameters and simulation config-
uration used in this paper, before using these simulations to vali-
date the BeyondPlanck implementation in Sect. 5. We present
our conclusions in Sect. 6.

2. BeyondPlanck data model and Gibbs sampler

As described in BeyondPlanck Collaboration (2023) and its
companion papers, the single most fundamental component of
the BeyondPlanck framework is an explicit parametric model
that is to be fitted to raw TOD that includes instrumental, astro-
physical, and cosmological parameters. For the current analysis,
this model takes the following form:

d j,t = g j,tPtp, j

B
symm
pp′, j

∑

c

Mc j(βp′ ,∆bp
j)ac

p′ + B4π
j,t sorb

j + Basymm
j,t sfsl

t


(1)

+ a1 Hzs1 Hz
j + ncorr

j,t + nw
j,t,

where p denotes a single pixel on the sky, and c represents one
single astrophysical signal component. Furthermore, d j,t denotes
the measured data; g j,t denotes the instrumental gain; Ptp, j is a
pointing matrix; Bpp′, j denotes beam convolution with either the
(symmetric) main beam, the (asymmetric) far sidelobes, or the
full 4π beam response; Mc j(βp,∆bp) denotes the so-called mix-
ing matrix, which describes the amplitude of component c as
seen by radiometer j relative to some reference frequency when
assuming some set of bandpass correction parameters ∆bp; ac

p is
the amplitude of component c in pixel p; sorb

j,t is the orbital CMB
dipole signal, including relativistic quadrupole corrections; sfsl

j,t

denotes the contribution from far sidelobes; s1 Hz
j,t denotes the

contribution from electronic 1 Hz spikes; ncorr
j,t denotes correlated

instrumental noise; and nw
j,t is uncorrelated (white) instrumental

noise. The sky model, denoted by the sum over components,
c, in the above expression may be written out as an explicit
sum over CMB, synchrotron, free-free, AME, thermal dust, and
point source emission, as described by Andersen et al. (2023),
Svalheim et al. (2023b).

On the instrumental side, the correlated noise is associated
with a covariance matrix, Ncorr = 〈ncorr(ncorr)T 〉, which may
be approximated as piecewise stationary, and with a Fourier
space power spectral density (PSD), N f f ′ = P( f )δ f f ′ , that for
BeyondPlanck consists of a sum of a classic 1/ f term and a
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log-normal term (Ihle et al. 2023),

P( f ) = σ2
0

[
1 +

(
f

fknee

)α]
+ Ap exp

−1
2

(
log10 f − log10 fp

σdex

)2 . (2)

We define ξn = {σ0, α, fknee, Ap} as a composite parameter that is
internally sampled iteratively through an individual Gibbs step,
as described by Ihle et al. (2023); the peak location and width
parameters of the log-normal term, fp and σdex, are currently
fixed at representative values.

Denoting the set of all free parameters in Eqs. (1)–(2) by ω,
we can simplify Eq. (1) symbolically to

d j,t = stot
j,t (ω) + nw

j,t. (3)

The BeyondPlanck approach to CMB analysis simply
amounts to mapping out the posterior distribution as given by
Bayes’ theorem,

P(ω | d) =
P(d | ω)P(ω)

P(d)
∝ L(ω)P(ω), (4)

where P(d | ω) ≡ L(ω) is called the likelihood, P(ω) is some set
of priors, and P(d), the so-called evidence, is effectively a nor-
malization constant for purposes of evaluating ω. The likelihood
is easily defined, and given by Eq. (3) under the assumption that
nw

j is Gaussian distributed,

−2 lnL(ω) =
(
d − stot(ω)

)t
N−1

wn

(
d − stot(ω)

)
. (5)

The prior is not as well defined, and we adopt in prac-
tice a combination of informative and algorithmic priors in
the BeyondPlanck analysis (see BeyondPlanck Collaboration
(2023) for an overview).

To explore this distribution by Markov chain Monte Carlo,
we use the following Gibbs sampling chain (BeyondPlanck
Collaboration 2023),

g ← P(g | d, ξn, a1Hz, ∆bp, a, β, C`), (6)

ncorr ← P(ncorr | d, g, ξn, a1Hz, ∆bp, a, β, C`), (7)

ξn ← P(ξn | d, g, ncorr, a1Hz, ∆bp, a, β, C`), (8)

a1Hz ← P(a1Hz | d, g, ncorr, ξn, ∆bp, a, β, C`), (9)

∆bp ← P(∆bp | d, g, ncorr, ξn, a1Hz, a, β, C`), (10)

β ← P(β | d, g, ncorr, ξn, a1Hz, ∆bp, C`), (11)

a ← P(a | d, g, ncorr, ξn, a1Hz, ∆bp, β, C`), (12)

C` ← P(C` | d, g, ncorr, ξn, a1Hz, ∆bp, a, β ), (13)

where the symbol ← denotes setting the variable on the left-
hand side equal to a sample from the distribution on the
right-hand side. In these expressions, it is worth noting that
not all conditioned parameters are explicitly used in each
sampling steps. For instance, the CMB power spectrum only
depends conditionally on the CMB map and, therefore, P(C` |
d, g, ncorr, ξn, a1 Hz,∆bp, a, β) = P(C` |aCMB), as, discussed by
Wandelt et al. (2004), Eriksen et al. (2004). However, aCMB

depends on many of the additional variables and the above full
notation makes the “correlations-through-conditionals” Gibbs
sampling nature of the algorithm explicit.

3. Posterior versus prior simulations

End-to-end TOD simulations have become the de facto industry
standard for producing robust error estimates for high-precision
experiments (e.g., Planck Collaboration XII 2016), and the data
model defined in Eqs. (1)–(2) represents a succinct simulation
recipe for producing such simulations: If ω is assumed to be per-
fectly known, then these equations can be evaluated in a forward
manner without the need for parameter estimation or inversion
algorithms. Then, the only stochastic terms are the correlated and
white noise, both of which can be easily generated by a com-
bination of standard random Gaussian number generators and
Fourier transforms.

However, in practice ω is of course not perfectly known and
the matter of precisely how ω is specified has direct and strong
implications regarding what kind of information the resulting
simulations can offer the user; for an example of this within
the context of Planck LFI, we refer to Basyrov et al. (2023). In
short, the key discriminator is whether ω is defined using real
observed data (and, in practice, drawn from the posterior distri-
bution, P(ω | d)) or whether it is drawn from a data-independent
hyper-distribution, for instance: informed by theoretical models
and/or ground-based laboratory measurements. We will refer to
these two approaches as “posterior-” and “prior-based,” respec-
tively, indicating whether or not they are conditioned on the true
data in question.

We note that both posterior and prior simulations specifi-
cally refer to time-ordered data in the current paper – and not to
pixelized maps or higher-level products. That is to say, we dis-
tinguish between simulation pipelines, which transform ω into
timelines, and analysis pipelines, which transform timelines into
higher ordered products, such as maps and power spectra.

3.1. Bayesian versus frequentist statistics

Before comparing the two simulation types through a few
worked examples, it is useful to recall the fundamental differ-
ence between Bayesian and frequentist statistics, which may be
summarized as follows: In frequentist statistics, the model, M,
and its parameters, ω, are considered to be fixed and known,
while the data, d, are considered to be the main uncertain quan-
tity. In Bayesian statistics, on the other hand, d is assumed to
be perfectly known and essentially defined by a list of numbers
recorded by a measuring device, while ω is assumed to be the
main unknown quantity.

This difference has important consequences for how each
framework typically approaches statistical inference, and which
questions they are most suited to answer. This is perhaps most
easily illustrated through their most typical mode of operations.
First, the classical frequentist approach to statistical inference is
to construct an ensemble of simulated data sets, di, each with
parameters drawn independently from M(ω). The next step is
to define some statistic, γ(di) : RN → R, that isolates and
highlights the important piece of information that the user is
interested in; widely used CMB examples include χ2 statis-
tics, angular power spectrum statistics, or non-Gaussianity statis-
tics. Finally, we go on to compute γ both for the simulations
and the actual data and determine the relative frequency for
which γ(dreal) < γ(di), which is often called the p-value or
“probability-to-exceed” (PTE). Values between about 0.025 and
0.975 are taken to suggest that the data are consistent with the
model, while more extreme values indicate a discrepancy.

Given this prescription, it is clear that the frequentist
approach is particularly suited for model testing applications; it
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intrinsically and directly addresses the question of whether the
data are consistent with the model. As such it has been widely
used in the CMB field for instance for studies of non-Gaussianity
and isotropy. In this case, the null-hypothesis is easy to spec-
ify, namely that the universe is isotropic and homogeneous, and
filled with Gaussian random fluctuations drawn from a ΛCDM
universe with given parameters. Agreement between this null-
hypothesis and the real observations is then typically assessed
by computing the p-value of some preferred statistic.

Establishing some statistic that shows that the observed data
are inconsistent with this hypothesis would constitute evidence
of new physics and is, as such, a high-priority scientific target.
In contrast, Bayesian statistics takes a fundamentally different
approach to statistical inference. In this case, we consider ω to
be a stochastic and unknown quantity and we want to under-
stand how the observed data constrains ω. The most succinct
summary of this is the posterior probability distribution itself,
P(ω | d), and the starting point for this framework is therefore
Bayes’ theorem, as given in Eq. (4). Thus, the majority of appli-
cations of modern Bayesian statistics simply amounts to map-
ping out P(ω | d) as a function of ω by any means necessary.

