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ABSTRACT

One of the foundational assumptions of the Standard Model of Cosmology is that of

isotropy of the universe on its largest scales. The Cosmic Microwave Background (CMB)

temperature anisotropy field has been mapped over the full sky with good precision, and

reasonably high signal-to-noise ratio, making it one of the most suitable probes of the early

universe. Cosmic inflation is hypothesised to have facilitated the large scale homogeneity

and isotropy of the universe, while also contributing to the growth of small fluctuations that

resulted in large scale structures today. The primordial power spectrum of these perturbations

is thus expected to be rotationally invariant due to the absence of any preferred direction.

This leads to the rotational invariance of the two-point angular correlation of temperature

anisotropies of the CMB, known as Statistical Isotropy (SI).

Under the assumption of SI, we expect (a) the spherical harmonic coefficients and hence

the estimator for the angular power spectrum of the CMB temperature anisotropies to be

uncorrelated, (b) the local extrema or hot and cold spots of the CMB to be distributed

uniformly on the 2-sphere of observation, and (c) that one must not be able to find a

preferred direction which violates SI. With this three-fold motivation, we subject the CMB

temperature anisotropies to three novel investigations: (a) in the harmonic space, we analyse

the spacings of the CMB temperature angular power spectrum (APS) to understand the nature

of correlations in the APS, (b) in pixel or real space, we study the overall distribution of the

local extrema of the CMB temperature anisotropies to measure their strength of isotropy, and

(c) we employ Machine Learning for detecting the preferred direction which modulates the

CMB temperature fluctuations.

In our first work, we present a novel technique to understand any possible correlations

of the APS measures (C` and D` = `(`+1)
2π C`) of the foreground-cleaned CMB temperature

anisotropy maps. We derive our motivation from the concepts of level clustering and

repulsion for uncorrelated and correlated eigenvalues of random matrix eigenvalues, by

analysing their level spacings. In case of statistically isotropic CMB, the spacings of C`’s
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andD`’s closely obey Poisson statistics whereas on introducing correlations, the distribution

changes appropriately to a form of Wigner-Dyson statistics. We devise an average spacing

estimator that helps discern departures from the null hypothesis of statistically isotropic

and uncorrelated APS measures of the CMB. With full sky coverage, we analyse WMAP

9 year ILC and 2018 Planck foreground-cleaned maps of Commander, NILC and SMICA.

When no distinctions of the multipoles based on parity are considered, we see that the

average spacings agree with theoretical expectations. When distinctions based on parity are

considered, the average spacings between even multipoles are found to be unusually small for

C`’s at≥ 98.86%C.L., and forD`’s at≥ 95.07%C.L.We repeat our analysis on 103 inpainted

(constrained Gaussian) realisations of the masked foreground-cleaned maps. We show using

the PlanckU73 andWMAPKQ75masks with and without a mask for the non-Gaussian cold

spot (NGCS), that all the foreground cleaned inpainted CMB realisations exhibit unusually

low mean spacings between even multipoles. This establishes the robustness of our finding.

In our second work, we explore the orientation matrix to study the isotropy of local

temperature extrema of the CMB. This matrix formed from position vectors of unit-mass

points on the surface of a 2-sphere, was first given byWatson (1965) and Scheidegger (1965).

We modify this matrix, by introducing non-unit mass weights i.e., magnitudes of the local

extrema of the CMB, to characterise their distribution. The shape and strength parameters

formed from eigenvalues of the orientationmatrix were given byWoodcock (1977) to discern

if the points are grouped in clumps or rings, and what the intensity of their non-uniformity is.

We simulate toy maps containing clustered and girdled spots and demonstrate that the shape

and strength estimators from our mass weighted orientation matrix adequately quantify the

non-uniformity in the CMB spots. On actual foreground-minimized full sky CMBmaps from

WMAP and Planck satellites we find a conspicuously weak non-uniformity in the distribution

of hot spots which is robust against the cleaningmethods ofWMAP-ILC, Commander, NILC

and SMICA, and is independent of the NGCS. Partial sky analysis reveals an anomalously

weak non-uniformity for cold spots which is robust against several foreground-cleaning

methods, masks, observational instruments and frequencies, and the presence of the NGCS.

Intriguingly we find that this signal of unusually weak non-uniformity of spots in either full
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or partial sky coverage is possibly due to the quadrupole and octupole and hence shares a

common origin with the anomalously low CMB temperature variance.

In our third work, we explore Machine learning for the first time, to detect a signal of

statistical anisotropy known as dipolar modulation. The hemispherical power asymmetry in

the CMB is attributed to a preferred direction which modulates the temperature fluctuations.

From maps of the foreground-minimised CMB, local variances in several small regions

on the spherical surface can be appropriately bias subtracted and normalised to reveal the

underlying dipolar pattern. As an unprecedented technique, we present Artificial Neural

Networks (ANNs) with such re-scaled local variance maps as input features to train them to

distinguish SI obeying CMBmaps from the dipole-modulated ones. The ANNs once trained,

are capable of predicting components of the amplitude times the unit vector of the dipole

direction for sets containing a mixture of modulated and unmodulated maps. The goodness-

of-fit (R2) scores for these predictions are > 0.97 for full sky maps and > 0.96 for partial

sky maps. Further, the predicted amplitudes and directions for all the observed foreground-

cleaned CMB maps have reasonably consistent values. Additionally, the detection of the

dipolar modulation signal is significant at 97.21%−99.38% C.L. for full sky coverage, and

at 98.34%−100% C.L. for partial sky coverage. Moreover, the signal is robust against sky

coverages, several foreground cleaning methods, inpainting algorithms, instruments, and all

the various periods of observation for Planck and WMAP satellites. Thus the statistical

significance and robustness of the detection of this signal, in addition to the consistency

in the values of amplitude and directions, found using an independent technique, further

weakens the criticisms attributed to look-elsewhere effects and a posteriori inferences for the

dipole modulation of the CMB.

Thus, if these three findings are not attributable to any unknown or unaccounted residual

systematics, then such violations of SI in addition to the considerable volume of work in

existing literature lend us an impetus to study exotic physics to explain our unlikely existence

as a viable extension of the standard model of cosmology.
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CHAPTER 1

STANDARD COSMOLOGY AND ISOTROPY OF THE

UNIVERSE

1.1 Introduction

As macroscopic beings, it is a intriguing proposition that our existence, and that of all sorts

of structures, that is, planets, stars, galaxies, and so on, began at the smallest of scales

[303], which cannot be explained by Newtonian mechanics. Instead we resort to quantum

mechanics which entails the notion of random fluctuations [238] in the vacuum of the densely

packed space allocated to the universe as it was being cradled into existence. Alan Guth

[121], Andrei Linde [180], Alexei Starobinsky [263] and Paul Steinhardt [16, 17, 25] are

known as the principal architects of the theory of cosmic inflation, which associates the initial

energy density of the universe to be dominated by the potential energy density of an inflaton

field with quantum fluctuations [168]. Vacuum fluctuations can be thought of as spontaneous

production and annihilation of pairs of particles and antiparticles that essentially appear out

of and disappear into the quantum vacuum. Inflation is hypothesised to homogeneously

and isotropically stretch out the space fabric by a factor a. This means that such virtual

particle pairs separated initially by an uncertainty of distance ∆x, happen to lie at a∆x

approximately. As and when this approximate distance between the pair crosses the causal

horizon, they manifest as real particles. We illustrate the expansion as modelled with the

notion of a scale factor in Figure 1.1.

Moreover, quantum fluctuations were pulled apart or inflated to macroscopic scales and

frozen out of the existing causal horizon at the time, making them classical fluctuation

modes [155] such that they could thereafter aid in varying degrees of gravitational accretion
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Figure 1.1: A schematic diagram to show inflationary expansion as modelled with a scale factor a.
The z-axis is pointing outside the plane of the paper. Here, ∆x,∆y, and ∆z (not shown) are called
“comoving” distances.

of matter depending on strengths of the matter density fluctuations [224]. This eventually

leads to formation of structure, as and when these fluctuations reenter the causal horizon in

radiation or matter dominated eras.

Inflation is purported to be an exponential accelerated expansion of space in a fraction of

a second, hence a∼ eHt, where, H = ȧ
a , is the Hubble rate of expansion and t is the proper

time. Further, a condition on the scale factor is ä > 0 for the accelerated expansion, which

can be shown to be equivalent to d
dt

(
1
aH

)
< 0. This gives us rH = 1/(aH) as the radius

of the comoving Hubble sphere which delineates our causal horizon at any given time, and

it shrinks as inflation occurs [114]. It can be understood as follows. For two points on the

space mesh which are receding from each other with a relative velocity of light, and using

Hubble’s law, v =H×r where, v = recession speed and r is the proper radius. Hence when

the speed of recession is v = c = 1 (in natural units), r = 1/H . Further as r = a× rH ,

therefore the comoving Hubble radius is rH = 1
aH .

Once inflation decays, it degenerates into standard model particles [3, 86], and ushers
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in the later eras of radiation domination, followed by matter domination, leading up to the

current state of the universe which predominantly contains dark energy. In the radiation and

matter dominated eras, the scale factor has a power law dependence on physical time, thus

the comoving Hubble sphere in these eras enlarges such that the smallest scale modes which

left the horizon later reenter first followed by larger scale modes which reenter at latest times.

Currently, the standard model of cosmology enshrines the notions of space having a

flat curvature, and comprising a strikingly low percentage of about 5% in the form of

ordinary matter, 27% dark matter, and 68% dark energy. Here, dark matter refers to usually

undiscovered particles which have been theorised to be massive, but weakly interacting, and

which do not fall in the Standardmodel of Particle physics [110]. Additionally themysterious

component called dark energy which pervades all of space predominantly, is responsible for

the current accelerated expansion of the universe [69].

This chapter is organised as follows. In Section 1.2, we enlist a chronologically arranged

set of epochs that are widely believed to have led to the present universe. In Section 1.3,

we describe specifically the hypotheses governing the inflationary epoch and how those

could translate into the observable universe today. In Section 1.4, we discuss some of the

observational probes in Cosmologywhich help us investigate the various periods of evolution

of the universe. In Section 1.5, we discuss the basic observables which characterise the

CMB. In Section 1.6, we elucidate our principal motivation towards studying the isotropy

of the CMB. In Section 1.7, we discuss the challenges that come one’s way in observing

and extracting a clean signal of the CMB. In Section 1.8, we discuss some state-of-the-art

methods of probing the isotropy of the CMB, present in existing literature. In Section 1.9, we

imbibe motivation from existing works in probing isotropy of the CMB, to explore the novel

techniques that we have developed in this thesis, and which are presented in the subsequent

chapters.

1.2 Epochs of the universe

The actual conversion of quantum fluctuations of the inflaton field which transfers as classical

perturbations in the metric, is an area of active research, due to the lack of correspondence
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between the general theory of relativity and quantum mechanics [187]. Thus it becomes

fairly non-trivial to assign an energy scale to the beginning and end of inflation. It is known

from various models of inflation [193] that the energy scale would primarily lie in the order

of 1016 GeV [178], which is approximately 10−3 GeV lower than the Planck scale.

Initially the Big Bang was the standard picture of how the universe and all the large

scale structure (LSS), in terms of networks of galaxies arranged in filaments and clusters

interspersed with voids, came into being. It was first hypothesised by Lemaitre [175,

174] as being a singularity which grew out into the universe today, as space stretched out

homogeneously and isotropically. However there were problems with the approach, such as

that of the “horizon problem” which states that today at the largest scales, there exist two

observable regions which are not in causal connection with each other and yet look very

similar. Then the theory of cosmic inflation was invoked to solve such problems [121]. Thus,

with our current understanding of Particle Physics and Cosmology, the chronology of the

universe can be outlined in the following manner, considering time to start from the “Big

Bang” at 0 seconds:

1. Planck Epoch: In this epoch, the universe is envisaged as being compact and occupying

space at the scale of Planck length. It is achieved after 10−43 seconds of elapse after the

Big Bang, and the temperature of the universe is approximately 1032K. It is presumed

that all the four fundamental forces (electromagnetic force, weak nuclear force, strong

nuclear force and gravitational force) have the same strength, and could be unified into

a single force [257]. Before the Planck era, we do not have any theory in physics to

account for the state of the universe.

2. Grand unification theory (GUT) era: Due to the expansion of the universe that began at

the Big Bang, the universe is expected to cool down, and when it reaches a temperature

of about 1016 GeV, the GUT era begins. This happens in the period between 10−43

seconds to 10−36 seconds, such that the gravitational force dissociates from the other

three fundamental forces which are still unified [75]. This is when the first elementary

particles and their antiparticles would have been created.
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3. Inflationary epoch: As the universe cools, the strong nuclear force is gradually begin-

ning to decouple from the electroweak force. Hypothesised to have lasted from 10−36

seconds to 10−32 seconds, the epoch of inflation is one of an exponential expansion

of space. Thus the elementary particles in the form of the hot and dense quark-gluon

plasma [231] which were left over from the GUT epoch are spread out across the

universe, leading to a reduced density of these particles.

4. Electroweak epoch: It occurs at temperatures of about 1015− 109 GeV, when the

time is nearly < 10−32 seconds, and lasts until about 10−12 seconds. In this epoch,

the strong nuclear force completely decouples from the electroweak force, and particle

interactions produce many exotic particles. Since the Higgs boson has been discovered

[2], our assumption of the electroweak era following the GUT era is reasonable.

The Higgs boson would be the only particle present during the GUT era, and in the

Electroweak era, simultaneous collisions of Higgs bosons would lead to the production

of W and Z bosons [18]. The Higgs field itself slows particles down, and bestows

mass on them.

5. Quark Epoch: Towards the end of the electroweak era, there are no new W and Z

bosons being produced, and existing ones would decay away, such that in their absence,

the short-range weak nuclear force separates from the electromagnetic component.

The quark epoch lasts from 10−12 seconds to 10−6 seconds in which large numbers of

quarks, electrons and neutrinos are generated [250]. Randomly quarks and anti-quarks

are expected to keep annihilating each other. However an overabundance of quarks

relative to anti-quarks exists such that later on they can coalesce into matter. This

happens due to a process known as baryogenesis [108] which by definition creates an

excess of baryons over anti-baryons starting from equal amounts of both in the early

universe.

6. Hadron Epoch: This lasts from 10−6 seconds to 1 second when the temperature of the

universe has fallen to about 1012 K.At this temperature, the quarks can combine to form

hadrons (e.g., protons and neutrons) [44]. An interesting phenomenon of production
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of neutrinos occurs, as and when electrons and protons collide at this epoch to form

neutrons and massless neutrinos, that can free-stream throughout space even till today,

at relativistic velocities. Since the reaction is reversible, some neutron-neutrino pairs

could also recombine into electron-proton pairs [182].

7. Lepton Epoch: From a second to about three minutes, after a majority of hadrons

have annihilated with anti-hadrons, the universe predominantly contains leptons and

anti-leptons such as electrons and positrons, respectively [146]. Electron-positron

pairs collide and annihilate each other producing energy in the form of photons, which

in turn collide and generate more electron-positron pairs.

8. Phase of Nucleosynthesis: This takes place between 3 minutes to 20 minutes, when

the temperature of the universe has fallen to about 109 K. Thus, with nuclear fusion,

protons and neutrons coalesce to form nuclei of various atoms, starting with the

lightest ones such as hydrogen, helium and lithium [105]. Towards the end of this

epoch however, nuclear fusion cannot continue further and heavier elements have to

be produced in the cores of stars later on [225].

9. Radiation dominated Epoch: A rather prolonged epoch which occurs between 3

minutes to 240,000 years, called the radiation dominated epoch entails that the universe

is filled with a photon-baryon fluid or plasma, which is very hot and opaque, as the

photons are tightly coupled to the atomic nuclei, protons and electrons [222]. The

photons here are the major constituents which arose out of the annihilations of leptons

and anti-leptons towards the end of the lepton era.

10. Recombination era: It is a very important period in the history of the universe, when

the photons decoupled from the plasma, from about 240,000 to 300,000 years. Above

temperatures of 3000 K, hydrogen, the simplest atom, is ionised, and hence the heavier

atomic nuclei like helium and the like are obviously ionised. Below this temperature,

as the density of these particles also depreciates, the ionised hydrogen and helium

atoms reunite with electrons in this period of recombination and become neutral atoms

[254]. Thus the photons essentially decouple from the baryon-photon plasma and the
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universe becomes transparent as the first light in the universe is released and can travel

freely. These photons are observable even today, albeit at the very low energy scale of

microwaves, thus forming the Cosmic Microwave Background (CMB). At the end of

the recombination era, the universe predominantly comprises hydrogen atoms (75%),

followed by helium (25%), and trace quantities of lithium [266].

11. The Dark Ages and the Matter dominated era: This era of darkness which began from

300,000 and continued to about 150 million years is preceded by the recombination

era when the first atoms formed and is followed by the appearance of the first stars

[201]. Ironically, despite the presence of a large number of photons, this period is

called the Dark Ages since, we do not have any luminescent sources like stars as yet.

Since matter is primarily left out and predominantly dark matter causes gravitational

accretion acting as centres for growth of structure [41], the overall energy levels of the

universe are low, such that the temperature is ' 1 eV. Thus the first clusters of stars

and galaxies begin to form gradually as gravitational force competes with and tries to

overcomes radiation pressure, nearing the end of the dark ages.

12. Structure formation and the Epoch of Reionization (EoR): The initial generation of

stars comprises “Population III” stars [109] which are essentially supermassive, metal

free and formed as a result of the gravitational collapse of matter in its gaseous state,

leading to production of heat and occurrence of nuclear fusion of hydrogen atoms.

Formation of “Population II & I” stars consequently occurs with the material left over

from previous stars [130]. For e.g., as more gigantic stars combust rapidly and explode

in massive supernova events, their remnant matter is spewed out in space and goes on

to form subsequent generations of stars. Thereafter, structure in the universe forms

hierarchically [228], such that massive volumes of matter coalesce under gravity to

form galaxies, and further gravitational attraction leads to the arrangement of several

galaxies into groups, then clusters, and super-clusters.

The EoR [300] is an important period, lasting between 150 million to 1 billion years,

since it is associated with the production of ultraviolet radiation from the first gener-
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ation of galaxies, stars and supermassive black holes [46], which ionises the regions

around them. With increasing number of ionising sources, the amount of ionised

gas also increases leading to a complete ionisation of all the hydrogen, hence the

name “reionization”. It can be understood by a scrutiny of electromagnetic radiation

from this era [198], in the form of quasar absorption spectra, Lyman-α emission from

high redshift quasi-stellar-objects, 21cm emission line from hyperfine transition in

hydrogen, intensity mapping of carbon monoxide emission lines, and so on.

13. Continual Star and Galaxy Formation and the present Dark energy era: A transition

from a decelerating universe to an accelerating one gradually occurs around 6 billion

years after the Big Bang. However, the formation of late generation stars and galaxies

continues, and our own sun and the solar system come into existence at roughly 8.5−9

billion years after the Big Bang [221]. The advent of dark energy domination in the

universe begins when the temperature of the universe has fallen to about 10−3 eV or

∼ 11K. Dark energy is a mysterious entity that causes late time acceleration of the

universe. This era began approximately 3 billion years ago and has continued till the

present day [74], which is ∼ 13.8 billion years after the Big Bang. Thus expansion of

the universe continues and simultaneously remnants of old stars upon their death get

utilised in the formation of newer stars.

In the next Section 1.3, we focus on the inflationary epoch of the universe, and the

theoretical framework underlying the same that aids in understanding the development and

evolution of the universe we see today.

1.3 Inflationary origins of the universe

Essentially there are four aspects which frame our understanding of modern cosmology

[85, 206] and hence our own origins from cosmic inflation:

1. The Cosmological Principle (CP): This states that on the largest cosmological scales,

the universe is (a) homogeneous, meaning to say that along a given direction there is

no preferred position to observe the universe and (b) it is isotropic, meaning that the
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universe appears the same from all directions, or when viewed from different angles.

However, the edifice of these concepts is the assumption of their validity when averaged

over largest of cosmic scales (& 100 Mpc). The CP is encapsulated in the background

metric of spacetime called the FLRW (Friedmann-Lemaitre-Robertson-Walker) met-

ric, which is maximally symmetric and describes a completely homogeneous and

isotropic expansion of the universe. The metric is of the form

ds2 =−dt2 +a(t)2
(

dr2

1−Kr2 + r2(dθ2 + sinθ2dφ2)
)

= g
(FLRW )
αβ (t)duαduβ. (1.1)

Here, r,θ,φ are the usual spherical polar comoving coordinates, K is the curva-

ture parameter, and equals ±1,0 for spherical, hyperbolic and Euclidean geome-

try of comoving spacelike hypersurfaces. The scale factor a(t) is a function of

time and defines the size of the actual spacelike hypersurfaces. The variable u =

(t,r sinθ cosφ,r sinθ sinφ,r cosθ) denotes the time coordinate and the other comov-

ing space coordinates.

2. The inflationary field (inflaton) which causes an exponential expansion of space in a

fraction of a second. In simplest models of inflation, this is usually a single, self-

interacting scalar field Φ. It ensures the conditions for cosmic inflation, such as those

of providing a negative pressure, and constant energy density which fills the primordial

universe. The action for such a field can be defined as

SΦ =
∫
d4x
√
−g

(1
2gαβ∂

αΦ∂βΦ−V (Φ)
)
. (1.2)

Here, we have set mpl = 1. Further, g is the determinant of the metric gαβ and V (Φ)

is the potential for the scalar field which is generally considered to be almost flat until

inflation occurs, and then has power law behaviour in Φ such as a simple harmonic

quadratic term in Φ as Φ nears a global minimum in V (Φ) towards the end of inflation.

The action for Φ is added to the standard Einstein-Hilbert action SR =
∫
d4x
√
−gR2 ,

where R is the Ricci scalar. Thus the summed action with both Einstein-Hilbert and

inflationary terms contains the complete information of our inflationary universe.

3. Quantum fluctuations in inflaton and the metric: As we have mentioned in the In-
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troduction 1.1 of this chapter, the quantum fluctuations in both the metric and the

inflationary field act as seeds for the small local irregularities in our universe, which

have led to the plethora of distinct structures on scales (1 kpc to 1 Mpc) smaller than

large cosmological scales. These quantum fluctuations were stretched out into clas-

sical perturbations during cosmic inflation. Hence the inflaton has two components,

one which is time dependent Φ(t) and the other which is the small contribution de-

pending on both space and time (δΦ(~x,t)). Similarly the generic form of the metric

gαβ contains the background FLRW metric (g(FLRW )
αβ (t)), on which are added some

small perturbations, which introduce inhomogeneities in the form of a perturbation

metric, say δgαβ . The fluctuations or perturbations to the background inflaton or the

background (FLRW) metric are considered to be negligible at the second order in

linear perturbation theory, which is the standard paradigm of cosmology.

4. Connecting the end of inflation and our current state: We require a set of transfer func-

tions which provide us a mathematical machinery to connect primordial perturbations

with inhomogeneities in our universe today. These are provided primarily for photons

or radiation and the LSS. The radiation transfer function helps us link the primordial

power spectrum of perturbations with the temperature and polarisation anisotropies in

the CMB. The matter transfer function provides a connection between the primordial

power spectrum and the current matter power spectrum observed for the LSS.

In the next four subsections, we discuss firstly about the cosmological principle and

what the conditions for inflation are, secondly we elucidate the notion of the inflationary

field further to assess its characteristics, and thirdly how metric fluctuations translate into

actual inhomogeneities alongside the fluctuations in the inflaton, and fourthly how these

perturbations manifest into the current state of the observable universe.

1.3.1 Cosmological principle and the unperturbed Friedmann’s equations

The Friedmann’s equations for the background FLRW metric can be obtained directly from

the Einstein’s field equations, since it is widely accepted that the General Theory of Relativity
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describes gravity. The Einstein’s field equations connect the curvature of spacetime with the

energy density and pressure of the fluid filling that spacetime. The field equations are

Gαβ =Rαβ−
1
2 ḡαβR = κTαβ. (1.3)

Here, κ = 8πG
c4 = 8π

m2
pl
. When considering ḡαβ = g

(FLRW )
αβ which is the background (unper-

turbed) metric, some significant mathematical rigour leads us to the following equations for

understanding how the scale factor a(t) evolves with time:

1. First Friedmann equation, (
ȧ

a

)2
= 8πG

3 ρ− k

a2 . (1.4)

2. Second Friedmann equation,

ä

a
=−4πG

3 (ρ+ 3P ) . (1.5)

These equations are written in natural units, setting c = 1. Here, ρ = ∑N
i=1 ρi, and P =∑N

i=1 pi, such that they are the total energy density and pressure of all the components which

fill the universe at time t. Since inflation is a phase of an accelerated expansion, this means

that the mathematical condition is d
2a
dt2 > 0. And from equation (1.5), we have (ρ+ 3P )< 0

or that P < −ρ3 . It is interesting to see how the inflaton as the dominant component in the

primordial universe satisfies this property, as discussed in the next subsection.

1.3.2 The background inflaton

Since cosmic inflation can take place when we have a dominant component in the universe

which has a negative pressure and constant energy density, these conditions can be fulfilled

by a scalar field called the inflaton Φ. For convenience, we will firstly refer to the background

Φ = Φ(t). Following equation (1.2), we can write the energy-momentum tensor as

Tαβ =− 2√
−g

δS

δgαβ
= ∂αΦ∂βΦ −gαβL, (1.6)

which resembles the energymomentum tensor of a perfect isotropic fluidT = diag(−ρ,P,P,P ).

We deduce the expressions for energy density and pressure from Tαβ of this perfect fluid
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corresponding to the background metric g(FLRW )
αβ and the background inflaton (Φ(t)) as

ρ= 1
2Φ̇2 +V (Φ), P = 1

2Φ̇2−V (Φ). (1.7)

Thus (ρ+3P )< 0 implies that Φ̇2 <V (Φ). Hence the condition of an accelerated expansion

is that the dominant component of the perfect fluid exerts negative pressure, and rolls very

slowly along the potential gradient due to a very small kinetic energy.