At the same time, it is important to note that the likelihood
L(ω) = P(d | ω) on the right-hand side of Eq. (4) is a fully
classical frequentist statistic, in which ω is assumed to be per-
fectly known and the data are uncertain. Still, it is important to
note that the free parameter in L(ω) is indeed ω, not d, and L
itself is really just a frequentist statistic that measures the over-
all goodness-of-fit between the data and the model. This statis-
tic may then be used to estimate ω within a strictly frequentist
framework. One popular example of this within the CMB field
is the so-called profile likelihood.

Likewise, the Bayesian approach is also able to address the
model selection problem, and this is typically done using the
evidence factor, P(d), in Eq. (4). The importance of this fac-
tor becomes obvious when explicitly acknowledging that all
involved probability distributions in Eq. (4) actually depend on
the overall model M, and not only the individual parameter
values:

P(ω | d,M) =
P(d | ω,M)P(ω | M)

P(d | M)
. (14)

Mathematically, P(d | M) is simply given by the average likeli-
hood integrated over all allowed parameter values, and classical
Bayesian model selection between modelsM1 andM2 proceeds
simply by evaluating P(d | M1)/P(d | M2); the model with the
higher evidence is preferred.

In summary, the foundational assumptions underlying fre-
quentist and Bayesian methods are different and complementary,
and they fundamentally address different questions. Frequen-
tist statistics are ideally suited to address model testing prob-
lems (e.g., “is the observed CMB sky Gaussian and isotropic?”),
while Bayesian statistics are ideally suited to address parameter
estimation problems (e.g., what the best-fit ΛCDM parameters
would be). At the same time, this dichotomy is by no means
absolute and either framework is fully capable of addressing
both types of questions if they are carefully addressed.

3.2. Constrained versus random input parameters in CMB
simulations

We now return to the issue raised in the introduction to
this section, namely how to properly choose ω for CMB
inference based on end-to-end simulations. As discussed by
Basyrov et al. (2023), essentially all CMB analysis pipelines

prior to BeyondPlanck have adopted a mixture of data-
constrained and data-independent parameters for this purpose.
Key examples of the former are the CMB Solar dipole and
Galactic foregrounds, both of which are strongly informed
by real measurements. Correspondingly, classical examples of
the latter are CMB fluctuations, which are typically drawn as
Gaussian realizations from a ΛCDM power spectrum, and
instrumental noise, which is often based on laboratory measure-
ments. In our notation, these simulations qualify thus neither as
pure posterior-based nor pure prior-based, but rather as a mixture
of the two.

In contrast, each sample of ω produced by the
BeyondPlanck Gibbs chain summarized in Eqs. (6)–(13)
represents one possible simulated realization in which all sub-
parameters in ω are determined exclusively by the real posterior
distribution. This not only refers to the CMB dipole and Galactic
model, but also those parameters that are traditionally chosen
from external sources in classical pipelines, such as the CMB
anisotropies and the specific noise realization.

The difference between these two types of simulation inputs
is illustrated in Fig. 1, which compares ten independent prior
time-domain realizations (red curves) with ten independent pos-
terior realizations (black curves). The top and bottom panels
show the correlated noise ncorr and the sky model ssky, respec-
tively, both plotted as a function of time. Starting with the fre-
quentist simulations, we see that these are entirely uncorrelated
between realizations and scatter randomly with some model-
specific mean and variance. In particular, the frequentist simu-
lations include so-called cosmic variance, that is, independent
realizations have different CMB and noise amplitudes and
phases, even if they are drawn from the same underlying stochas-
tic model. In contrast, posterior simulations do not include cos-
mic variance, but rather focus exclusively on structures in the
real data. For the sky signal component shown in the top panel
of Fig. 1, this is seen in terms of two different aspects. First,
the structure of all ten realizations follow very closely the same
overall structure, and this is defined by the specific CMB pat-
tern of the real sky. However, they also explicitly account for
the uncertainty in the sky value at each pixel, and this is seen
by the varying width of the black band. In the middle of the
plot, the width is small, and this implies that the sky has been
aptly measured here (due to deep scanning), while along the
edges of the plot the width is larger and this implies that the
sky has not been aptly measured. The variation between pos-
terior simulations thus directly quantify the uncertainty of the
true data. Intuitively speaking, this point may be summarized
as follows: Uncertainties measured by frequentist simulations
quantify the expected variations as observed with a random
instrument in a random universe, while posterior simulations
quantify the expected variations of the real instrument in the real
universe.

These intuitive differences translate directly into both qual-
itatively and quantitatively different ensemble properties for
the resulting simulations, and correspondingly also into dif-
ferent resulting error estimates. As a real-world illustration of
this, Fig. 2 shows slices through the empirical low-resolution
polarization covariance matrix computed for each of the three
Planck LFI frequency channels using three different genera-
tions of LFI simulations, namely (from left to right columns):
Planck 2018 (Planck Collaboration II 2020), Planck PR4
(Planck Collaboration Int. LVII 2020), and BeyondPlanck
(BeyondPlanck Collaboration 2023). Row sections show results
for the 30, 44, and 70 GHz channels, respectively, and within
each section the two rows show the QQ and UQ segments
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Fig. 1. Comparison of ten prior (red) and ten posterior (black) simulations in time-domain. Each line represents one independent realization of the
respective type. The top panel shows sky model (i.e., CMB) simulations and the bottom panel shows correlated noise simulations.

of the full matrix, sliced through Stokes Q pixel number 100,
marked in gray in the upper right quadrant. Each covariance
matrix is computed by first downgrading each simulation to a
HEALPix4 (Górski et al. 2005) resolution of Nside = 8, and aver-
aging the outer product over all available realizations; we refer to
Basyrov et al. (2023), Colombo et al. (2023) for further details.
Effectively, these matrices visually summarize the map-space
uncertainty estimates predicted by each simulation set.

Starting with the Planck 2018 simulations, the most strik-
ing observation is that these empirical matrices are very noisy
for all three frequency channels. This is partly a reflection of
the fact that only 300 simulations were actually constructed,
and this leads to a high Monte Carlo uncertainty. Specifically,
the uncertainty due to a finite number of simulations scales as
1/
√

Nsim, which suggests a 6% contribution for 300 simulations.
However, because these simulations are prior-based, that number
applies to all sources of variations between realizations, includ-
ing white noise, instrumental effects, and sky-signal variations.
Furthermore, the gains that were assumed when generating these
simulations exhibited significantly less structure than the real
observations. In summary, there are relatively little common
structures between the various realizations, either from the astro-
physical sky, the instrumental noise, or the gain, and the cor-
responding covariance structures are therefore weak. Visually
speaking, perhaps the most notable feature is a positive correla-
tion from correlated noise along the scanning direction that passes
through the sliced pixel seen in the upper right quadrant, but these
are significantly obscured by Monte Carlo uncertainties.

Proceeding to the Planck PR4 simulations summarized in
the middle column, we now see very strong coherent struc-
tures for the 30 GHz channel, while the 44 and 70 GHz chan-
nels behave similarly to the 2018 case. The explanation for this
qualitative difference is the Planck PR4 calibration algorithm;
in this pipeline, the 30 GHz channel is calibrated independently
without the use of supporting priors, while the 44 and 70 GHz
channels are calibrated by using the 30 GHz channel as a polar-
ized foreground prior. The net effect of this independent cali-
bration procedure is a very high calibration uncertainty for the

4 https://healpix.jpl.nasa.gov

30 GHz channel, and these couple directly to the true CMB dipole,
which is kept fixed between all simulations. The result is the
familiar large-scale pattern seen in this figure, which has been
highlighted by several previous analyses as a particularly difficult
mode to observe with Planck (e.g., Planck Collaboration II 2020;
Gjerløw et al. 2023; Watts et al. 2023).

Turning to the BeyondPlanck simulations summarized in
the right column, we now see coherent and signal-dominated
structures across the full sky in all frequency channels. A part
of this is simply due to more realizations than for the other
two pipelines (in this case, 3200), but even more importantly,
the simulations are now entirely data-driven. That is, they corre-
spond to the black curves in Fig. 1, while the previous pipelines
correspond to the red curves. In practice, this has two main
effects. First, it implies that the total parameter volume that
needs to be explored by Monte Carlo sampling is intrinsi-
cally smaller, simply because the posterior distribution does not
include cosmic variance; the simulations only need to describe
our instrument and universe – and not simply any instrument and
universe, and this is a much smaller sub-set. Second, and even
more importantly, the posterior simulations account naturally
for non-linearity between the various parameters, and these are
very often the dominant contributions in these distributions. As
a concrete example, if the gain happens to scatter either high
or low during a given time period, then the total uncertainty
estimate will be particularly sensitive to the CMB dipole dur-
ing the same time period, and it will excite a correlation struc-
ture in these plots that is intimately connected to the satellite
scanning strategy. Thus, if one chooses a gain profile that is
independent of other parameters, then those real uncertainties
will not be properly accounted for in the simulation set: intu-
itively speaking, the hot and cold spots in the covariance matri-
ces shown in Fig. 2 will either appear in the wrong places or
be suppressed when averaging over independent realizations. In
general, specifying the instrumental model at a sufficiently real-
istic level represents a real challenge for frequentist simulations,
and great care is required in order to capture the full error budget.
This task is considerably simplified in the Bayesian approach,
as each instrumental parameter is defined directly from the data
themselves.
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Fig. 2. Single column of the low-resolution 30 (top section), 44 (middle section), and 70 GHz (bottom section) frequency channel covariance
matrix, as estimated from 300 LFI DPC FFP10 frequentist simulations (left column); from 300 PR4 prior simulations (middle column); and from
3200 BeyondPlanck posterior simulations (right column). The selected column corresponds to the Stokes Q pixel number 100 marked in gray,
which is located in the top right quadrant. All covariance matrices are constructed at Nside = 8. Note: the Planck PR4 30 GHz covariance slice has
been divided by a factor of 5 and thus it is even stronger than the color scale naively implies.

4. Simulation specification

Returning to the data model summary in Sect. 2, we note that
the Commander3 code described by Galloway et al. (2023a),
and used by the BeyondPlanck project to perform Bayesian

end-to-end analysis of the Planck LFI data, is able to produce
both prior and posterior simulations essentially without modi-
fications; the only question is whether the parameters used to
generate the TOD, ω, are drawn from the posterior distribution,
or whether they are selected from a data-independent hyper-
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distribution. Choosing which type of simulations to generate is
thus only a matter of selecting proper initialization values in the
Commander3 parameter file.

In this paper, we demonstrate the frequentist mode of oper-
ation by generating a set of classical frequentist simulations
with Commander3, and we then use these to validate the novel
low-level processing algorithms introduced by Keihänen et al.
(2023), Ihle et al. (2023), Gjerløw et al. (2023) for mapmaking,
correlated noise estimation, and gain estimation, respectively.

We note that the original BeyondPlanck analysis required
670 000 CPU-hours to generate 4000 full Gibbs samples for
the full LFI dataset, which took about three months of run-
time to complete. In the current paper, we are primarily inter-
ested in validating the low-level algorithms themselves, and we
therefore chose to consider only one year of 30 GHz observa-
tions in the following (corresponding to about 10 000 Planck
pointing periods (PIDs), each lasting for about one hour;
Planck Collaboration I 2014), rather than the full LFI dataset,
and this reduces the computational cost from 169 to 2.5 CPU-
hours per Gibbs sample (Galloway et al. 2023a). As a result, we
are able to produce individual chains with 10 000 samples within
a matter of days, rather than months or years, which is useful
for convergence analyses. This also reduces the total volume of
the TOD themselves (not including pointing, flags, etc.) from
638 GB to 22 GB, and the simulations may therefore be run on a
much broader range of hardware. In fact, subsets of the follow-
ing simulations have been produced on more than ten different
computing systems all over the world, using both AMD and Intel
processors (e.g., Intel E5-2697v2 2.7 GHz, Intel Xeon E5-2698
2.3 GHz, Intel Xeon W-2255 3.7 GHz, AMD Ryzen 9 3950X
2.2 GHz), with between 128 GB and 1.5 TB RAM per node, and
using both Intel and GNU compilers5.

Given that we will only consider low-level processing of the
30 GHz channel, we simplify the data model in Eq. (1) to

dsim
j,t = g j,tPtp, jB

symm
pp′, j acmb

p′ + Basymm
pp′, j sorb

j,t + +ncorr
j,t + nw

j,t, (15)

= stot
j,t + ncorr

j,t + nw
j,t. (16)

Here, we only included one single sky component, namely the
CMB, and we ignored sub-dominant effects such as far sidelobe
corrections, 1 Hz electronic spikes, etc. As such, this configura-
tion provides a test of the gain, noise estimation, and mapmaking
parts of the full algorithm, but neglecting the component separa-
tion or cosmological parameter estimation.

The CMB sky realizations used in the following anal-
ysis are drawn from the best-fit Planck 2018 ΛCDM
model (Planck Collaboration V 2020), using the HEALPix6

(Górski et al. 2005) synfast utility. All instrumental parame-
ters are drawn from different realizations of the BeyondPlanck
ensemble presented in BeyondPlanck Collaboration (2023) and
these are taken as true input values in the following.

For the noise terms, we drew a random Gaussian realization
of n j,t = ncorr

j,t + nw
j,t with the noise PSD model given in Eq. (2).

This was done independently for each Planck pointing ID (PID)
and the noise PSD parameters thus vary over time with the same
structure as the real observations.

5 The research presented in this paper was undertaken as a part of the
Master- and PhD-level course called “AST9240 – Cosmological com-
ponent separation” in 2021 at the University of Oslo, and individual
students produced and analyzed simulations in their home institutions.
6 http://healpix.jpl.nasa.gov

5. Validation of low-level processing algorithms

To validate the noise and gain estimation and mapmak-
ing steps in Commander3, we analyzed the prior simulations
described above with the same Bayesian framework as used
for the main BeyondPlanck processing and we compared
the output marginal posterior distributions with the known
true inputs. To quantify both biases and the accuracy of the
uncertainty estimates, we adopted the following normalized
residual,

δω =
µω − ωin

σω
, (17)

where µω and σω are the posterior mean and standard deviation
for parameter ω. For a truly Gaussian posterior distribution with
no bias and perfect uncertainty estimation, this quantity should
be distributed according to a standard normal distribution with
zero mean and unit variance, N(0, 1), while a non-zero value of
δ indicates a bias measured in units of σ. It is of course impor-
tant to note that the full data model in Eq. (1) is highly non-linear
due to the presence of the gain. Therefore, the deviations from
N(0, 1) at some level are fully expected, in particular for signal-
dominated quantities. Still, we find that δ serves as a useful qual-
ity monitor.

Unless otherwise noted, the main results presented in the
following are derived from a single Markov chain comprising
10 000 samples. Where it proves useful for convergence and
mixing assessment, we also used shorter and independent chains,
typically with 1000 samples in each chain.

5.1. Markov auto-correlations

We are also interested in studying the statistical properties of
individual Markov chains in terms of correlation lengths, degen-
eracies, and convergence. We define the Markov chain auto-
correlation for a given chain as:

ρω(∆) =

〈(
ωi − µω
σω

) (
ωi+∆ − µω

σω

)〉
, (18)

where i denotes Gibbs sample number, and ∆ is a chain lag
parameter that denotes the sample separation.

Figure 3 shows the auto-correlation for a typical set of
parameters. The top four panels display: (1) a single CMB map
pixel (in T , Q, and U); (2) a single correlated noise map pixel
(in T , Q, and U); (3) the CMB temperature quadrupole moment,
a2,0; and (4) the gain for a single PID. These all have relatively
short correlation lengths, which indicates that we are likely to
produce robust results for these parameters.

In contrast, the parameters in the bottom four panels have very
long correlation lengths, and these correspond to the four corre-
lated noise PSD parameters within a single PID; σ0, fknee, α, and
Ap/σ0. As discussed by Ihle et al. (2023), the introduction of the
log-normal noise term greatly increases degeneracies and corre-
lations among these parameters as compared to a standard 1/ f
noise profile, and this makes a proper estimation of these param-
eters much more expensive. However, it is also important to note
that this is only a challenge regarding the estimation of the indi-
vidual noise PSD parameters. In fact, the full PSD as a function
of frequency, Pn( f ), is insensitive to these degeneracies and that
function is the only thing that is actually propagated to the rest
of the system. This explains why the long correlations seen in the
lower half of the plot do not excite long correlations also among
the (far more important) parameters in the top half of the plot.
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Fig. 3. Auto-correlation function, ρ, for selected parameters in the
model, as estimated from a single chain with 10 000 samples. From top
to bottom, the various panels show (1) one pixel value of the CMB com-
ponent map mCMB; (2) one pixel of the correlated noise map mncorr ; (3)
the temperature quadrupole moment, a2,0; (4) the PID-averaged total
gain g; and (5)–(8) the PID-averaged noise PSD parameters σ0, fknee,
α, and Ap/σ0. In panels with multiple lines, the various colors show
Stokes T , Q, and U parameters. In panels with gray bands, the black
line shows results averaged over all PIDs, and the band shows the 1σ
variation among PIDs. The dashed red line marks a correlation coef-
ficient of 0.1, which is used to define the typical correlation length of
each parameter.

In fact, the single most important parameter in the entire sys-
tem is the CMB map, shown in the first (for individual pixels)
and third (for the quadrupole moment, a2,0) panels. Indeed, the
correlation length is very short or even non-existent for single
pixels. This is primarily due to the fact that this map is strongly
dominated by white noise on a single-pixel scale for the setup
we consider here. As seen in the third panel, the same does not
hold true for the quadrupole moment, in which case the correla-
tion is in fact higher than 0.3 at a lag of ∆ = 25. The main driver
for this is the gain, as shown in the fourth panel. While the gain
is dominated by white noise on short time-scales (as seen by the

quick drop-off between lags of 1 and 2), there is a slow drift
at higher lags. This is caused by a partial degeneracy between
the CMB map (which acts as a calibration source in this frame-
work, anchored by the orbital dipole) and the overall gain. In the
real BeyondPlanck analysis, this degeneracy is mitigated to a
large extent by analyzing all LFI channels jointly, and also by
including WMAP observations to break important low-` polar-
ization degeneracies (Gjerløw et al. 2023; Basyrov et al. 2023).
Still, even with those additions, there are important long-term
drifts in the largest CMB temperature scales, and these have non-
negligible consequences for the statistical significance of low-`
CMB anomalies (Colombo et al. 2023).