In order to infer how inflation obeys conservation equations of a perfect fluid of its kind,

we state the composite energy-momentum tensor of a set of N perfect fluids:

Tαβ =
N∑
i=1

T
(i)
αβ = (ρ+P )vαvβ +Pgαβ, (1.8)

where ρ,P contain contributions from all the N perfect fluids. These can be considered to

be equal to the energy density and pressure of the inflaton when the universe is dominated

by such a single scalar field. Generally, the pressure and energy density are related by the

equation of state P = wρ, where w is the equation of state parameter. In addition, the vα

vector is the velocity four vector, and obeys the relation vαvα =−1. The conservation of the

stress-energy tensor (∇αTαβ = 0,∇ denotes a covariant derivative) ascertains that

ρ̇=−3(ρ+P ) ȧ
a
, (1.9)

and for ρ= 1
2Φ̇2 +V (Φ), P = 1

2Φ̇2−V (Φ) of the background unperturbed inflaton, we get,

Φ̈ + 3 ȧ
a

Φ̇ + dV (Φ)
dΦ = 0. (1.10)

This equation encapsulates the overall evolution of the unperturbed inflaton field, such that

the first derivative of the potential provides a restoring force like term, whereas the ȧ
aΦ̇

provides frictional damping effect on Φ due to the expansion of the universe. It is convenient

to define a slow roll parameter of the first kind called ε = Ḣ
H2 . We know that for inflation

to occur, the Hubble radius must shrink, hence d
dt

(
aH−1

)
< 0 which gives, − Ḣ

H2 < 1 or

ε < 1. Additionally, using the first Friedmann equation, and assuming flatness of space due

to inflation, we have H2 ∼ ρ/3 in natural units of mpl = 1. For ρ = 1
2Φ̇2 +V (Φ) and using

evolution equation (1.10), we obtain Ḣ =−1
2Φ̇2. Thus, saying that

ε= Φ̇2

2H2 < 1, (1.11)
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Figure 1.2: A probable form of the inflationary potential, which illustrates the two phases of the
inflaton. The slow roll phase corresponds to the exponential expansion of the universe, and the
reheating phase corresponds to an oscillatory phase of the inflaton as it decays into Standard Model
particles.

is another way of imposing the condition for an accelerated expansion of the universe.

Since inflationmust end for small fluctuations in the inflaton and themetric to seed density

perturbations to grow into structure as time progresses, chaotic inflationary potentials were

suggested by [181]. Such potentials are of a polynomial form: V (Φ) ∼ Φn, where n is

an integer. Once slow roll is over, the accelerated expansion reaches an end, the inflaton

then starts to oscillate about the minimum of the potential. The inflaton interacts with other

subdominant particle species, leading to its decay into Standard Model particles including

radiation, in a process called reheating. Thus, to summarise, the first phase of the evolution

of the inflaton is a slow roll phase which causes the exponential expansion of the universe

and the second phase involves a decay of the inflaton into Standard Model particles. This is

illustrated with a sketch (Figure 1.2) of a probable inflationary potential.

1.3.3 Fluctuations of the inflaton and the metric

Despite the largely smooth, homogeneous and isotropic expansion of the universe created by

inflation, we must account for the generation of the local irregularities in our universe today.

Thus, in addition to Φ(t), and g(FLRW )
αβ , there must be some very small perturbations in the
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metric or fluctuations in the inflaton field.

Since the potential energy (V (Φ)) dominates the energy density (ρ) of the inflating

universe, the fluctuations in the inflaton field (δΦ(~x,t)) manifest as fluctuations in the energy

density of the universe: δρ ∝ δV [Φ(t) + δΦ(~x,t))]. These perturbations enter into Tαβ ,

which is the source for the metric, hence leading to metric perturbations δgαβ as well.

Using the concept of conformal time (τ ), which is given as dτ = dt
a(t) , we have the

unperturbed metric ds2 = a(τ)2
[
−dτ2 +d~x2

]
, the perturbed form of which is [165],

ds2 = a2(τ)[−(1 + 2A)dτ2−2Bidτdxi+{(1−2D)δij + 2Eij}dxidxj ]. (1.12)

In a scalar-vector-tensor (SVT) decomposition [165] with respect to SO(3) rotations, the A

and D are scalars, Bi can be broken up into a scalar and a divergence-less vector, and the

traceless tensor Eij into a scalar, divergence-less vector and traceless transverse tensor,

Bi =−B,i+B
(v)
i , such that ~∇· ~B(v) = 0, (1.13)

and Eij = (∂i∂j−
1
3δij

~∇2)E− 1
2(Ei,j +Ej,i) +Etij , (1.14)

where, δijEi,j = ~∇· ~E = 0; δikEtij,k = 0; δijEij = 0. (1.15)

Here, ~∇ denotes the 3D differential operator. We note that the divergence-less vector ~B(v)

reduces the degrees of freedomby one and hence 2 degrees of vector freedom and one scalar B

give the required total of 3 degrees of freedom forBi. In a similar fashion, (∂i∂j− 1
3δij

~∇2)E

is symmetric and traceless given its structure, and −1
2(Ei,j +Ej,i) is symmetric, and the

condition of zero divergence makes that part traceless as well. We assume the tensor Etij to

be symmetric and the two conditions on it make it traceless and ‘transverse’.

The manner in which the decomposition is carried out constitutes a specific choice of

time slicing and choice of spatial coordinates on these time slices, which constitutes a gauge

choice. In linear perturbation theory these perturbations are considered to be negligible at

second order. Thus on writing the Einstein’s equations for this metric and separating out the

perturbations of the δGαβ and δTαβ we find that the scalar, vector, and tensor perturbations

can be treated independently because they decouple.

The scalar fluctuations in the metric are known to couple to matter and radiation density,

giving rise to the small scale inhomogeneities and anisotropies in the universe. As discussed

14



in [85] in the conformal Newtonian gauge, the tensor perturbations produce gravity waves

and not being coupled with the density, they play no role in LSS formation in the universe.

Vector perturbations couple to rotational velocity perturbations in the ‘fluid’ of the cosmos

which tend to decay in our expanding universe, hence they are neglected in further analysis.

For simplicity we discuss how the scalar perturbations evolve, and similar mathematics

can be used for the other perturbations. If we define a curvature perturbationψ=D+ 1
3
~∇2E,

this gives us the form of the metric with only scalar parts of perturbations,

ds2 = a(τ)2[−(1 + 2A)dτ2 + 2B,idτdxi+{(1−2ψ)δij + 2E,ij}dxidxj ]. (1.16)

Further, the action for the inflaton-dominated universe non-minimally coupled to gravity is,

S =
∫
d4x
√
−g[12R−

1
2gαβ∂

αΦ∂βΦ−V (Φ)]. (1.17)

In this expression, we note that both the metric and the inflaton are now perturbed. In

the inflaton, we have one scalar degree of freedom (δΦ), and in the metric, we have four:

A,B,D,E. Thus, from among these five degrees of freedom, we can eliminate two, since the

equations of motion must be gauge invariant with respect to translations in time and space,

i.e., t→ t+ ξ0, and xi→ xi+∂iξ. Further, the Einstein constraint equations (Hamiltonian

and momentum constraint equations) [30] reduce two more degrees of freedom. Hence it

suffices to consider a gauge in which we have one scalar perturbation.

In the comoving gauge, the slow roll inflaton has no fluctuation (δΦ = 0). The perturbed

metric confined to the spacelike hypersurfaces can be written as

gij = a2[(1−2ζ)δij +hij ], ∂ihij = hii = 0. (1.18)

The conditions on hij make it transverse and traceless and ζ carries the single scalar degree of

freedom. Using gij , one can show (3)R= 4
a2
~∇2ζ , and the (3)R denotes the intrinsic curvature

of the spatial hypersurfaces. Hence, ζ is called the comoving curvature perturbation.

Applying the Arnowitt-Deser-Misner formalism [30] to expand the action for a quadratic

in derivatives of ζ , one gets the following after significant mathematical rigour,

S = 1
2

∫
d4x a3 Φ̇2

H2

[
ζ̇2−a−2(∂iζ)2

]
. (1.19)
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We consider the Mukhanov variable v = z̄ζ , where, z̄2 ≡ a2 Φ̇2

H2 = 2a2ε and ε is the first slow

roll parameter (Equation (1.11)). For derivatives with respect to τ , ( ddτ ≡
′),

S = 1
2

∫
dτd3x

[
(v′)2 + (∂iv)2 + z̄′′

z̄
v2
]
. (1.20)

Transforming the Mukhanov variable to Fourier space, v(τ,~x) =
∫ d3k

(2π)3 v~k(τ)ei~k·~x where

v~k(τ) are the mode functions, we arrive at the Mukhanov-Sasaki equation,

v′′~k +
(
k2− z̄

′′

z̄

)
v~k = 0, (1.21)

resembling a simple harmonic oscillator with a time dependent frequency
(
k2− z̄′′

z̄

)
.

Further, as these perturbations originate from quantum fluctuations, we must promote the

mode function and its conjugate to quantum operators, v~k → v̂~k = v~k(τ)â~k +v∗−~k(τ)â†
−~k

.

Here the creation and annihilation operators â†
−~k

and â~k respectively satisfy the canoni-

cal commutation relations [â~k, â
†
~k′

] = δ(~k−~k′), and the commutation bracket of the mode

function and its momentum conjugate gives us the normalization condition (with h̄= 1),

〈v~k,v~k〉 ≡ i(v
∗
~k
v′~k−v

∗
~k
′v~k) = 1. (1.22)

It is known that the vacuum state of a time dependent harmonic oscillator cannot be

uniquely defined [164]. Therefore we consider the Bunch-Davies vacuum state which is

the Minkowski ground state for all comoving observers. It is defined by taking the deep

sub horizon limit when all mode functions were inside the horizon, and hence τ = −∞ or

(|kτ |> 1), using which limit the Equation 1.21 reduces to

v′′~k +k2v~k = 0. (1.23)

The Bunch Davies vacuum state (v~k(τ)|BD) is a solution to this equation obtained when the

energy associated with the general solution to the equation is minimised.

v~k(τ)|BD = lim
τ→−∞

v~k(τ) = e−ikτ√
2k

. (1.24)

Further, to understand how the zero point fluctuations are auto-correlated, we may

evaluate the power spectrum of the scalar perturbation using

〈v̂~kv̂~k′〉= 〈0|v̂~kv̂~k′|0〉= 〈0|(v~k(τ)â~k +v∗−~k(τ)â†
−~k

)(v~k′(τ)â~k′+v∗−~k′(τ)â†
−~k′

)|0〉 (1.25)
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=⇒ 〈v̂~kv̂~k′〉= v~k(τ)v∗
−~k′

(τ)〈0|â~kâ
†
−~k′
|0〉= v~k(τ)v∗

−~k′
(τ)〈0|[â~k, â

†
−~k′

]|0〉

= (2π)3|v~k(τ)|2δ(~k+ ~k′) = (2π)3Pv(k)δ(~k+ ~k′).

Hence, Pv(k) = |v~k|
2 is known as the Power spectrum for v~k. Since v = z̄ζ, thus, Pζ = 1

z̄2Pv.

Once a solution for v~k has been found from the Mukhanov-Sasaki equation, the |v~k|
2 can be

computed to get the Power spectrum Pv and subsequently Pζ . So the power spectrum for the

curvature perturbation (ζ) reads

Pζ = 1
z̄2Pv = 1

2a2ε
Pv. (1.26)

This can be rewritten in a dimensionless form of the power spectrum (∆2
s), where

∆2
s = k3

2π2Pζ = Ask
ns−1. (1.27)

Here, ns is called the scalar spectral index and As is an associated constant. If ns = 1, the

power spectrum is scale-invariant or that the scalar spectrum does not depend on the scale

measured with k.

Employing a similar approach for tensor perturbations, one may compute the correspond-

ing action up to second order in the derivatives of hij . For appropriate dimensionality of

the fields, we associate the Planck mass as a proportionality constant again, and rewrite the

expression for the action of the tensor perturbations,

S = Mpl

8

∫
dτd3xa2

[
(h′ij)2− (~∇hij)2

]
. (1.28)

In Fourier space, the mode functions for the transverse and traceless tensor hij are

hij(τ,~x) =
∫ d3k

(2π)3/2
∑
s
εsij(k)h~k,s(τ)ei~k.~x, (1.29)

where, εii = kiεij = 0, and εsij(k)εs′ij(k) = 2δss′ . The two states of polarization of the tensor

perturbation are denoted by s. Thus the quadratic action is

S =∑
s

∫
dτd3k

a2

4 M
2
pl

[
(h′~k,s)

2 +k2(h~k,s)
]
. (1.30)

Canonically normalising the mode function as, v~k,s = a
2Mplh~k,s, we obtain,

S =∑
s

1
2

∫
dτd3k

[
(v′~k,s)

2 +
(
k2− a

′′

a

)
(v~k,s)

2
]
. (1.31)
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Upon variation of this action with respect to v~k,s, we will again arrive at an equation like,

v′′~k,s+
(
k2− a

′′

a

)
v~k,s = 0, (1.32)

which is very similar to the Mukhanov-Sasaki equation (1.21). Hence, applying a similar

approach as before to determine the power spectrum of the tensor perturbations, the power

spectrum in dimensionless form for the tensor part can be written as

∆2
t = 2× k3

2π2Ph = 2×
(

2
aMpl

)2
|v~k,s|

2. (1.33)

The factor of 2 in this equation accounts for the contribution from both states of polarisation

as denoted by s. Finally we can define the tensor to scalar ratio,

r = ∆2
t

∆2
s
, (1.34)

which measures the strength of the tensor power spectrum relative to that of the scalar power

spectrum. Moreover, there are spectral indices associated with these power spectra, as

∆2
s ∝ kns−1, ∆2

t ∝ knt−1, (1.35)

such that ns is the scalar spectral index and nt is the tensor spectral index.

1.3.4 Connecting the primordial power spectrum with current observations

Transfer functions are mathematical devices to explain one or a set of physical phenomena

in the period between inflation and observations of the CMB or the LSS that are made today,

and can be obtained using numerical solutions [255, 176] to two sets of equations, namely,

(a) Einstein field equations: The choice of a gauge introduces some potentials which

are perturbations to the background metric. Additionally, we define other perturbed

quantities such as those of the density and the temperature,

δ = δρ

ρ
, Θ = δT

T
. (1.36)

An evolution equation for photons can be found in Θ, and that of matter can be found

in the perturbation of density of the predominant matter component which is cold dark

matter, δCDM , and its velocity vCDM . Thus, the Einstein field equations can be solved
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to obtain relations between the metric perturbations of a specific gauge choice, and the

density and temperature perturbations.

(b) Boltzmann equation: This equation relates the matter density and photon temperature

perturbations, and the peculiar velocity ofmatter with themetric perturbations, starting

from,

df

dt
= C[f ], (1.37)

where, f denotes the distribution function for the species, and C[f ] known as the

collision term, represents the complex interactions among different components with

the species under consideration.

We can evaluate transfer functions to connect the initial perturbations (of curvature ζ~k
or the tensor modes h~k,s) after inflation with the observable fluctuations in matter density

or CMB temperature or polarisation, or neutrino number density, or the radio fluctuations

in the redshifted background of the 21 cm Hydrogen line, and so on. For example, if we

currently measure an entity E~k(τ), in Fourier (~k) space, and at the time τ today, the the

transfer function T (k,τ,τ∗) will connect Q~k with a primordial perturbation at a pivot scale

k∗ = a(τ∗)H(τ∗) corresponding to a time τ∗ when the mode exits the horizon. Thus,

E~k(τ) = T (k,τ,τ∗)ζ~k(τ∗), or, (1.38)

E~k(τ) = T (k,τ,τ∗)h~k,s(τ∗).

In the following we discuss mainly about the radiation and matter transfer functions [278],

which are useful for understanding the CMB and the LSS, respectively.

1. The radiation transfer function is obtained by solving the equations for Θ. It contains

contributions primarily from (a) the Sachs-Wolfe effect which describes the evolution

of Θ as it interacts with the gravitational potential, (b) the Doppler effect which

explains the impact of the peculiar velocity of the baryons on the distribution of the

photons, (c) the Integrated Sachs-Wolfe effect, which describes how the gravitational

potentials evolve over the course of time from photon decoupling until today. The

radiation transfer function shows constant behaviour for super-horizon scales as the
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photons are not expected to interact causally with the other particles. On the other

hand for sub-horizon scales, the radiation transfer function is oscillatory due to the

baryon acoustic oscillations caused by photon-baryon interactions.

2. The matter transfer function is a solution to a complete equation in δCDM obtained

from the evolution equations of δCDM and vCDM . Similar to the case of the radiation

transfer function, the matter transfer function is also constant for super-horizon scales.

However, on sub-horizon scales, one sees a growth in the matter perturbations which

exists in the radiation dominated era but becomes significant only in the matter dom-

inated era of the universe. It is in the matter dominated era that LSS begins to form.

Although currently we live in a Dark energy dominated universe which is causing

the present expansion of the universe, the behaviour of the matter transfer function

indicates that the perturbations will keep growing and LSS will continue to form.

Using transfer functions, we can connect primordial perturbations with those that exist

in the several probes of Cosmology today. Such probes attest to the existence of different

eras in the formation of the universe, as we trace the chronology of its evolution. We briefly

discuss some observational probes and their importance in the next Section 1.4.

1.4 Observational probes in cosmology

Several interesting probes in Cosmology exist, which help us frame our understanding and

theories about the various stages of evolution of the universe [204]. In the following, we

describe a few probes among the many that exist in cosmology.

1. The Cosmic Microwave Background (CMB) is the first light from the earliest stages of

the universe. It was very hot, and formed approximately 380,000 years after the Big

Bang. The CMB is the most accessible probe [51] for studying the earliest state of the

universe when it became transparent, since this microwave radiation surrounds us with

a strikingly uniform temperature of about 2.7K [103]. The directionally dependent

fluctuations (called anisotropies [27]) from this temperature∼O(10−5K) are primarily

the imprints of gravitational perturbations at the era of recombination.
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2. The Cosmic Neutrino Background (CνB) if detected successfully, will provide informa-

tion of a period of time (about a second after Big Bang [295]) earlier than that carried

by the CMB photons. This is because the neutrinos decoupled from other particles

like electrons, positrons and photons at temperatures∼MeV , whereas recombination

happened at ∼ 0.3 eV . There are both direct and indirect methods of detecting the

CνB [29]. The direct ones pertain to effects of CνB neutrinos on some targets [239].

The indirect probes include analysis of cosmic rays for any interactions with neutrinos

[302].

3. Cosmic Infrared Background (CIB): This is a background radiation which helps probe

the evolution of the universe after the CMB photons decouple and structure begins

to form [131]. It is a cumulative radiation from various sources such as the first

generation (Population-III or Pop-III) of stars [151], which cannot be accessed by

present day telescopes. The CIB upon careful separation from radiation of known

stars, diffuse emission, and galaxies, is seen to contain fluctuations which are imprints

of large structural features attributable to the first generation of stars about 12 billion

years ago.

4. Active Galactic Nuclei (AGNs), Blazars and Quasars: Active galaxies are those for

which the luminosities are ∼ 1011− 1015 times that of the sun. They are sources of

Hydrogen emission lines, radio synchrotron emission [230] and X-rays. When such

AGNs have their jet directions along our line of sight, then they are called blazars,

with relativistic jets of radio to very high energy gamma-rays [143]. For intermediate

angular alignments, such AGNs are called quasars [152]. AGNs primarily comprise

supermassive black holes, which pull in gas and dust to emit radiation across the

electromagnetic spectrum [97]. Quasars are distinguishable from other AGNs due to

their characteristically intense luminosity [245], such that the ones we see today could

be from the first galaxies. Due to the finite speed of light, the light from the nearest

quasars observable from earth at a hundred million light years away from us were

likely produced in quasars 600 million years ago [213].
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5. Lyman-α forest: Some quasars emit radiation of shorter wavelength than the Lyman-

α line, but enroute to us, due to the expansion of the universe, they get redshifted

into a strong Lyman-α emission line [275], in addition to subsidiary peaks. In the

intervening medium of neutral hydrogen (H-I) several absorption lines arise. This set

of a strong Lyman-α peak and other absorption lines forms a dense structure called

the Lyman-α forest [287]. A study of this “forest” provides information of the content

and distribution of neutral hydrogen between us and the quasars, rate of expansion of

the universe and so on [214]. Further, we can trace dark matter [219] since Lyman α

lines may be formed due to gravitational effects of non-luminous matter as well.

6. The 21 cm hydrogen line arises due to the hyperfine splitting of the 1s ground state of

the hydrogen atom due to the interactions of the magnetic moments of the electron and

proton [119] into the singlet state (antisymmetric state) and the triplet state (symmetric

state). These states have an energy difference which corresponds to approximately 21

cm wavelength of electromagnetic radiation [273]. The 21 cm light is produced as a

radio signal by hydrogen atoms in the primordial universe, as the radiation pervades

the dust clouds, providing us a map of hydrogen and hence that of the first structures

in the universe [226].

7. Carbon monoxide (CO) emission lines: CO has a set of rotation spectra produced

due to rotational energy transitions that forms a ladder for use in mapping structures

at different redshifts [203]. Various CO lines are useful for determining different

redshifts and structures: CO(1−0) line is useful for determining redshifts, CO(6−5)

is used for probing protoplanetary disks [171] and molecular clouds at large distances

(z > 6). Assuming virial stability of the cloud, one can calculate the mass of the cloud;

and assuming a specificCO toH2 factor, themass of a possibly distant molecular cloud

can be calculated [220]. Given different isotopic presences of carbon and oxygen, the

wavelengths of the CO lines are affected and that helps us to investigate the kinds of

isotopes present [291]. The extraction of such information can be undertaken with

the help of line intensity mapping of the CO lines [179]. Intensity mapping of lines

captures the spatial variations in the integrated or combined emission from spectral
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lines emanating from several individually unresolved galaxies. Line fluctuations help

survey the underlying the LSS of the Universe and the frequency dependencies can be

used to estimate the distribution of the lines of emission with redshift [288] aligning

with our line of sight.

In this thesis, we shall focus on the Cosmic Microwave Background and its small

anisotropies. We discuss at length about the CMB in the subsequent sections.

1.5 The CMB and its observables

The CMB was discovered in a serendipitous effort by Robert Wilson and Arno Penzias in

1964, while they were looking for radio emissions from the Milky Way galaxy, confirming

the existence of this primordial radiation. In the early universe, electrons and baryons were

tightly coupled to photons in a hot plasma due to continual Thomson (elastic) scattering,

γ+ e−
 γ+ e−, (1.39)

occurring at a rate, say, Γe. These collisions ensured the opacity of the cosmos, since

photons could not travel very far sans interactions with matter. The temperature at which

recombination into stable atoms or decoupling of photons occurs is dependent on the baryon-

photon ratio (η), and the ionisation potential (Q) of the atomic species. Considering only

stable atom formation for hydrogen, the process

p+ e−→H+γ, (1.40)

can be explained using the Saha equation [243],

1−Xe

X2
e

= ±
√

2ζ(3)√
π

η
(
T

me

)3/2(Q
T

)
, (1.41)

where the equilibrium ionization fraction of Hydrogen is given byXe,me is the mass of the

electron, Q= 13.6eV is the ionisation energy of hydrogen, T is the temperature, and ratio of

baryons to photons is

η = nb−nb̄
nγ

= 2.68×10−8
(
Ωbh

2
0
)
. (1.42)
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Here, nb,nb̄,nγ represent the number densities of baryons, anti-baryons and photons, re-

spectively, and Ωb is the baryon mass density, and h0 is the Hubble constant in units of

100km/s/Mpc, i.e, h0 = H0/(100 km/s/Mpc). The process of recombination takes place

over a range of redshifts ∆z ∼ 200. Given an ionisation fraction say, Xe = 0.1, the recom-

bination temperature is TR ∼ 0.3 eV. Once recombination has occurred, there is an increase

of the photon mean free path beyond the Hubble radius. These photons propagate freely

throughout the universe and match an almost perfect blackbody distribution of frequencies,

since they decoupled from a state of nearly ideal thermal equilibrium.

Those photons at recombination were at an approximate temperature of TR ∼ 3000K and

have redshifted towards the microwave region of the spectrum, due to the expansion of the

universe, as T ∝ 1
a(t) . If on the contrary, we had a contracting universe, the photons would

have blueshifted. The photons of the CMB today constitute a nearly uniform background

with temperature of T0 ∼ 2.726 K, corresponding to the background metric dictating a

homogeneous and isotropic expansion of the universe. The photons travel towards us from

a spherical shell where they scattered for the last time, and were released thereafter. Using

T0, we can estimate the redshift of the last scattering surface as:

1 + zR = a(t0)
a(tR) = TR

T0
' 1100. (1.43)

1.5.1 Gleaning information from the CMB

Principally, three aspects of the CMB are studied separately for their auto-correlations,

and also in combination with each other in terms of cross-correlations. Namely, these

are (a) its temperature (T ) fluctuations or anisotropies, (b) the curl-free component (E) of

the polarisation anisotropies, and (c) the curl-containing component (B) of the polarisation

anisotropies. Temperature anisotropies are primarily due to those very small inhomogeneities

in the distribution of matter which led to variations in the gravitational potential wells

curving space, from which photons had to crawl out. Before decoupling, there could be

relativistic effects and hence, considering Compton scattering between photons and electrons

is important. Such scattering leads to polarisation in the CMB photons in the following

manner.
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1. If the incoming radiation is isotropic in the rest frame of the electron, then the outgoing

radiation emerges unpolarised.

2. If the incoming radiation is anisotropic in a dipolar pattern, such that from say, the x̂

direction, there is a ray going towards the origin from a hot spot and that from the −x̂

direction comes from a cold spot, then the outgoing radiation remains unpolarised,

assuming that the radiation from other directions comes in isotropically.

3. If there is a quadrupolar anisotropy in the incoming radiation, i.e, if there is a ray

coming from a hot spot from the x̂ direction and another coming from a cold spot from

the ŷ direction, then the resulting radiation propagating in the ẑ direction is linearly

polarised.

We note however, that a quadrupolar anisotropy in the incoming radiation can be generated

only when the photons decouple shortly before the electrons and protons recombine to form

hydrogen atoms. This being a rare condition, means that the expected amplitude of the

polarisation anisotropies is lower than that of the temperature fluctuations.

For extracting information from the CMB, the angular power spectrum (CXY` ) of CMB

temperature and polarisation anisotropies (here, X,Y can take T,E,B as labels) can be

connected with the power spectrum of the primordial perturbations Pζ(k) and Ph(k),

CXY` = 2
π

∫
k2dkPψ(k)∆X`(k)∆Y l(k), (1.44)

where, ψ ≡ ζ,h, and ∆X`,∆Y ` are the transfer functions in the multipole ` and the Fourier

mode k,

∆X` =
∫ τ0

0
dτSX(k,τ)PX` [k(τ0− τ)] . (1.45)

These line-of-sight integrals factorize into two terms: a physical source term SX(k,τ) and

a geometric projection factor PX` [k(τ0− τ)] which are combinations of Bessel’s functions.
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1.5.2 Temperature anisotropies

TheCMB temperature fluctuations relative to the background can be decomposed in spherical

harmonics as,

∆T (n̂)
T0

= ∑̀
,m
a`mY`m(n̂), where, a`m =

∫
dΩY ∗`m(n̂)∆T (n̂)

T0
. (1.46)

The spherical harmonics (Y`m(n̂)) on a 2-sphere correspond to the projection of the spherical

sky of observation for photons coming from the last scattering surface. Thus, the multipoles

`’s give the monopole, dipole and so on for ` = 0,1, ..., and m’s take the values [−`,`].