5.2. Posterior distribution overview

Next, to build the intuition regarding the full set of recovered
parameters, we show in Fig. 4 the marginal 1D and 2D poste-
rior distributions for a small set of parameters for two different
PIDs. In each panel, the true input values are shown as dashed
lines. The bottom triangle (blue) show posterior results for one
well-behaved PID with good goodness-of-fit statistics, while the
top triangle (orange) shows a less well-behaved case in which
the true input values are at the edge of recovered distributions.
Together, these two cases represent the majority of all PIDs in
terms of overall behaviour.

Overall, the true input parameters are recovered reasonably
well in most cases. One of the parameters that is not as well
recovered is the white noise amplitude, σ0. This parameter is a
special case due to the sampling algorithm currently used in the
BeyondPlanck pipeline. As described by Ihle et al. (2023), σ0
is currently determined as the standard deviation of all pairwise
differences between neighboring time samples divided by

√
2.

While this is a commonly used technique in radio astronomy to
derive an estimate of the white noise that is highly robust against
unmodeled systematic errors, it does not correspond to a proper
sample from the true conditional distribution P(σ0 | d, g, . . .).
In particular, this approach underestimates the true fluctuations
of σ0, which in turn results in the overall uncertainties being
slightly underestimated. This is one of several examples in the
pipeline in which robustness to systematic effects comes at a cost
of statistical rigor. At the same time, it is important to note that
the absolute white noise level is in general very well determined
in these data (Ihle et al. 2023) and a slight under-estimation of
the uncertainty in σ0 has little practical impact on other parame-
ters in the model.

Looking more broadly at the 2D distributions in this figure,
we see that the parameters are split naturally into two groups,
defined by the short and long correlation lengths discussed
above. That is to say, the CMB, correlation noise, and gain
parameters generally exhibit more symmetric distributions than
the noise PSD distributions, which are highly correlated and
non-Gaussian. Once again, this reflects the internal degeneracies
among the noise PSD parameters.

To further illustrate the impact of the slow convergence rate
for several of these parameters, Fig. 5 shows four partial chains,
each with only 1000 samples, for a sub-set of these parameters.
Once again, we see that the input values are reasonably well
recovered for most cases, but each colored subdistribution only
covers a modest part of the full posterior volume.

5.3. Gain validation

In going into greater detail with respect to individual parameters,
we show in Fig. 6 a subset of the estimated gain as a function
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Fig. 4. Recovered posterior distributions for a selected set of parameters from two PIDs and detectors. The contours indicate 68 and 95% confidence
regions, while the dashed lines (in the respective color of the contours) show the true input value of each of the PIDs. The contours below (blue)
and above (orange) the diagonal correspond to PIDs 3003 and 5515, respectively. From left to right along the horizontal axis, columns show (1)–(3)
one arbitrary CMB map pixel in Stokes I, Q, and U; (4)–(6) correlated noise for the same pixel and Stokes parameters; (7) the CMB intensity
quadrupole amplitude a2,0; (8) gain g; and (9)–(12) the four correlated noise parameters, ξn = {σ0, fknee, α, Ap}. Note: the 1D histograms of the first
seven parameters are completely overlapping since these parameters are independent of PID.

of Gibbs iteration for four selected PIDs, that is: one for each
radiometer. The red lines show the true input values. Here, we
visually observe the same behavior as discussed above; on short
time scales, these trace plots are dominated by random fluctua-
tions, while on long time-scales, there are still obvious signifi-
cant drifts.

Figure 7 compares the estimated gain (blue bands) with the
known input (red curves) as a function of PID. The width of
the blue bands indicates the ±1σ confidence region. At least
at a visual level, the two curves agree well, without any obvi-
ous evidence of systematic biases, and the uncertainties appear
reasonable. These observations are made more quantitative in

Fig. 8, which shows histograms of normalized residuals, δg, over
all PIDs. Red lines indicate the standard Gaussian N(0, 1) ref-
erence distribution. Once again, we see that the reconstruction
appears good, as the nominal bias is (at most) 0.36σ, and the
maximum posterior width is 1.36σ. From the shape of the his-
tograms, it is also clear that a significant fraction of these vari-
ations is due to the Monte Carlo sample variance from the long
gain-correlation lengths. Once again, we note that such devia-
tions will decrease as the number of frequency bands included
in the analysis increases, since the Solar CMB dipole, which
is the main calibrator, will be much better constrained with
more observations. The actual gain-correlation lengths found for
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the real BeyondPlanck analysis are shown by Gjerløw et al.
(2023) and they are notably shorter than those of this reduced
simulation.

5.4. Correlated noise posterior validation

Next, we turn to the correlated noise component, and we start
with the specific noise realization, ncorr (the correlated noise PSD
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is the mean sample value and σ is the sample standard deviation. We
then aggregate all of these values into the appropriate histogram. The
red lines are ideal Gaussian distribution for comparison. Each subplot
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parameters is discussed separately in Sect. 5.6). To simplify the
visualization, we binned the correlated noise TOD into a sky
map, as illustrated in Fig. 9. The top-left panel shows the true
input correlated noise map (temperature component only), while
the top-right panel shows the corresponding posterior mean (out-
put) map. The bottom-left panel shows the posterior standard
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Fig. 9. Pixel space comparison of reconstructed correlated noise maps in temperature. Top left: true input realization. Top right: estimated posterior
mean (output) map. Bottom left: estimated posterior standard deviation map. Bottom right: normalized residual in units of standard deviations.
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Fig. 10. Histograms of normalized correlated noise residuals, δ for each Stokes parameters (black distributions). For comparison, the dashed red
line shows a standard N(0, 1) distribution.

deviation per pixel and the bottom-right panel shows the nor-
malized residual, δcorr.

A visual inspection of the simulation input and posterior
mean correlated noise maps indicates no obvious differences.
In fact, the normalized residual map in the bottom right panel
of Fig. 9 appears fully consistent with white noise. Once again,
this observation is quantified more accurately in Fig. 10, where
we compare the histogram of δcorr over all pixels with the usual
N(0, 1) distribution for each of the three Stokes parameters. In
each case, the agreement is excellent.

5.5. CMB map validation

Figures 11 and 12 show similar plots for the CMB sky map com-
ponent. Once again, the normalized residual in the bottom right

panel appears fully consistent with white noise over most of the
sky. However, this time, we actually see a power excess in δCMB
around the Ecliptic poles. These features correspond to regions
of the sky that are particularly deeply observed by the Planck
scanning strategy (Planck Collaboration I 2014). As a result of
these deep measurements, the white noise in these regions is
very low, and the total error budget per pixel is far more sen-
sitive to the non-linear contributions in the system, in particular
the coupling between the gain and the Solar dipole.

This effect does of course not only apply to the Ecliptic “deep
fields”, but to all signal-dominated map pixels at some level,
and it therefore also applies to the full-sky CMB map in tem-
perature. This statement is made more quantitative in the left
panel of Fig. 12, where we see that the temperature histogram is
very slightly wider than the reference N(0, 1) distribution. To be
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Fig. 11. Same as Fig. 9, but for the CMB intensity component.
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Fig. 12. Histograms of normalized CMB intensity residuals, δCMB for each Stokes parameters (black distributions). For comparison, the dashed
red line shows a standard N(0, 1) distribution.

specific, the standard deviation of this distribution is about 1.15.
At the same time, the mean of the distribution is consistent
with zero, the non-linear couplings therefore do not introduce a
bias, but only a higher variance. For the noise-dominated Stokes
Q and U parameters, for which gain couplings are negligible
on a per-pixel level, both distributions are perfectly consistent
with N(0, 1).

Figure 13 shows Pearson’s correlation coefficients between
the CMB and correlated noise components for three selected
pixels. Two of the pixels, marked ‘1’ and ‘2’, are located
along the same Planck scanning ring near the Ecliptic plane,
where the Planck scanning strategy is particularly poor. The
third pixel is located far away from these, and on a different
scanning ring. Here, we see that correlations are very strong
for Stokes parameters of the same type along the same ring,
with correlation coefficients ranging between 0.5 and 0.8. These

correlations are induced both by gain and correlated-noise fluc-
tuations, which are tightly associated with the Planck scanning
rings. Stokes parameters of different types (e.g. I and Q) are
significantly less correlated, typically with anti-correlation coef-
ficients of ρ . −0.25. Correlations between widely separated
pixels are practically negligible in the current simulation setup,
although for the real analysis, this is no longer true due to addi-
tional couplings from, for instance, astrophysical foregrounds,
bandpass corrections, and sidelobes (Galloway et al. 2023b;
Svalheim et al. 2023a,b; Basyrov et al. 2023; Colombo et al.
2023; Andersen et al. 2023).

5.6. Correlated noise PSD validation

Finally, we consider the noise PSD parameters, σ0, fknee, α,
and Ap/σ0. As already noted, these are significantly harder to
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samples for radiometer 27M. We show the white noise level, σ0, knee
frequency, fknee, correlated noise spectral index α, and log-normal noise
amplitude, Ap. For reference, we show the standard normal distribution
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estimate individually than the previous parameters due to the
strong correlation between the 1/ f and log-normal terms in
Eq. (2).

As usual, we plot the reduced residual, δ, for each parameter
type in Fig. 14. In this case, we see that the posterior distribu-
tions are significantly wider than a standard Gaussian distribu-
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Fig. 15. Comparison of recovered correlated noise PSD in terms of the
functional form, Pn( f ). The top two panels show results for the same
PIDs as in Fig. 4. Faint lines indicate individual Gibbs samples, while
the dashed lines show the true input functions. The bottom two pan-
els show the difference between the posterior mean function and the
true input as a fraction of the latter and in units of the posterior rms,
respectively.

tion, by as much as a factor of two. The distributions are also
clearly non-Gaussian, with notable skewness and kurtosis. Both
the excess variance and non-Gaussianity stem from the same
degeneracies as discussed above and are partially due to intrinsic
non-Gaussianities in the model, and partially due to incomplete
Monte Carlo convergence and very long correlation lengths. On
the other hand, the mean bias in these distribution is small and
the estimated posterior distributions do provide a useful sum-
mary of each parameter individually.

As mentioned above, however, other parameters in the model
are not sensitive to individual ξn values, but only to the total
noise PSD, Pcorr( f ). This function is plotted in the top two pan-
els of Fig. 15 for the same two PIDs and radiometers as shown
in Fig. 4; the blue curves correspond to the aptly measured PID,
while the orange curve corresponds to the PID with the marginal
fit. Faint lines in the top two panels show individual Gibbs sam-
ples, corresponding to different combinations of ξn. By eye, the
sampled values appear to span the true input reasonably well,
although the orange line is on the lower edge of the estimated
posterior distribution.

These visual observations are made more quantitative in the
bottom two panels, where the third panel shows the fractional
difference between the output and input PSD functions, and the
fourth panel shows the same in units of standard deviation of the
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PSD across Gibbs samples, σ. For the well-behaved (blue) pixel,
we see that the posterior mean matches the true input everywhere
to within a few percent; in units of standard deviations, this is
typically less than 2.5σ for most of the region, except at fre-
quencies above 10 Hz, where the estimated standard deviation is
very small due, and the underestimation of the uncertainty in σ0
becomes noticeable. For the less well-behaved case, the recov-
ered PSD is within 2σ at all frequencies in units of standard
deviations, or within 5 % otherwise. Overall, the PSD itself is
recovered very well in both cases in absolute terms.

6. Conclusions

End-to-end time-ordered simulations play a key role in estimat-
ing both biases and uncertainties for current and future CMB
experiments. To date, no other practical method has been able to
account for the full and rich set of systematic errors that affect
modern high-precision measurements.

As detailed in BeyondPlanck Collaboration (2023) and
its companion papers, the BeyondPlanck project has
implemented a new approach to end-to-end CMB analysis in
which a global parametric model is fitted directly to the time-
ordered data, allowing for joint estimation of instrumental, astro-
physical, and cosmological parameters with true end-to-end
error propagation. This approach relies strongly on a sampling
algorithm called Gibbs sampling, which allows the user to draw
joint samples from a complex posterior distribution. Each of
these Gibbs samples correspond essentially to one end-to-end
TOD simulation, similar to those produced by classical CMB
simulation pipelines, such as the Planck full focalplane (FFP;
Planck Collaboration XII 2016) simulations.

The fundamental difference between these two simulation
pipelines lies in how to define the input parameters used to gener-
ate the simulation. In the BeyondPlanck approach, all param-
eters are constrained directly from the true data and correspond
as such to samples drawn from the full joint posterior distribu-
tion. In contrast, traditional pipelines use parameters that are a
mixture of data-constrained and data-independent parameters.
Typical examples of the former include the CMB Solar dipole
and Galactic foregrounds, while typical examples of the latter
include CMB anisotropies and instrumental noise. In this paper,
we call the two types of simulations for posterior- or prior-based,
respectively, indicating whether (or not) they are conditioned on
true data.

The difference between these two types of simulations has
direct real-world consequences for what applications each sim-
ulation type is suitable for. As was first argued by Basyrov et al.
(2023), this may be intuitively understood through the following
line of reasoning. Supposing we are looking to construct a new
end-to-end simulation for a given experiment. Among the first
decisions that needs to be made concerns the CMB Solar dipole,
answering the question of whether this should correspond to the
true dipole or whether it should have a random amplitude and
direction. If it is chosen randomly, then the hot and cold spots in
the correlation matrices shown in Fig. 2 in this paper will appear
at random positions on the sky, and eventually be washed out in
an ensemble average. In practice, all current pipelines adopt the
true CMB Solar dipole as an input. The next question is related
to the type of Galactic model that should be used. Once again,
if this is selected randomly, then the Galactic plane will move
around on the sky from realization to realization. In practice, all
current pipelines adopt a model of the true Galactic signal as an
input.

The third question considers which CMB anisotropies should
be used. At this point, all pipelines prior to BeyondPlanck
have in fact adopted random CMB skies drawn from a theo-
retical ΛCDM model. This has two main effects: on the one
hand, in the same way that randomizing the CMB dipole signal
would average out any coherent correlations between the sky sig-
nal and the gain, randomizing the CMB anisotropies also aver-
age out, and non-linear correlations between these structures and
the instrumental parameters are not accounted for. On the other
hand, the resulting simulations do actually include so-called cos-
mic variance, that is, for the scatter between individual CMB
realizations.

Finally, the same question apply to all the instrumental
parameters, perhaps most notably correlated noise and gain fluc-
tuations: we ask whether these ought to be constrained by the
real data, or whether they should be drawn randomly from a
laboratory-determined hyper-distribution.

It is important to stress that none of these four questions have
a “right” or “wrong” answer. However, whatever choice is made,
it will have direct consequences for what correlation structures
appear among the resulting simulations and, thus, also for the
sorts of applications they are suitable for. In particular, if the
primary application is traditional frequentist model testing (e.g.,
asking whether the CMB sky is Gaussian and isotropic), then it is
critical to account for cosmic variance among the CMB realiza-
tions. For those applications, we must choose data-independent
CMB inputs in order to capture the full uncertainties and the
appropriate choice are frequentist data-independent simulation
inputs.

If, on the other hand, the main application is traditional
parameter estimation, for instance, to constrain the ΛCDM
model, then it is key to properly estimate the total CMB uncer-
tainty per-pixel on the sky. In this case, it is critical to properly
model all non-linear couplings between the actual sky signal, the
true gain, the true correlated noise, and so on. In this case, the
appropriate choices are posterior-based data-dependent simula-
tion inputs.

In this paper, we note that the novel Commander3 software
is able to produce both prior and posterior simulations simply
by adjusting the inputs that are used to initialize the code. While
the posterior simulation process has been described in detail in
most of the BeyondPlanck companion papers, in the current
paper, we present a first application of the frequentist mode of
operation by producing a data-independent time-ordered simu-
lation corresponding to one year of 30 GHz data. We we then
used this to validate three important low-level steps in the full
BeyondPlanck Gibbs samples, namely, gain estimation, cor-
related noise estimation, and mapmaking. In doing so, we find
that the recovered posterior distribution matches the true input
parameters well.
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ABSTRACT

We revisit the impact of finite time responses of bolometric detectors used for deep observations of the cosmic microwave background
(CMB). Until now, bolometer transfer functions have been accounted for through a two-step procedure by first deconvolving an es-
timate of their Fourier-space representation from the raw time-ordered data (TOD), and then averaging the deconvolved TOD into
pixelized maps. However, for many experiments, including the Planck High Frequency Instrument (HFI), it is necessary to apply an
additional low-pass filter to avoid an excessive noise boost, which leads to an asymmetric effective beam. In this paper we demon-
strate that this effect can be avoided if the transfer function deconvolution and pixelization operations are performed simultaneously
through integrated maximum likelihood mapmaking. The resulting algorithm is structurally identical to the artDeco algorithm for
beam deconvolution. We illustrate the relevance of this method with simulated Planck HFI 143 GHz data, and find that the resulting
effective beam is both more symmetric than with the two-step procedure, resulting in a sky-averaged ellipticity that is 64% lower,
and an effective beam full-width-at-half-maximum (FWHM) that is 2.3% smaller. Similar improvements are expected for any other
bolometer-based CMB experiments with long time constants.

Key words. instrumentation: detectors – methods: data analysis – methods: numerical – methods: statistical –
cosmic background radiation – cosmology: observations

1. Introduction

During the last three decades, our understanding of the cos-
mic microwave background (CMB) has been revolutionized by
a series of increasingly sensitive instruments (e.g., Bennett et al.
1996; Hinshaw et al. 2013; Planck Collaboration I 2014, 2016,
2020). These advances have been made possible by increased
sensitivity, driven by improvements in detector technology both
for coherent radiometer and incoherent bolometer detectors.