When the temperature itself is decomposed in spherical harmonics, a measurement of the

monopole corresponds to the uniform temperature of the CMB. However, since we have

decomposed ∆T/T0’s, we must obtain a value of zero for the monopole. Further the dipole

is non-cosmological, since it is dominated by the dipole corresponding to our peculiar motion

in the rest frame of the CMB.

In order to elucidate the relation between these temperature fluctuations and primordial

perturbations, we note that while reentering the horizon at any time, the curvature pertur-

bation (ζ) induces density fluctuations δρ in the primordial plasma, from which photons

decouple and free-stream while getting redshifted into the CMB. Thus,

a`m = 4π(−1)`
∫ d3k

(2π)3 ∆T`(k)ζ~kY`m(k̂), (1.47)

since scalar perturbations contribute most significantly to the temperature fluctuations in the

CMB as the tensor-to-scalar ratio r < 0.3 with current bounds.

As we will be discussing in Section 1.6, for rotationally invariant two-point angular

correlation of ∆T/T0, the angular power spectrum estimator is

Ĉ`
TT = 1

2`+ 1
∑
m
a∗`ma`m, and, 〈Ĉ`

TT
〉= CTT` , for 〈a∗`ma`′m′〉= CTT` δ``′δmm′ . (1.48)

Here, 〈...〉 denotes an average over an ensemble of various similar universes.

A noteworthy behaviour of the CMB fluctuations is at large angular scales or low `’s.

Since the largest scale modes left the horizon earliest and reenter at the latest times, they

are mostly unaffected by sub-horizon evolution. This is the Sachs-Wolfe regime for which

the transfer functions are geometric projections from recombination until today: ∆T`(k) =
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1
2j` [k(τ0− τrec)], and

CTT` = 2
9π

∫
k2dkPζ(k)j2

` [k(τ0− τrec)] , or, CTT` ∝ 2π
`(`+ 1)`

ns−1, (1.49)

for a power spectrum of the form, ∆2
s(k) ∝ kns−1. Thus for a scale invariant spectrum,

ns = 1, the quantity D` = `(`+1)
2π CTT` is independent of `. This ensures that for the largest

of scales, assuming an approximately scale-invariant spectrum, the curve of D` is nearly a

straight line.

1.5.3 Polarisation anisotropies

Polarisation of the CMB photons primarily occurs due to a quadrupolar anisotropy just before

recombination as discussed in Section 1.5.1. Such polarised light can be represented using

the Stokes parameters I,Q,U,V . If we suppose that the light is traveling in the ẑ direction,

then the electric fields in x̂, ŷ directions can be written as follows:

Ex = ax(t)cos [ω0t− θx(t)], Ey = ay(t)cos [ω0t− θy(t)]. (1.50)

Since the CMB photons are nearly monochromatic with principal frequency ω0, this neces-

sitates that the amplitudes ax and ay and the phase angles θx and θy will be very slowly

varying functions of time as compared to the time scale ∼ ω−1
0 . Additionally, correlations

between Ex and Ey mean that the wave is polarised, and can be understood with the help of

the Stokes parameters (〈〉t is average over time):

I = 〈a2
x〉t+ 〈a2

y〉t, Q= 〈a2
x〉t−〈a2

y〉t, (1.51)

U = 〈2axay cos(θx− θy)〉t, V = 〈2axay sin(θx− θy)〉t.

The quantity I is always positive, whereas Q,U,V denote the state of polarisation and can

be both positive or negative. Unpolarised light entails Q = U = V = 0. Linear polarisation

is measured using I,Q,U , whereas V measures circular polarisation, and hence we expect

V = 0 due to lack of conditions for circular polarisation in the early universe.

Considering the intensity of light tensor Iij(n̂) in the 2D plane of the oscillating electric

field, normal to the direction of propagation (−n̂) of the light ray, for two orthogonal basis

27



vectors ê1 and ê2 perpendicular to n̂, we quantify linear polarisation using the components:

Q= 1
4(I11− I22), U = 1

2I12. (1.52)

The temperature anisotropy can be measured as 1
4(I11 +I22). The polarisation is represented

as a headless vector having a magnitude, and phase angle given by

P =
√
Q2 +U2, α = 1

2 tan−1 U

Q
. (1.53)

Unlike the temperature fluctuations, the fields Q and U transform under a rotation by γ in

the plane of ê1× ê2, as (Q± iU)(n̂)→ e∓2iγ(Q± iU)(n̂) like a spin-2 field, requiring an

expansion of the same in terms of the spin-2 or tensor spherical harmonics, as

(Q± iU)(n̂) = ∑̀
,m
a±2`m±2Y`m(n̂). (1.54)

For convenience we form linear combinations of the spherical harmonic coefficients,

aE,`m =−1
2
(
a2,`m+a−2,`m

)
, aB,`m =− 1

2i
(
a2,`m−a−2,`m

)
, (1.55)

to obtain spin-0 or scalar fields E and B,

E(n̂) = ∑̀
,m
aE,`mY`m(n̂), B(n̂) = ∑̀

,m
aB,`mY`m(n̂). (1.56)

The E modes are curl free, and shown as radial lines around a cold spot, or tangential lines

around a hot spot. The B mode is not curl free, but has null divergence, and is represented

as lines of vorticity around hot or cold spot centres with different handedness. Both modes

are rotationally invariant, but only E modes are invariant under a parity transformation.

In existing literature [299, 150], there are interpretations of the origin ofE andB modes.

Scalar (density) perturbations generate only E modes. Vector (vorticity) perturbations

generate only B modes, but as vector perturbations decay in an expanding universe, they are

ignored for practical purposes. Tensor (gravitational wave) perturbations generate both E

and B modes. Hence, if primordial gravitational waves can be detected through the imprint

of B modes in the CMB polarisation data, then inflation can be well corroborated. Among
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angular power spectra, while CTB` ,CEB` vanish for symmetry reasons, these exist:

CEE` ≈ (4π)2
∫
k2dkPζ(k)∆2

E`(k), CTE` ≈ (4π2)
∫
k2dkPζ(k)∆T`(k)∆E`(k),

CBB` ≈ (4π2)
∫
k2dkPh(k)∆2

B`(k). (1.57)

These equations clearly indicate the correspondence between the angular power and their

primordial power spectrum counterparts, Pζ(k) in the case of E modes, and Ph(k) in the

case ofB modes. TheCTT` ,CTE` ,CEE` provide us complementary information about Pζ(k).

On the other hand, the measurement of CBB` is very useful for understanding the possibility

of primordial gravitational waves arising from primordial tensor perturbations.

1.6 Why should we study the isotropy of the CMB?

Our principal aim in this thesis is to study the isotropy of the CMB temperature anisotropy

field in the context of an inflationary origin of these temperature anisotropies. This is

because such a study helps us investigate (a) the assumptions of large scale homogeneity and

isotropy which dictate the current paradigm of cosmic inflation, and (b) the earliest epochs

of the evolution of our universe which correspond to the largest scales. The first aspect is

a consequence of the cosmological principle and the second aspect arises due to the notion

of cosmic inflation which stretched out the largest scale modes of fluctuations at the earliest

which were then frozen in time, and which reenter the causal horizon at the latest times today.

The rationale behind studying the CMB temperature anisotropy field for our objective is

the following. Since we wish to assess the validity of the cosmological principle in tandem

with that of cosmic inflation, hence, among the possible probes in Cosmology, we focus our

attention on the ones which were generated and decoupled from the background primordial

fluid at the earliest times. Such probes are (1) the Primordial Gravitational Wave (PGW)

background created by the inflationary expansion, which permeates all of space, since these

waves decoupled immediately after the Big Bang [163], (2) the Cosmic Neutrino Background

(CνB), which decoupled about a second after the Big Bang [184] and (3) the CMB which

decoupled about 380,000 years after the Big Bang [99]. Direct and fairly accurate detections

of (1) and (2) are active and challenging fields of research and we await their results. Thus
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currently the CMB is well understood and has been used widely to substantiate the Standard

Model of Cosmology [136, 9]. This motivates a careful scrutiny of the CMB with regard

to its isotropy for better understanding of cosmic inflation and the maximally symmetric

background metric used to model the expansion of the universe during inflation. We focus

on the temperature fluctuations of the CMB because they are stronger by at least an order of

magnitude [144] and have considerably higher signal-to-noise ratio in the observed data as

compared to polarisation signals [81, 45].

In the following two subsections we discuss about the notions of statistical isotropy (SI)

and Gaussianity which are closely associated with those of large scale isotropy, and the null

correlations between the different independent modes of fluctuations.

1.6.1 Gaussianity

In Fourier decomposition, the primordial curvature perturbation reads as,

ζ(~x,τ) =
∫ d3k

(2π)3/2

[
â~kζ~k(τ)ei~k·~x+ â†~k

ζ~k(τ)∗e−i~k·~x
]
, (1.58)

after being quantised and expanded in terms of the creation and annihilation operators, which

satisfy
[
â~k, â

†
~k′

]
= δ(~k−~k′), making these Fourier modes independent. Since the primordial

curvature perturbations are described as sums of an infinite number of independent Fourier

modes, they are expected to be Gaussian distributed due to the Central Limit Theorem [161].

Hence 2-point statistics suffice to describe them, as expected for ground-state quantum

fluctuations. Further, each of the primordial fluctuations at any particular scale, i.e., the

same wavelength, are expected to be correlated as they are Gaussian distributed with the

same variance, and exit the cosmological horizon at the same time as and when cosmic

inflation acts on them.

The temperature fluctuations whichmap the primordial curvature perturbations are there-

fore also Gaussian. Hence the angular power spectrum (APS) C` or the two-point angular

correlation function 〈∆T (n̂1)∆T (n̂2)〉 for these fluctuations contain complete information

of the same. In spherical harmonic basis, we know ∆T (n̂) = ∑
`ma`mY`m, which entails
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that the a`m’s must be Gaussian distributed, that is,

P (a`m) = 1√
2πC`

exp
(
−a2

`m

2C`

)
. (1.59)

Herein lies an implicit assumption that the covariancematrix of the a`m’s given by 〈a`ma∗`′m′〉

is diagonal and equal to theC`’s which measure the strength of fluctuations at a given angular

scale or multipole `. This assumption is a consequence of SI, as we explain below.

1.6.2 Statistical Isotropy

Any anisotropy or preferred direction, especially at the largest scales is expected to be

stretched beyond the cosmological horizon and hencemust have no causal influence thereafter

on the relatively smaller scale fluctuations. Hence when these larger scale fluctuations which

were still outside the horizon at recombination reenter the horizon, their power spectrum

should be essentially free from any directional preference and should have no bearing on

the other relatively smaller scale fluctuations. Mathematically this manifests in the lack of

correlations of the spherical harmonic coefficients (a`m’s) of dissimilar multipoles for the

temperature anisotropy field on the 2-sphere of observation. Thus only fluctuations of the

same scale are correlated, which means that the individual variances of the a`m’s are only

dependent on the angular scale given by `. The SI of the CMB encapsulates this notion.

Since SI upholds the absence of any preferred direction, hence mathematically it is

enshrined in the rotational invariance of any n-point correlation function on the sky [161],

i.e.,

〈D∆T (n̂1)...D∆T (n̂n−1)D∆T (n̂n)〉= 〈∆T (n̂1)...∆T (n̂n−1)∆T (n̂n)〉, (1.60)

whereD =D(χ,ξ,ψ) is the Wigner rotation matrix with angles χ,ξ,ψ. Additionally , using

∆T (n̂i) =∑
`imi

a`imi
Y`imi

(n̂i) and a harmonic representation of the Wigner-D matrix,

D(χ,ξ,ψ)Y`m(n̂) = ∑̀
m′
D

(`)
m′mY`m′(n̂), (1.61)

where, D(`)
m′m(χ,ξ,ψ) is the matrix element 〈`,m′|D|`,m〉 denoting a finite rotation of the
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state |`,m〉 to |`,m′〉, we can rewrite the equation (1.60) as

`1∑
m1=−`1

`1∑
m′1=−`1

...
`n∑

mn=−`n

`n∑
m′n=−`n

〈a`1m1 ...a`nmn〉D
(`′1)
m′1m1

Y`1m′1 ...D
(`n)
m′nmn

Y`nm′n

=
`1∑

m1=−`1
...

`n∑
mn=−`n

〈a`1m1 ...a`nmn〉Y`1m1 ...Y`nmn . (1.62)

On the left hand side of this equation,mi andm′i are dummy indices (where i= 1, ...,n) and

can hence be exchanged, after which we arrive at the following equation,

∑
m′1

...
∑
m′n

〈a`1m′1 ...a`nm′n〉D
(`1)
m′1m1

...D
(`n)
m′nmn

= 〈a`1m1 ...a`nmn〉. (1.63)

This equation encapsulates the notion of SI for the angular power spectrum (n = 2), the

bispectrum (n = 3), and so on. The covariance matrix of the a`m’s is not necessarily

diagonal, i.e., 〈a`ma∗`′m′〉 6= f(`)δ``′δmm′ , without full sky coverage of the ∆T (n̂) and a

rotationally invariant 2-point angular correlation function, i.e. (from (1.63)),

〈a`1m1a
∗
`2m2〉= ∑

m′1m
′
2

〈a`1m′1a
∗
`2m′2
〉D(`1)

m′1m1
D

(`2)
m′2m2

. (1.64)

The a∗`2m2
in the 2-point correlation function is used for conveniently expressing the same in

terms of the estimator Ĉ`, and for ease in computing the products of the Wigner-D matrices.

If we assume that the angular covariance matrix of the a`m’s is diagonal, say given by

〈a`1m1a
∗
`2m2
〉= 〈Ĉ`1〉δ`1`2δm1m2 , then the above equation (1.64) reduces to

〈a`1m1a
∗
`2m2〉 = 〈Ĉ`1〉δ`1`2

∑
m′1m

′
2

D
(`1)
m′1m1

D
(`2)∗
m′2m2

δm′1m
′
2

= 〈Ĉ`1〉δ`1`2
∑
m′1

D
(`1)
m′1m1

D
(`1)∗
m′1m2

,

or, 〈a`1m1a
∗
`2m2〉 = 〈Ĉ`1〉δ`1`2δm1m2 , (1.65)

which proves that 〈Ĉ`〉 is rotationally invariant, thus manifesting in the diagonal covariance

matrix of the a`m’s. In the above deduction, we have used the orthogonality condition∑
kD

(`)
km1

D
(`)∗
km2

= δm1m2 . Thus SI ensures that the a`m’s and hence the temperature fluctua-

tions are uncorrelated between different multipoles, or different angular scales.
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1.7 Challenges in extracting the CMB

In order to accomplish our task of performing credible investigations into the isotropy of the

CMB, we need observational data of the CMB in its most pristine form. However, there are

several challenges in extracting the pure CMB from the observed data, categorised into: (1)

astrophysical foregrounds, (2) systematic effects, and (3) statistical impediments.

1.7.1 Astrophysical foreground contamination

In a CMB experiment, the observed signal contains foregrounds, which must be separated

out with the help of multi-frequency observations since the spectral shape of a foreground

is different from that of the CMB. Their brightness temperatures are usually power laws of

frequency raised to a spectral index. Some principal foregrounds [147] are explained as

follows.

1. Galactic synchrotron emission: It is the synchrotron emission from cosmic ray elec-

trons and positrons accelerated in the interstellar magnetic field. It is dominant at

the frequency ν ∼ 10 GHz. The brightness temperature Tb ∝ ν−β , with β being the

spectral index which itself varies with frequency and spatial coordinates. The index β

has an average value of 2.5 at radio frequencies, and 3.0 at ν ∼ 10 GHz. Since up to

70% of the synchrotron radiation is polarised, this interferes with the CMBpolarisation

signal. Its scale dependence ∼ `−3 means that it dominates at the largest of scales.

2. Galactic free-free emission: Thermal Bremsstrahlung emission emanating as hot

electrons scatter off ions in the interstellar medium, is called free-free emission. The

spectral index is ' 2.15. Relative to the synchrotron emission, free-free emission

dominates at frequencies of 30− 60 GHz. It is composed of a diffuse and a discrete

component. Hydrogen H-II is a principal source of discrete emission, whereas the

H-α line corresponding to a wavelength of 6563 Å is a tracer of the diffuse form.

Similar to synchrotron emission, free-free emission scales as ∼ `−3.

3. Galactic thermal dust emission: This emission is produced in the far infrared region,
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due to the heating of dust grains such as graphites, silicates and PAHs (polycyclic

aromatic hydrocarbons) by interstellar radiation. Its temperature depends on the

intensity of the interstellar radiation heating the dust grains, efficiency of emission by

the grains, not to mention the shapes, sizes, structures and chemical composition of

the grains. Thermal dust emission occurs predominantly at frequencies & 70 GHz. A

global dust angular power spectrum scales as `−3, however, for higher galactic latitudes

it is better denoted as `−2.5, barring some spatial variations.

4. Anomalous microwave emission (AME): In addition to thermal dust, there is a spinning

dust component which is an anomalous foreground emission at ν ∼ 20− 60 GHz. A

plausible candidate for this are PAHs spinning with some specific electric dipole mo-

ments. AME emanates from dense molecular gas and low density atomic gas regions.

Another candidate for AME is magneto-dipole emission from strongly magnetised

grains, the polarisation amplitude of which can go up to 40%.

5. Carbon monoxide (CO) molecular clouds: Rotational transitions of CO from its

molecular clouds are a substantial contaminant, especially for ≥ 100 GHz band, as

seen for the Planck satellite. For example, the first three transition lines (J = 1−0,2−

1,3− 2) at frequencies of 115 GHz, 230 GHz, and 345 GHz, feature in three of the

high frequency observations made by the Planck satellite. The power spectrum of CO

emissions is predominantly present at smaller angular scales of `& 10000.

6. Extragalactic sources: Below and above 200 GHz, several populations of high fre-

quency sources (like dusty galaxies) and radio sources (blazars, quasars, and the like)

contribute to the extra-galactic region. Many such sources are very faint, making them

difficult to be identified and removed compared to the brighter ones.

We note that galactic foreground contamination is predominant on large scales, and since

our studies of the isotropy of the CMB focus mainly on the largest scale fluctuations, these

foregrounds must be appropriately minimized before investigations are embarked on.
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1.7.2 Systematic effects

Systematic effects [197] are a combination of astrophysical characteristics of the signal, the

optical interface which determines the beamwidth and shape, the response of the instrument,

and the environment which affects the thermal and electrical stability of the observational

instrument, in addition to the pipelines of data extraction. Three prominent effects are as

follows.

1. 1/f noise and thermal effects: Instrumental noise sources are shot noise, 1/f noise,

Johnson (thermal) noise, temperature noise, and photon noise. Voltage fluctuations

δvf lead to Johnson noise whose power spectrum is white and varies directly with the

circuit temperature and resistance. Shot noise has awhite power spectrum and is seen in

semiconductor parts like a transistor when an electrical charge crosses its p-n junction.

Flicker noise ∝ 1/fα (f = frequency), is predominant below a ‘knee’ frequency,

above which it is white noise like. Photon noise is caused by statistical fluctuations

in the arrival and detection times of photons which causes their detected power to

vary. Photon noise power is strongly proportional to temperature. Additionally, noisy

lines at different frequencies are caused by periodic fluctuations in the thermal or the

electrical environment of the instruments and the satellite.

2. Optical and pointing effects: Before the detector, the process of observation of the

sky by an optical system introduces systematics. The telescope modifies the angular

response of the feed (that couples the optical system and detectors) in order to conserve

(Ae ·ΩA), where Ae is the effective aperture of the feed or telescope, ΩA is the beam

solid angle given by ΩA =
∫
4πPn(θ,φ)dΩ and Pn(θ,φ) is the normalised beam pattern

of the feed or the telescope. For the telescope pointed in the direction θ0,φ0,

TA(θ0,φ0) =
∫
4π Tb(θ,φ)Pn(θ− θ0,φ−φ0)dΩ∫

4πPn(θ,φ)dΩ , (1.66)

where TA,Tb are the antenna and brightness temperatures. Thus an asymmetric

Pn(θ,φ) causes a smearing of the observed sky. These distortions in the beam

(or observed portion of sky) degrade the angular resolution, decreasing the max-
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imum accessible multipole, and increasing Ĉ` estimation error. Moreover, stray-

light variations T (SL)
A in the main beam antenna temperature TMB

A , i.e., TA(θ,φ) =

TMB
A (θ0,φ0) +TSLA (θ0,φ0) may not be distinguishable from the CMB fluctuations

measured by the main beam. Typically the error in pointing, σp is a very small fraction

of the effective beam angular resolution (σeff ), such that σp ≤ 0.1×σeff . Since the

beam convolved with the probability distribution of the pointing error gives the beam

shape, the sky angular power spectrum at small scales or high multipoles gets affected.

3. Data acquisition and handling: After observations, the signals are sent as small

volumes of data through telecommunication. The amount of data at a receiving station

varies directly with the communication bandwidth and the time taken. Bandwidth

optimisation is done using lossy and lossless strategies. The former focus on data

quantisation, whereas the latter involve arithmetic compression algorithms. Lossy

techniques introduce additional noise and systematics in the data stream. Additionally,

the signal digitisation process introduces spurious noise in time-ordered-data (TOD)

affecting non-Gaussianity studies of CMB maps. Corruption or loss of any of the data

packets sent via telemetry may lead to data reduction errors. Besides, some small

artifacts, introduced at the map-making stage, are described in the next subsection.

1.7.3 Statistical challenges

The two broad categories of statistical challenges are as follows.

1. Intrinsic uncertainties: The angular power spectrum C` is an ensemble average of the

product of the spherical harmonic coefficients, but having only one universe to observe

leads us to the problem of cosmic variance [290]. We know that,

〈Ĉ`〉= 1
(2`+ 1)

∑̀
m=−`

〈a∗`ma`m〉= C`. (1.67)

Thus the cosmic variance for Ĉ` can be computed as,

σ2
Ĉ`

= 〈Ĉ`Ĉ`〉−C2
`

= 1
(2`+ 1)2 〈

( ∑̀
m=−`

a∗`ma`m

)
×
( ∑̀
m′=−`

a∗`m′a`m′

)
〉−C2

`
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= 1
(2`+ 1)2

∑
m

∑
m′

(
〈a∗`ma`m〉〈a

∗
`m′a`m′〉+ 〈a∗`ma∗`m′〉〈a`ma`m′〉

+〈a∗`ma`m′〉〈a`ma∗`m′〉
)
−C`2

= 1
(2`+ 1)2

∑
m

∑
m′

(
C2
` + 2C2

` δm,−m′
)
−C2

`

= 2
(2`+ 1)C

2
` . (1.68)

Here we have implicitly used the Wick’s theorem, and the fact that 〈a`m〉 = 0. Ad-

ditionally, we use a∗`m = (−1)ma`m to obtain the terms of the form C2
` δm,−m′ , that

simply flips the summation for m, but ∑−`m=+` = (2`+ 1), and hence the result is

achieved. Thus the error is greatest at lowest of multipoles (`’s) and vice versa.

Besides, if a partial sky is observed, then the observed fraction of the sky (fsky)

increases the σĈ` . The variance due to noise and beam effects dominates at higher

multipoles. Further the gravitational lensing of CMB photons converts the E modes

into B modes, affecting the extraction of cosmological parameters from the CMB.

2. Computational aspects: The first challenge is to find an appropriate pixelisation

scheme (such as HEALPix [117]) on a 2-sphere for storing CMB data, and strategising

the manipulation of functions defined on the sphere, with minimal losses.

Secondly we encounter computational challenges and losses at the level of map mak-

ing [280]. For the TOD model d = P (s+ f) + n, where, s = CMB signal, f =

foregrounds and P = Pointing matrix which encodes the optical processes and scan-

ning methodology of the instrument. Using Bayes’ theorem, the maximum likelihood

estimate of s+ f is m̄ = (P TN−1P )−1P TN−1d, and the noise covariance matrix

CN = 〈m̄m̄T 〉 = (P TN−1P )−1. For large datasets, the method is computationally

expensive due to the size of the matrices (O(105−107)). The assumption of symmet-

ric beams also induces error as distorted beams and side lobes can produce spurious

images of foregrounds.

Thirdly, foreground separation methods are fairly involved. One method is to model

various foregrounds for purging the maps. Another technique is of “blind separation”,

based on the statistical independence of the CMB and the foregrounds.
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Fourthly, the likelihood estimation for Ĉ` costs N3
pix operations (Npix = number of

pixels in a map). For the Planck satellite, Npix ∼ 107, so we need 1021 operations.

Lastly, the cosmological parameter estimation step requires exploration of the posterior

density which varies over 10−20 dimensions.

In the next Section 1.8, we discuss some state-of-the-art CMB isotropy investigation

methods which are fairly robust against foreground and residual systematics, while minimis-

ing the computational aspects of statistical challenges discussed in this Section 1.7.

1.8 Existing probes of the isotropy of the CMB

Investigations of the isotropy of the CMB have been carried out meticulously by researchers

over a considerable period of time, using diverse tools and techniques for the same. Further,

any deviations from isotropy found in the CMB are made to undergo rigorous checks of

robustness in order to reasonably eliminate possible systematic errors or minor foreground

residuals introduced during the CMB extraction process, as possible causes of anisotropy.

We categorise such techniques on the basis of possible entities probed, as follows.

(a) Correlations of the CMB anisotropies were studied in real or pixel space, and multi-

pole or spherical harmonic space, to directly inspect the rotational invariance of the

correlation functions for statistically isotropic CMB.

(b) Power asymmetries: The distribution of power based on geometry of the 2-sphere, or

parity of the anisotropies were probed to assess possible power asymmetries.

(c) Directional preferences: Presence of preferred directions on the CMB which violate

large scale isotropy were examined.

(d) Local extrema or hot and cold spots of the CMB were explored for assessing the

isotropy of the CMB and its adherence to Gaussianity at small scales.

We discuss these categories of studies in the following subsections.
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1.8.1 Correlations of the CMB anisotropies

We discuss two correlation based approaches: (a) in pixel space using the 2-point angular

correlation function, and (b) in harmonic space with the bipolar spherical harmonics.