Bolometric detectors in particular have gone a long way
in improving both sensitivity and the frequency range they
are able to operate in (e.g., Zhao et al. 2008; Bersanelli et al.
2010; Lamarre et al. 2010; Stevens et al. 2020). One of the
main characteristics of a bolometer is a finite time constant
that describes its temporal response to a signal change (e.g.,
Planck Collaboration VII 2014). The main observational signa-
ture of a finite bolometer transfer function is an apparent smooth-
ing of the true underlying signal along the scanning path of
the instrument. Fortunately, the magnitude of this effect has
diminished over time, as the bolometer detector technology has
improved and the response rates have become faster. Still, this
effect has to be accounted for during mapmaking in order to
establish an accurate estimate of the true sky signal.

The traditional approach to account for this effect is sim-
ply to deconvolve an estimate of the bolometer transfer function
from the time-ordered data (TOD), which results in an unbiased
signal. A significant drawback of this method, however, is that
it not only affects the sky signal, but also the noise measured by
the detector, which originates at a later point in the electronic cir-
cuitry and is not affected by the bolometer time constant at all.
The noise is therefore effectively amplified on short time-scales.

In the original Planck analysis, this problem was solved by
applying an extra low-pass regularization filter function that sup-
presses high-frequency noise (Planck Collaboration VII 2014).
While using this filter does solve the noise amplification problem
at high temporal frequencies, it also modifies the signal, thereby
introducing an extra component to the effective beam.

In this work, we propose an alternative approach that
exploits the same ideas as proposed for beam deconvolution by
Keihänen & Reinecke (2012). Specifically, rather than explic-
itly deconvolving the beam transfer function in a pre-processing
step prior to mapmaking, we integrate the deconvolution opera-
tor directly into the maximum likelihood mapmaking equation,
which then is solved using a conjugate gradient method (e.g.,
Shewchuk 1994). This approach has several advantages. Firstly,
it does not require an explicit additional noise regularization ker-
nel, but relies on the scanning strategy itself to regularize the
high-frequency noise. This method yields an unbiased estimate
of the true sky signal without modifying the effective beam. Sec-
ondly, it results in significantly weaker noise correlations at high
temporal frequencies. The main drawback of the method is a
higher computational expense.

The rest of the paper is organized as follows. We first
describe the new method in Sect. 2. We then illustrate the main
points with a simple one-dimensional case in Sect. 3 in which
all calculations can be performed by using dense linear algebra.
Next, we consider the two-dimensional case in Sect. 4, and start
by characterizing its performance for a grid of point sources.
Finally, we apply the method on the simulated CMB map in
Sect. 5 with properties similar to the Planck 143 GHz channel.
We discuss the computational cost of the proposed method in
Sect. 6, before concluding in Sect. 7.

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
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2. Method

We start by assuming that the data d recorded by a bolometer
may be modeled as

d = Ts + n, (1)

where s is the true sky signal projected from the sky map as
s = Pms; P is a pointing matrix of size (npix, ntod) that maps
between pixel space and time ordered data; T represents convo-
lution with a bolometer transfer function T = F−1T(ω)F, where
F denotes a Fourier transform; and n denotes noise. In this work,
we assume that the latter only consists of zero-mean Gaussian
noise, and we define its covariance matrix as N ≡ 〈nnT 〉. How-
ever, there are many other sources of instrumental noise in the
real data (e.g., Planck Collaboration VII 2016; Ihle et al. 2023)
that must be taken into account in a full analysis pipeline.

Our goal now is to derive an accurate estimate of s given
some observed data, and we will denote this estimate m̂. The
traditional approach for doing this adopted by most bolometer-
based experiments consists of a two-step procedure; one spe-
cific example that is particularly relevant for this paper is Planck
HFI (Planck Collaboration VII 2014, 2016). The first step is to
explicitly apply the inverse transfer function operator to the raw
TOD,

T−1d = T−1(Ts + n) = s + T−1n. (2)

As long as T is non-singular, this results in an unbiased estimate
of the signal s. However, it also modifies the noise, n. In par-
ticular, due to the shape of the transfer function (as shown in
Fig. 1), this inverse operator significantly boosts the noise level
at high frequencies in Fourier space. To prevent the introduction
of excessive noise, a common solution is to apply an additional
low-pass filter function K(ω), such that the total filtered TOD
reads

KT−1d = KT−1(Ts + n) = Ks + KT−1n. (3)

Here we have introduced a filter operator K similar to the transfer
function operator T as K = F−1K(ω)F.

The second step in the traditional procedure is to apply
a mapmaking algorithm to this deconvolved TOD. Under the
assumption of Gaussian noise, the optimal solution for this is
given by the normal equations (e.g., Tegmark 1997),

PT N−1Pm̂trad = PT N−1d. (4)

In practice, this optimal mapmaking equation is often replaced
with a computationally cheaper solution that does not require
inversion of a full dense noise covariance matrix. In many cases
N is simply approximated with its diagonal, and in that case
the equation may be solved pixel-by-pixel (so-called binning).
Another common solution is to apply a destriping algorithm,
which accounts for large-scale noise fluctuations. In either case,
m̂trad is sub-optimal in two respects: First, if K , I, then m̂trad is
a biased estimator of s. In practice, this is typically accounted
for in higher-level analysis by modifying the effective instru-
mental beam, which then introduces significant asymmetries that
couple to the scanning strategy. Second, the actual noise covari-
ance matrix in the post-deconvolved TOD reads KT−1NT−1K, but
these additional terms are not accounted for in the above solu-
tion. As such, the noise weighting of m̂trad is also sub-optimal.

Aiming to resolve both these deficiencies, we adopt a simpler
approach in this paper, and note that an unbiased and optimal
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Bolometer transfer function T( )
Low-pass filter K( )
K( ) / T( )

Fig. 1. Amplitudes of the Planck HFI bolometer transfer function T (ω)
(green), the low-pass filter K(ω) employed by Planck HFI to keep the
high-k modes from blowing up (red), and the former divided by the lat-
ter (black), which is the resulting function applied to the data in Planck
deconvolution method. The presented functions are in absolute ampli-
tudes. The bolometer transfer function also has a complex component.

estimate of m̂ can be obtained directly from the data model in
Eq. (1) as follows,

PT TT N−1TPm̂ = PT TT N−1d. (5)

We denote the solution of this equation m̂MLE, where MLE is
short of maximum likelihood estimate. The equation involves
the transpose of T, which may be written as TT = F−1T∗(ω)F,
where T∗(ω) = T ∗(ω) is the complex conjugate of the transfer
function T (ω).

We use a standard preconditioned conjugate gradient method
(CG; Shewchuk 1994) to solve Eq. (5), and we find that a simple
diagonal preconditioner of the form

M = PT P =
∑

tt′
PtpPt′p (6)

results in a speed-up of almost a factor of 10 compared to no
preconditioning. This algorithm is conceptually identical to the
artDeco algorithm introduced by Keihänen & Reinecke (2012)
for asymmetric beam deconvolution, the main difference being
that our T operator is computationally much cheaper than their
asymmetric beam operator B.

3. One-dimensional toy model: Intuition

In general, our own primary motivation for this line of work lies
in a future reanalysis of the Planck HFI observations. We there-
fore adopt the HFI 143-5 bolometer transfer function T (ω) and
low-pass filter K(ω) as an explicit test case, which is shown in
Fig. 1. The goal of this and the following two sections is to com-
pare the performance of the traditional and the optimal methods
in various settings for this case. In fact, most of the key algebraic
points can be easily demonstrated and visualized through a sim-
ple one-dimensional case in which all matrix operations can be
solved quickly by brute-force methods

In this first example, we define our true input sky map to
consist of an array with 200 one-dimensional pixels. This sig-
nal map is then scanned by a simple sinusoidal scanning strat-
egy θ = sin(2π f t), where f = 0.2 Hz and the sampling rate is
fsamp = 180.3737 Hz, similar to Planck HFI 143 GHz sampling
rate. The resulting signal-only TOD has length ntod = 10 000
and is then convolved with the Planck transfer function shown
in Fig. 1. Finally, white Gaussian noise is added. We then solve
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Fig. 2. Comparison of noise power spectra for noise-only 1D simula-
tions for four different analysis configurations, as evaluated by the mean
and standard deviation from 10 000 simulations. The y-axis is broken
into linear and logarithmic portions.
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Fig. 3. Absolute value of a middle row map covariance matrix slice,
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100,i| = |(PT N−1P)−1
100,i|, for both the 1D MLE (black) and binned and

low-pass filtered solutions of the 1D toy model (red). These covariances
have been found from the corresponding map-domain power spectra
seen in Fig. 2.

Eqs. (4) and (5) for m̂trad and m̂MLE, respectively. Since the num-
ber of pixels is only 200, these solutions are very fast even with
brute-force matrix inversion.

We consider two different cases for this 1D model. In the first
case, we set s = 0, with the goal of understanding the effects of
the different deconvolution methods on the noise properties of
the resulting maps. In the second case, we insert a single narrow
Gaussian peak in the middle of the map, representing a point
source in a typical CMB map, with the goal of understanding
the relative impact of the two methods on a sharp signal.