1.8.1.1 Pixel space two-point angular correlation function

In the work of [132], using COBE-DMR data, it was seen that there is near to negligible

correlation of temperature fluctuations separated by angular distances of& 60◦. The 2-point

angular correlation employed by the authors of this paper is

C(αij) = 〈TiTj〉= 1
4π
∑̀(2`+ 1)W 2

` C`P`(cos(αij)), (1.69)

where, W` denotes the product of beam and pixel window functions as appropriate, P` is

the Legendre polynomial, and C` is the expectation of the angular power spectrum. The

correlation function defined for a fixed separation denoted by the angle α is given as

C(α) =
∑
ijwiwjTiTj∑
ijwiwj

, (1.70)

where, the Ti’s are temperature at ith pixel, and wi’s are statistical weights of the same. The

authors computed the correlation function (Equation (1.70)) for different bins of angular

separations and plotted the same for combinations of CMB maps of different frequency

channels. They additionally evaluated the cross correlations formaps fromdifferent channels.

In each of these cases, the curves approach and stay close to zero beyond 60◦.

In the first year paper of WMAP [260], a number of discrepancies in the foreground-

cleaned CMB (ILC) maps from observations were found relative to the standard (flatΛCDM)

model predictions, on small and large scales. The small scale discrepancies were alleviated

with the use of a running spectral index, however those on the largest angular scales remained.

Among these, the prominent deviation from predictions was that of the deficit of large angle

correlations, as seen previously in COBE data. The flat ΛCDM model used by them was

best fitted to both CMB and LSS data, before performing comparisons with observed data.

The lack of power on these large angular scales was quantified with a 4-point statistic,

S1/2 =
∫ 1/2

−1
[C(θ)]2 d(cos(θ)). (1.71)
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The upper and lower limits of S1/2 were chosen a posteriori after looking at the unusual

nature of the data in this region of the graph. Here, the form of the correlation function is:

C(θ) = 1
4π
∑̀(2`+ 1)W 2

` Ĉ`P`(cos(θ)). (1.72)

Upon comparing with the simulations from the standard model fitted toWMAP and 2dFGRS

data, it was found that only 0.15% of the simulated maps had values of S1/2 lower than that

from WMAP data. This percentage improved only to 0.3% with a running spectral index.

In the work [65], the WMAP 1-year and 3-year ILC maps were used to study

C(θ) = T (n̂1)T (n̂2)|θ, (1.73)

which is defined for any two temperature fluctuations separated by an angular distance of

θ. The over-bar denotes an average over all such pairs. The authors analysed the cut sky

Q,V,W frequency band maps in addition to the full and partial sky ILC maps. In all of

these cases, they found that C(θ) is vanishingly small in the approximate range of angular

separations ∈ [60,170], and above θ = 170, there exists a small but peculiar anti-correlation

whereas the standard model predicts a large positive correlation. In addition to the use of

the S1/2 statistic, the authors of this work used

Sfull =
∫ 1

−1
[C(θ)]2 d(cos(θ)). (1.74)

Upon comparisons of S1/2 and Sfull evaluated from the chosen real CMB maps, and those

from simulated skies corresponding to the ΛCDM favoured by WMAP data, they found that

only about 0.04%−0.15% of the isotropic skies produce an S1/2 value lower than than those

of the 3-year cut sky WMAPQ,V,W maps, and for the 3-year cut sky WMAP ILC map, the

p-value is 0.03%. Even when all angular scales are considered, the analysis with the Sfull

statistic reveals that the p-values are ∼ 1%. These clearly indicate a violation of SI which is

more significant in the WMAP 3-year maps relative to the 1-year maps.
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1.8.1.2 Bipolar spherical harmonic power spectrum

An interesting study in multipole or harmonic space was accomplished in the work of [123],

where the following statistic was proposed for measuring the deviations from SI of the CMB.

κ` =
∫
dΩ

∫
dΩ′

[
(2`+ 1)

8π2

∫
dRχ`(R)C(Rq̂,Rq̂′)

]
. (1.75)

Here, C(Rq̂,Rq̂′) is the two-point correlation function of temperature fluctuations at Rq̂

andRq̂′ which are position vectors obtained upon rotation of q̂ and q̂′ by the operatorR, an

element of the 3D rotation group. The expected 2 point correlation function is given as,

C(q̂, q̂′) = 1
8π2

∫
dRC(Rq̂,Rq̂′). (1.76)

The characteristic function χ` = ∑`
M=−`D

`
MM , where D`

MM are the Wigner-D functions.

The dR denotes the volume element of the 3D rotation group. For rotation by an angle

ω ∈ [0,π], about the axis r̂(r,θ,φ), χ` and dR take the following forms

χ`(R) = χ`(ω) =
sin (2`+1)ω

2
sin(ω/2) , dR= 4sin(ω/2)dω sin(Θ)dΘdΦ. (1.77)

With the use of the identity
∫
dR′χ`(R′)χ`(RR′) = χ`(R), the expression for κ` reads

κ` = (2`+ 1)
8π2

∫
dΩ

∫
dΩ′C(q̂, q̂′)

∫
dRχ`(R)C(Rq̂,Rq̂′). (1.78)

For statistically isotropic temperature fluctuations, C(Rq̂,Rq̂′) = C(q̂, q̂′), and hence, the

above expression reduces to κ` = κ0δ`0, due to the orthonormality of χ`(ω). Thus, κ` is a

measure of SI for the CMB. For computational simplicity, C(q̂, q̂′) is considered as a series

expansion in the orthonormal basis of bipolar spherical harmonic (BipoSH) functions,

C(q̂, q̂′) = ∑
ll′`M

A`Mll′ {Yl(q̂)⊗Yl(q̂′)}`M , (1.79)

where, A`Mll′ are coefficients of the expansion (BipoSH coefficients). The BipoSH functions

form a basis in S2×S2 [274] and transform as ordinary Y`m(q̂)’s under a rotation,

{Yl(q̂)⊗Yl(q̂′)}`M = ∑
m1m2

C`Ml1m1l2m2Yl1m1(q̂)Yl2m2(q̂′), (1.80)

where, C`Ml1m1l2m2
are the Clebsh-Gordon coefficients. It can be shown that,

A`Mll′ = ∑
mm′
〈alma∗l′m′〉(−1)m

′
C`Mlml′−m′ . (1.81)
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Due to cosmic variance, it is not possible to measure all of such BipoSH coefficients, hence

analogous to the coefficients a`m’s defined inS2, where the angular power spectrum estimator

Ĉ` = 1
(2`+1)

∑`
m=−` |a`m|2, the

κ` = |A`Mll′ |2 ≥ 0, (1.82)

are the bipolar power spectrum estimators. And as we have seen that for the case of SI, κ` = 0

for all ` > 0, hence a non-zero κ` for such `’s will indicate a violation of SI. An intriguing

aspect of κ`’s is that they can help investigate some forms of non-trivial cosmic topology as

described in [259]. The authors of this formalism computed the κ` for first-year data from

WMAP (ILC map [33] and TOH map [271]) and found it to be consistent with zero, for

a variety of window functions used to isolate different ranges of angular scales. Within a

confidence interval twice that of the standard deviation, the authors reported no violation of

SI for large angular scales such that `. 60 [124].

1.8.2 Symmetry based approaches to the power spectrum

We discuss three approaches to assess the CMB angular power spectrum, (a) a geometric

approach, which involves ascertaining the power spectrum of two different hemispheres,

(b) assessing parity, since neither symmetric or antisymmetric functional form of the CMB

anisotropies must take precedence, (c) studying the symmetries of the eigenvectors of the

power spectrum when the latter is defined in the generalised form of a power tensor.

1.8.2.1 Hemispherical power asymmetry

An asymmetric power distribution between two hemispheres of the CMB 2-sphere was

observed by [92], and later by [128], which was based on a method of estimating the power

spectrum from patches on the sky [127], using the concept of Gabor transforms. A Gabor

transform [106] is known as a ‘windowed Fourier transform’ as it is the Fourier transform of

a function f(x)when it is multiplied by a Gabor windowG(x). This is useful when wewould

like to eliminate or weaken the effects of missing or noisy data at some x = xn by setting

for example, G(xn) = 0 and G(x) = 1 for other values of x. Additionally since standard

likelihood methods used for power spectrum estimation utilise all the pixels or spherical
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harmonic coefficients of a CMB map, this leads to an ≈ Npix×Npix sized correlation

matrix, making it computationally expensive to invert.

In their work [127], the authors proposed to use the pseudo power spectrum as elements

to define the data array in the likelihood, since the correlation function of the same scales as

`max× `max. Here `max is the highest multipole being probed. The pseudo C̃` and ã`m’s

for a Gabor window G(n̂) transformed map are given as,

C̃` = 1
2`+ 1

∑
m
ã∗`mã`m, ã`m =

∫
dn̂T (n̂)G(n̂)Y ∗`m(n̂). (1.83)

Here, T (n̂) is the temperature fluctuation at n̂. Considering G(n̂) to be azimuthally sym-

metric about a point n̂z such that the Gabor window can easily be expressed as a function of

the angular separation given by cosθ = n̂ · n̂z, we have the Legendre series expansion,

G(θ) = ∑̀ (2`+ 1)
4π g`P`(cosθ) = ∑̀

m
g`Y`m(n̂)Y ∗`m(n̂z). (1.84)

Moreover, as T (n̂) =∑
`ma`mY`m(n̂), hence the equation for ã`m takes the form,

ã`m = ∑
`′m′

a`′m′
∑
`′′m′′

g`′′Y
∗
`′′m′′(n̂z)

∫
dn̂Y`m(n̂)Y`′m′(n̂)Y`′′m′′(n̂)

= ∑
`′m′

a`′m′
∑
`′′m′′

g`′′Y
∗
`′′m′′(n̂z)

√
(2`+ 1)(2`′+ 1)(2`′′+ 1)

4π

×

 ` `′ `′′

−m m′ m′′


 ` `′ `′′

0 0 0

(−1)m. (1.85)

As for the transformation of the power spectrum, using the orthogonality of the Wigner-3j

symbols, and 〈a`ma∗`m〉= C`δ`ell′δmm′ , we have

〈C̃`〉= ∑̀
′
C`′K(`,`′), where, K(`,`′) = (2`′+ 1)∑̀

′′
g2
`′′

2`′′+ 1
16π2

 ` `′ `′′

0 0 0


2

, (1.86)

and the coefficients g` can be found by inverse Legendre transformation,

g` = 2π
∫ θ=θc

θ=0
G(θ)P`(cosθ)dcosθ. (1.87)

Here, the cut-off angle θc denotes the angular value at whichG(θ)→ 0. For e.g., a Gaussian

Gabor window is defined as G(θ) = e−θ
2/(2σ2) for θ ≤ θc, and G(θ) = 0 for θ > θc. Further,

g` is also independent of n̂z, like other terms inK(`,`′). This is an important result implying

that the 〈C̃`〉 will be the same regardless of where the Gabor window function is centred.
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If a disc (or other such axisymmetric patch) on the observed sky is considered and

multiplied by a Gabor window function, then the pseudo power spectrum can be inputted to

a likelihood analysis to estimate the full sky power spectrum. For an axisymmetric patch, it

is possible to analytically evaluate the sky signal correlations. We may assume that the C̃`

are Gaussian distributed if the multipole ` is high enough. As an example, for a Gaussian

Gabor window of full-width-at-half-maximum or FWHM= 15◦, the `∼ 100. The likelihood

ansatz chosen by the authors is,

L=

(
−1

2d
TM−1d

)
√

2πdetM
, (1.88)

where, the data vector d contains elements of the form di = C̃`i−〈C̃S`i〉−〈C̃
N
`i
〉. The C̃`i is the

observed pseudo power spectrum including noise. The other two terms are the expectation

values of the pseudo power spectrum as in (1.86) corresponding to the signal and the noise

for the patch, respectively. The matrixM given by

Mij = 〈C̃`iC̃`j 〉−〈C̃`i〉〈C̃`j 〉=MS
ij +MN

ij +MSN
ij , (1.89)

denotes the correlations between the pseudo power spectrumcoefficients, andMS
ij ,M

N
ij ,M

SN
ij

represent the contributions due to the signal, the noise and the signal-noise cross-correlations.

The noise correlationsMN
ij must be pre-computed using the specific noise model involved.

Then the correlation matrices for the signal and the signal-noise mixing are given by,

MS
ij =∑

b

∑
b′
DbD

′
bχ(b,b′, i, j), MSN

ij =∑
b
Dbχ

′(b, i, j). (1.90)

Here, the expression for χ is as follows:

χ(b,b′, i, j) = 2
(2`i+ 1)(2`j + 1) ×

∑
m

[ ∑̀
∈b
B2
` `(`+ 1)h(`,`i,m)h(`,`j ,m)

]

×
[ ∑
`∈b′

B2
` `(`+ 1)h(`,`i,m)h(`,`j ,m)

]
, (1.91)

where,B` is the beam function in multipole space, and h(`,`′,m) =∑
jGjλ

j
`mλ

j
`′m∆j , such

that the λ’s are given by Y`m(θ,φ) = λ`m(θ)e−imφ, ∆j is the area of the jth pixel, and Gj is
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the pixelised Gabor window function. Further, the expression for χ′ is

χ′(b, i, j) = 2
(2`i+ 1)(2`j + 1) ×

∑
m

[ ∑̀
∈b
B2
` `(`+ 1)h(`,`i,m)h(`,`j ,m)

]
×h′(`i, `j ,m), (1.92)

where, h′(`,`′,m) =∑
iG

2
iY

i
`mY

i
`′m∆2

iσ
2
i and σi is the noise variance in pixel i.