Starting with the noise-only case, we simulate a total of
10 000 independent noise realizations, and use these to build
up the post-solution noise covariance matrix explicitly. For each
realization, we calculate the power spectrum defined as P(k) =
〈| f (k)|2〉, where f (k) is the Fourier transform of m̂. In the case of
m̂trad, we have to deconvolve the effective transfer function aris-
ing from K to obtain an unbiased estimate. This is found by sim-
ulating a large ensemble of random signal-only maps and taking
the ensemble average of the ratio between the corresponding out-
put and input spectra. To illustrate the adverse impact of unreg-

0.
0

0.
5

1.
0

M
ap

Signal
Traditional
MLE

90 95 100 105 110
1D map pixel number

-0
.1

0
0.

1
Re

sid
ua

l m
ap

Fig. 4. Comparison of reconstructed 1D point source signals for m̂trad
(dashed green) and m̂MLE. The top panel shows the full reconstructed
signal amplitude, with the true input shown as a solid black line, and the
bottom panel shows the difference between output and input signals.

ularized high-frequency noise on m̂trad, we also include a case
corresponding to K = I for m̂trad in this demonstration.

The results from these calculations are summarized in Fig. 2.
For reference, the blue curve shows the power spectrum of a
white noise TOD directly binned into a map, without taking into
account T; this illustrates the intrinsic noise level that is subse-
quently boosted by the bolometer transfer function deconvolu-
tion in the actual methods. Starting from the top, the green dots
show the noise in m̂trad when not applying the regularization ker-
nel K. The y-axis in the plot is broken into linear and logarithmic
scaling. The high-frequency noise must be suppressed prior to
mapmaking in some way or other to obtain meaningful results.
Moving on to the realistic cases corresponding to m̂trad with K
and m̂MLE shown in red and black, respectively, we see that the
two methods perform similarly in terms of total noise power.

However, even though the two methods perform similar in
terms of absolute noise power, they still perform quite differently
in terms of noise correlations. This is illustrated in Fig. 3, which
shows a slice through the empirical correlation matrix evaluated
as 〈m̂jm̂T

j 〉 over the simulated ensemble, where j indicates sim-
ulation number. We see that the correlation values fall off by
almost an order of magnitude lower for m̂MLE compared to m̂trad
at long distances; the low absolute values for m̂trad at a few pixels
separation is just a ringing artifact from the K filter.

Next, we consider the signal case with a Gaussian point
source in the middle of the 1D map. We repeat the same pro-
cedure as outlined in the previous section for both techniques.
However, since we are now interested in the effect on the signal,
and the mapmaking equations are linear, we now omit the noise
in the actual simulated TOD. The resulting products therefore
correspond directly to ensemble-averaged quantities, and require
no Monte Carlo simulation. The outputs from these calculations
are summarized in Fig. 4. The top panel shows the input model
as a solid black curve, and the reconstructed estimates are shown
as dashed orange (for m̂MLE) and dashed green (for m̂trad) curves.
The bottom panel shows the difference between output and input
signals. The input signal is normalized to unity at the peak, so
that the bottom panel can be interpreted as a fractional error.
The MLE solution results in an unbiased estimate of the input
signal, and any uncertainties in this solution are given by numer-
ical round-off errors. In contrast, the traditional method results
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in residuals at the 10% level at the peak, with significant ringing
extending to large distances.

4. Two-dimensional toy model: Impact on effective
beam

In this section we apply the methods outlined in Sect. 2 to a two-
dimensional case, with the goal of comparing the performance
of the traditional and the MLE methods in terms of their impact
on the effective beam. In this case, we construct an input sky
signal that is mostly empty, except for one or more bright point
sources depending on the test in question. In the first case we
study a single point source located at the Ecliptic South Pole,
and the input map is defined by setting the closest pixel to 100
in arbitrary units. The map is then smoothed with a symmetric
Gaussian beam with the full width at half maximum (FWHM)
set to 7.2 arcmin, similar to the 143 GHz Planck HFI effective
beam (Planck Collaboration VII 2014).

Using this map, the sky signal TOD is created using the
Planck 143-5 pointing matrix as s = Pmsky. For the purposes
of this experiment, which is designed to build intuition regard-
ing the effect of a bolometer transfer function on a point source,
we only use the first three months of the HFI survey. The mea-
sured TOD d is created through Eq. (1) by applying the bolome-
ter transfer function and adding white noise. The white noise
level is set to σwn = 0.3125 in arbitrary units, which corresponds
to a signal-to-noise ratio of 320 at the peak of the point source.
This value is chosen to represent the typical signal-to-noise ratio
of planet observations reported by Planck Collaboration VII
(2014). The maps for both the input sky signal s and the cor-
responding naively binned sky map m̂bin are shown in Fig. 5. In
the first case, the point source appears azimuthally symmetric,
while in the second case it is significantly deformed. Because
the satellite scanning moved from right to left in this figure, the
transfer function effectively drags the signal along the scanning
path.

We now apply both the traditional and the MLE methods to
these simulated data, each producing a map of the true sky sig-
nal. The results from these calculations are shown in Fig. 6 in
terms of the difference between the reconstructed and the true
input maps. Starting with the traditional method, we observe
at least two noticeable residuals related to the transfer func-
tion. First, since the traditional method includes a regularization
kernel K, the algorithm is unable to reconstruct the true input
sky signal, and a quadrupolar residual aligned with the scan-
ning path is present in the residual map. For an isotropic and
random field, such as the CMB, the average effect of this can
be accounted for by modifying the effective azimuthally sym-
metric beam response function b`, as for instance is done in the
Planck analysis, but this method is clearly unable to reconstruct
an optimal image of the true sky. In contrast, the integrated MLE
solution shows no signs of scan-aligned effects, and the residual
is consistent with white noise. Secondly, far away from the point
source, the traditional method smooths the white noise more than
the MLE method. Both of these effects correspond directly to
what was found for the one-dimensional toy model in the previ-
ous section.

The magnitude of this effect depends on the detailed scan-
ning path of the instrument, and hence changes with the position
on the sky. We now aim to quantify the effective beam defor-
mation produced by the bolometer transfer function for both
methods in terms of the effective beam FWHM and ellipticity
over the full sky. For these purposes a statistically meaning-
ful number of point sources is required. Therefore, we create

Signal s

1.5'/pix, 100x100 pix

Measured signal d =Ts + nwn

1.5'/pix, 100x100 pix

0.10 0.05 0.00 0.05 0.10
[arb. units]

0.10 0.05 0.00 0.05 0.10
[arb. units]

Fig. 5. Simulated point source signal s on the left panel and detector
measured signal d = Ts + n on the right panel. The effect of the transfer
function T can be observed in the smearing of the point source signal
along the scanning path, resulting in a deformed beam.

Traditional

1.5'/pix, 100x100 pix

MLE

1.5'/pix, 100x100 pix

0.10 0.05 0.00 0.05 0.10
[arb. units]

0.10 0.05 0.00 0.05 0.10
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Fig. 6. Residual comparison between the traditional deconvolution
method and MLE based deconvolution method. The left panel shows the
residual between the signal deconvolved using the inverse of the trans-
fer function operator T−1 in combination with filter K(ω) and the orig-
inal point source signal s (left panel in Fig. 5). The right panel shows
the residual between the signal deconvolved by solving Eq. (5) and the
original point source signal.

a map with 12 288 point sources, each located at the center of
a HEALPix Nside = 32 map. The analysis itself is performed
with Nside = 2048, corresponding to a pixel size of 1′.7. Then we
apply exactly the same process as earlier in this section in terms
of transfer function operator T, white noise, and map-making
methods.

For each point source and both methods, we measure the
effective FWHM and ellipticity by fitting a two-dimensional
Gaussian following the steps similar to Fosalba et al. (2002).
We define the ellipticity parameter ε = σlong/σshort as the ratio
between the long and short axes of the ellipse. An azimuthally
symmetric object corresponds to ε = 1, while ε > 1 corresponds
to a deformed beam. In terms of polar coordinates (ρ, φ), the
actual function fitted to each two-dimensional object is

z(ρ, φ) = A · exp
− ρ2

2σ2
short

(
1 − χ · cos(φ − α)2

) , (7)

where σshort is the width of the short axis of the ellipse, χ ≡
1−1/ε2, and α is the rotation angle to align coordinate axes with
the ellipse axes. The effective FWHM is defined as

√
8 ln 2 times

the average between the long and short axes widths, where long
axis width can be found from the relation for ellipticity σlong =
ε · σshort.

A166, page 4 of 7
240



Basyrov, A., et al.: A&A, 688, A166 (2024)

0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

350

Traditional

0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

350

MLE

1.00 1.02 1.04 1.06 1.08 1.10
Ellipticity 

Fig. 7. Distribution of ellipticity ε = σlong/σshort over the sky. The ellip-
ticity was measured as a parameter in a Gaussian fit in Eq. (7). The
upper panel shows the ellipticity of the beams deconvolved using tradi-
tional method, and the lower panel – deconvolved with MLE method.

The function defined in Eq. (7) assumes that the coordinate
center is located at the peak, and this is not necessarily true after
beam convolution. We therefore run an additional fit for the cen-
ter pixel coordinates from the Nside = 32 map to the center coor-
dinates of these beams on the Nside = 2048 map. We can assume
local space around a given beam to be Euclidean. Then Eq. (7)
follows from a regular two-dimensional normal distribution in
Cartesian coordinates after the polar coordinate transformation.
In order to align the axes of the ellipse with the smearing effect
produced by the deconvolution, a rotational angle α is introduced
into the fitting function.

In Fig. 7 we show the distribution of ε over the full sky
for both mapmaking methods, and we notice that the traditional
method results in a noticeably higher ellipticity across the sky
compared to the MLE method proposed in this paper, and it has
a much stronger imprint of the Planck scanning strategy. In con-
trast, the distribution seen for the MLE method is defined pri-
marily by the underlying HEALPix grid, which is unavoidable
given the choice of pixelization.

Figure 8 shows the same information in terms of histograms
of ε − 1. The corresponding means and standard deviations for
the two distributions are εtrad − 1 = 0.025 ± 0.014 and εMLE −
1 = 0.009 ± 0.010. The mean ellipticity of the MLE method
is thus 65% smaller than for the traditional method. The values
found for the traditional method are close to those reported by
Planck Collaboration VII (2014) for the 143 GHz channel.

Performing a similar comparison for the effective FWHM,
we find that the MLE method results in a 2.3% lower value than
the traditional method. The net impact of this difference in terms
of effective beam transfer functions, b`, is shown in Fig. 9, where
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Fig. 8. Distribution of effective ellipticities, ε − 1, for the traditional
(orange histogram) and MLE mapmaking (blue histogram) algorithms.
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Fig. 9. Spherical beam function for the two deconvolution methods.
These functions are calculated based on the average FWHM for each
method. The blue line shows the spherical beam function for the max-
imum likelihood deconvolution method, while the orange line shows
Planck method.

bsp(`) = exp
(
−`(` + 1)FWHM

16 ln 2

)
. (8)

At ` = 2500, the ratio between these two functions is 1.14, while
at ` = 4000 it is 1.38.

5. CMB simulation

Finally, we consider a semi-realistic CMB-plus-noise case. In
this case, the sky signal s is generated as a Gaussian random real-
ization based on a best-fit ΛCDM temperature power spectrum
computed with CAMB (Lewis et al. 2000; Howlett et al. 2012)
and adopting best-fit parameters from Planck Collaboration V
(2020). The simulated TOD is then generated by observing
this map with the full-mission Planck 143-5 scanning path,
and applying the corresponding bolometer transfer function T.
Finally, we add white noise with σ = 200 µK per sample. This
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Fig. 10. Upper panel: power spectra D` of the deconvolved CMB
maps. The original signal was simulated based on the ΛCDM spec-
trum shown with the black solid line. The blue line shows the power
spectrum obtained from the maximum likelihood based deconvolution.
The orange line shows the power spectrum of the map obtained from
the traditional deconvolution process KT−1 d. The grey line shows the
power spectrum of the map obtained from the unfiltered (K = I) tradi-
tional deconvolution process T−1 d. All spectra are calculated as cross
power spectra using two noise realisations n1,2

wn, to exclude the white
noise power spectrum. Lower panel: difference between the decon-
volved power spectra and input ΛCDM power spectrum. The colors
represent the difference for the respective deconvolution method in the
upper panel.

value corresponds to coadding all 143 GHz bolometers into one,
such that our final simulation has similar sensitivity as the true
143 GHz frequency map, but the data volume of only a single
detector. To allow for the calculation of cross-power spectra, we
split the data into two halves, and process each half indepen-
dently.

We now apply the same three map-making methods to this
TOD simulation as shown in Fig. 2 for the one-dimensional case,
namely the traditional method (with and without a regularization
kernel) and the new MLE method. The results from this calcula-
tion are summarized in Fig. 10 in terms of cross-angular power
spectra D` = C``(` + 1)/2π.

The traditional method without a low-pass filter K (gray)
produces results that are extremely noisy even after taking the
cross-power spectrum, mirroring the 1D case shown in Fig. 2.
Secondly, we see that both the traditional and MLE methods
reproduce the original ΛCDM power spectrum at low multi-
poles, ` . 100. However, at higher multipoles the traditional
method is noticeably lower. This deviation is caused by the addi-
tional K smoothing operator, which has not been deconvolved in
this plot.

In order to correct for this bias, one has to include the effect
of K into the effective beam profile, as for instance done by
Planck Collaboration VII (2014). To measure the total beam pro-
file, we simply calculate the square root of the ratio between out-
put and input power spectra. The results are shown in Fig. 11.
Here we see that the MLE method produces an effective beam
profile that is very close to unity for almost all multipoles.
The small deviations seen at higher ` are due to instrumental
and numerical noise. On the other hand, the traditional method
results in a ratio that monotonically increases with `.
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Fig. 11. Effective beam function introduced by the deconvolution
method. This function is found as the square of a ratio between the sim-
ulated ΛCDM power spectrum and the power spectrum calculated for
the respective deconvolution method. The maximum likelihood based
method produces a beam function equal to one, as shown by the blue
line. The traditional deconvolution method results in the beam func-
tion increasing with the multipole moment ` and is illustrated with the
orange line.

6. Computational expense

The code used in this this paper was written in Python, and relies
on utilities provided by the scipy (Virtanen et al. 2020) and
numpy (Harris et al. 2020) libraries. The majority of the runtime
is spent on fast Fourier transforms (FFT), which are performed
with a compiled C++ code under the hood. However, the empha-
sis in this paper has been the fundamental algebraic solution, and
not code optimization, and the runtimes quoted in the following
can very likely be improved by a significant factor in a future
production implementation.

Overall, the total cost for the MLE solution is given by the
product of the cost for a single CG iteration and the total num-
ber of CG iterations. The number of CG iterations depends in
turn on the noise level of the data, and the runtimes below are
given for the full-sky and full-mission Planck HFI 143 GHz
case. For a noise level of σ = 200 µK, the algorithm requires
29 iterations to converge using the preconditioner from Eq. (6),
with a convergence criterion defined by a relative error of
δnew/δ0 = 10−10. Each iteration costs 32.9 CPU-hrs, out of which
19.2 CPU-hrs are used on parallel FFT calculations and appli-
cation of the transfer function T (ω) within the TT N−1T oper-
ator. In order to parallelise and speed up the Fourier transfor-
mations efficiently, the TODs are divided into overlapping seg-
ments of length 219, similar to Planck Collaboration VI (2014).
The run required a total of 563 CPU-hrs, or 14.9 wall-hours
when parallelized over 64 cores. We note here, that only a part
of that time is spent in parallel regime, while the other part
is not parallelized. Ultimately, this algorithm is intended to be
integrated in the end-to-end CMB Gibbs sampler Commander
(Galloway et al. 2023). For comparison, the cost for a full Gibbs
sample for all three Planck LFI channels was 169 CPU-hrs
(BeyondPlanck Collaboration I 2023; Galloway et al. 2023;
Basyrov et al. 2023). Assuming no further optimizations, full
analysis of all Planck HFI channels with this algorithm will
increase the total runtime by more than an order of magnitude.
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Full optimization will happen in the future Fortran implemen-
tation, and for now we simply conclude that this algorithm is
indeed feasible, even though it is computationally expensive.

7. Conclusions

In this work we have proposed a new method for accounting for
the finite bolometer transfer function in modern bolometer-based
CMB experiments. This method integrates the bolometer trans-
fer function directly into the classical maximum-likelihood map-
making equation, which then is solved with a conjugate gradient
method. This method is the optimal solution to the full decon-
volution problem, and provides an unbiased signal estimate with
proper noise weighting and correlations.

We have compared this method to the traditional two-step
procedure used by most bolometer-based experiments to date,
in which an estimate of the transfer function is deconvolved
from the TOD prior to mapmaking. For slow detectors with a
long bolometer time constant compared to the sampling rate,
the deconvolution procedure boosts the white noise at high tem-
poral frequencies, and this is usually regularized explicitly by
an explicit and additional smoothing kernel. We have shown
that the resulting map estimate contains both significant scan-
aligned residuals and larger noise correlations than the optimal
method discussed in this paper. Calculating the effective ellip-
ticity and FWHM of the beams resulting from the two decon-
volution methods, we find that the ellipticity is 64% lower for a
Planck 143 GHz-based simulation with the MLE method than
for the traditional method, and the FWHM is 2.3% smaller.
Another notable advantage of the optimal method is that it does
not require an additional power spectrum level deconvolution
kernel (because K = I in this case), which should result in sig-
nificantly lower beam estimation uncertainties when integrated
into a full pipeline.

Based on these findings, we conclude that the new method is
algebraically preferable over the traditional method. At the same
time, the computational cost is also correspondingly higher, with
a total runtime of many hundreds of CPU-hours for a typical
Planck HFI case. However, this cost will likely be decreased sig-
nificantly both through better code optimization and algebraic
improvements, for instance by implementing a better CG pre-
conditioner. This is left for future work. In addition, the current
implementation already results in runtimes that are fully feasi-

ble for modern computers. We anticipate that this method will
allow for better data extraction both in reanalyses of the previ-
ous CMB experiments, such as Planck HFI, and the analysis of
the upcoming ones, such as Simons Observatory, LiteBIRD, and
CMB-S4.
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