Due to limited information in each patch, the full sky power cannot be estimated for all

`’s, and a binning procedure provides the power spectrum in Nbin bins. The log-likelihood

optimisation causes the values of the estimated binned spectrum to be of a similar order of

magnitude. Hence, the authors consider a parameterisation for the binned C`’s,

C` = Db

`(`+ 1) , `b ≤ ` < `b+1, (1.93)

with `b being the first multipole of the bth bin, and Db is a parameter. Since these binned

values are coupled, the covariance matrix becomes singular. In this regard, a choice of

multipoles `i is made, Ni in number, such that the data vector di can be found. The required

number of multipoles then depends on the coupling strength between the C̃`’s, as dictated

by the multipole widths of the kernel (∆`ker) and the correlation matrix ∆`cor. This is

because the correlation matrix after normalisation with the pseudo power spectrum varies

with the window size like the kernel K(`,`′) width. The authors of the study noted that a

small number of `i’s, i.e, low Ni leads to larger error bars on the estimates, however a very

highNi may not altogether improve the same. Optimally, the maximum number of C`’s that

can be fit is equal to the number of C̃`’s, which is Ni. Therefore, Nbin ≤Ni is required.

With the likelihood analysis for a single axisymmetric circular patch on simulated skies,

the authors found a high probability of the estimated C̃` being lower than the average 〈C̃`〉,

which is due to the assumption that C̃`’s are Gaussian distributed. Thus, the bias can

possibly be reduced when a larger area of the sky is available for the joint analysis of many

patches to produce the full-sky power spectrum. With this forethought, the authors describe

an extension of the method to tackle two major problems: (a) in a real experiment, the

probability of observing a axisymmetric patch is very low, (b) the noise between any two

pixels in the observed CMB map is usually correlated. Thus, the sky can be fragmented into

several axisymmetric patches and the estimated C̃` from each patch can be utilised together
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for likelihood maximisation. However, it must be checked that the correlation of C̃`’s from

different patches (say patch A and patch B) is low. Usually the correlation between two

widely separated patches approaches zero. An analytical form of such correlations is

〈C̃A` C̃B`′ 〉 = 1
(2`+ 1)(2`′+ 1)

∑
mm′
〈ãA∗`mãA`mãB∗`′m′ ãB`′m′〉

= 〈C̃A` 〉〈C̃B` 〉+
2∑mm′ |〈ãA∗`mãB`′m′〉|2

(2`+ 1)(2`′+ 1) , (1.94)

where, 〈ãA∗`mãB`′m′〉 = ∑
`′′C`′′d

`′′
mm′(∆)hA(`,`′,m)hB(`′, `′′,m′) and ∆ is the angle be-

tween the patch centres, while the Wigner-D coefficient is given by D`
m′m(α,β,γ) =

eim
′αd`m′m(β)eimγ , with the property that d`m′m(β) = d`mm′(−β). Using this analytical form

of the correlation between C̃`’s, and evaluating the same from Monte Carlo realisations, the

authors concluded that off-block-diagonal correlations are≈ 0, for non-overlapping patches.

They found that on averaging the C` estimates from multiple non-overlapping patches, the

mean estimate approaches the full power spectrum even at large angular scales or low `’s.

In the correlation matrix from such a joint analysis of several patches (Npat in number),

the block diagonal contains correlations for each individual patch and the log-likelihood is

L=
Npat∑
i=1

dTi M
−1
i di+

Npat∑
i=1

ln(det(Mi)), (1.95)

where, the di is the ith patch data vector, andMi is its correlation matrix.

In the work [92], the authors have studied the asymmetric distribution of power in two

hemispheres of the CMB 2-sphere. The authors note that despite the analytical form of

the correlation matrix for axisymmetric patches (Equation (1.94)), the correlation matrix

for a general sky patch (lacking any specific symmetry) must be computed from Monte

Carlo simulations. They accomplished this task while simultaneously finding the maximum

likelihood estimates for (1.88) to obtain the parameters Db (equation (1.93)). With the help

of this likelihood approach, they estimated the power spectra for 164 discs with radius 9◦.5,

which are selected uniformly on parts of the sphere outside the galactic cut obtained with

the Kp2 mask of WMAP first-year data. The multipole range considered was ` ∈ [2,63].

They compared the power spectra for discs from northern and southern hemispheres chosen

by orientating the north-south axis in 82 different directions on the 2-sphere for coadded
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maps of WMAP V and W bands alongside 2048 simulated maps. The coadded map Tca is

obtained from maps at different channels (Tc) using inverse noise weighting,

Tca =
∑
cTc/σ

2
c

1/σ2
c

. (1.96)

The procedure employed by them thereafter is as follows. They estimated the power spectrum

in bins Cb of width ∆`= 3, such that a multipole bin is b ∈ {`bmin, `bmax}, and `min = 2+3b,

`max = 4 + 3b. The estimated bins in a given multipole range [`min, `max] were added up

for each of the 164 hemispherical contributions, to give Ch = ∑
bCb, where h = N,S for

northern and southern hemispheres. The ratio of asymmetry between the spectra from the

hemispheres was computed as r = max(CNCS ,
CS
CN

) for each of the 82 orientations, and the

orientation corresponding to the largest r was recorded. The total number of discs is 164,

since there are two discs per orientation, one in each hemisphere. The local power spectrum

estimates for these slightly overlapping, 164 discs were compared to those from an ensemble

of 6144 simulated maps, and it was seen that in the lowest multipole bin given by ` ∈ [2,63],

the amplitudes of the power spectra for the discs in the northern galactic hemisphere are

generally lower in the WMAP data, than in the simulated maps, and that the opposite effect

exists for the southern hemisphere.

Considering the ratio of the mean of the spectra in the northern to that of the southern

hemisphere, the authors found that only 0.5% of the simulated maps furnish a ratio as small

as that from WMAP data. After determining the coordinate frame that maximises the value

of this ratio, they computed it for various multipole ranges. The authors found that the ratio

value from WMAP data is larger than about 99% of the simulations. Additionally, they

found that the asymmetry of power is concentrated about the northern galactic pole for low

multipoles, whereas that of high multipoles (5 < ` < 40) is maximised for an axis having

its north pole at (θ,φ) = (80◦,57◦), in Galactic coordinates. When the same procedure was

performed for the COBE-DMR data, after coadding maps from 53 and 60 GHz channels, for

which the multipole range chosen was ` ∈ [2,19], as the signal is dominant there, the axis of

power asymmetry was found to be close to that of the WMAP data.

Similarly, in another work [128], the authors have employed the methods described

earlier and computed the power spectrum estimates from individual discs as well as from a
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large sample containing combined estimates from several discs on Monte Carlo ensembles.

Thereafter these estimates were compared with data from WMAP. In this work as well, 164

discs were used which are of radius 9◦.5, chosen in observed regions outside theKp2 mask.

The results obtained from this analysis are similar to and hence corroborate those from [92].

1.8.2.2 Point parity asymmetry

For temperature anisotropies ∆T (n̂) = ∑
`ma`mY`m(n̂), when a point parity inversion is

carried out, we obtain ∆T (−n̂) = ∑
`m(−1)`a`mY`m(n̂). Effectively then, the spherical

harmonic coefficients transform under parity as a`→ (−1)`a`m. With this knowledge, one

may construct the symmetric and antisymmetric forms of the temperature maps,

∆T e(n̂) = ∆T (n̂) + ∆T (−n̂)
2 , ∆T o(n̂) = ∆T (n̂)−∆T (−n̂)

2 , (1.97)

which have even and odd parity, respectively. Thus, in spherical harmonic decomposition,

∆T e(n̂) = ∑̀
m

1 + (−1)`
2 a`mY`m(n̂) = ∑̀

m
a`mY`m cos2

(
`π

2

)
,

∆T o(n̂) = ∑̀
m

1− (−1)`
2 a`mY`m(n̂) = ∑̀

m
a`mY`m sin2

(
`π

2

)
. (1.98)

A distinctly preferential distribution of power for either∆T e or∆T o, indicating an asymmet-

ric distribution of power for odd or even multipoles violates parity symmetry. The authors

of [159] showed that for WMAP 3, 5 and 7-year data, the power spectrum for odd multipoles

is higher than that for their neighbouring even multipoles. Since the Sachs-Wolfe plateau for

low `’s ensures that `(`+1)
2π C` ∼ constant, the authors considered the quantities,

P e =
`max∑
`=2

cos2
(
`π

2

)
`(`+ 1)

2π Ĉ`, P o =
`max∑
`=2

sin2
(
`π

2

)
`(`+ 1)

2π Ĉ`, (1.99)

where, the trigonometric factors ensure that only odd or even multipole powers are added for

P o or P e, respectively, and `max denotes the upper limit of the multipole range. Thus a low

value of the ratio reo = P e

P o , quantifies the odd-parity preference of data and vice versa.

They employed two masks, namely, the WMAP pre-processing mask for low multipole

ranges (` ∈ [2,23]) and the WMAP KQ85 mask for ` ∈ [2,1024]. The angular power

spectrum was estimated by pixel based maximum likelihood methods for the low ` range

maps and by the pseudo-C` approach for the higher ` range. Instrumental noise was ignored
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for multipoles `≤ 100. The ratio reo was computed for 104 simulated maps corresponding

to the standard ΛCDM model, and WMAP maps from 7, 5 and 3 year data and compared,

for different values of `max. It was seen that the fraction of simulated maps with P e

P o as low

as that from WMAP data is very low, clearly indicating the parity asymmetry of power. The

lowest value of this fraction of simulated maps (p-value) is 0.0031 when `max = 22.

An analysis of point parity asymmetry was carried out in [166] using the statistic,

Sp =
`max∑
`=3

`(`+ 1)Ĉ`
`(`−1)Ĉ`−1

. (1.100)

In this study, the authors concluded that for several ranges of `’s considered, they could not

find the probability of rejecting the null hypothesis of SI beyond the 97% confidence level.

In another work [19], the authors propose a different statistic (with D` = `(`+1)
2π Ĉ`):

Q(`odd) = 2
`odd−1

`odd∑
`=3

D`−1
D`

. (1.101)

The summation is over all the oddmultipoles only. The estimatorQ(`odd) quantifies themean

deviation of the ratio of power in the even multipole, to the subsequent odd multipole from

unity, and since `(`+1)Ĉ` ∼ constant for low `, the value ofQ(`odd) is expected to fluctuate

about one, just like reo. The authors of this work tested both the statistics reo,Q(`odd),

on WMAP 7-year CMB maps (cleaned using their own methods) against 104 simulated

maps for a fiducial C` best fitted to the WMAP 7-year data, for multipoles defined by

`max ∈ [3,101]. They reproduced the results of the [159] of lowest probability at `max = 22,

of 0.0013. Additionally they generated 800 simulations of foreground cleaned maps using

ΛCDM realisations of the CMB, to which were added Planck Sky Model [22] foregrounds,

which were then cleaned by applying the IPSE cleaning procedure ([271, 244]). The p-

values were found to be slightly higher than those of the simulated SI obeying maps. With

the analysis of these 800 maps, the authors concluded that the parity asymmetry is not due to

over-subtraction of foregrounds, which was an idea posited due to the even-parity preference

of foregrounds. Besides, the effect of noise is also negligible. The p-value obtained with

these maps is 0.13%. In order to assess the effect of a low multipole cut-off, some low-`
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values were removed and the analysis was redone with the modified statistic:

Q(`odd) = 2
`odd− `cut+ 1

`odd∑
`=`cut

D`−1
D`

, (1.102)

where the cut-off `cut is any odd ` > 3. Similarly a lower ` cut-off was implemented for the

reo statistic. The authors found that with `∈ [`cut,101], the p-values for the parity asymmetry

recede from the critical regions completely on ignoring the multipoles 2, ...,7. This implies

that the other low−` anomalies and the parity asymmetry could share a common origin.

1.8.2.3 Mirror parity asymmetry

For the assessment of the symmetry of plane parity, we primarily refer to the work of [166].

A point parity inversion is defined by n̂→−n̂, whereas a mirror parity inversion is given by

n̂→ n̂−2(n̂.p̂)p̂, (1.103)

where p̂ is the normal to the plane (‘mirror’). Given a parity inversion denoted by the

operator P , such that the temperature fluctuations ∆T (n̂) transform as P∆T (n̂) = ∆T̃ (n̂)

under parity, then two functions similar to case of point parity can be constructed,

∆T±(n̂) = ∆T (n̂)±∆T̃ (n̂)
2 . (1.104)

For point parity inversions, the even or odd `’s contribute to the Ĉ` in the∆T+(n̂) or∆T−(n̂)

maps, respectively. However, for mirror parity inversion, modes with even or odd (`+m)

values contribute to Ĉ`’s of the respective ∆T+(n̂) or ∆T−(n̂) maps. Hence,

Ĉ±` (n̂`) = 1
(2`+ 1)

∑
m
g±`m|a`m|

2, (1.105)

where, g±`m = 0,1 for odd or even `+m, and n̂` is the z-axis used for the expansion which

changes with `. A mirror handedness dictates the preference of Ĉ+
` or Ĉ−` over the other.

Moreover, the choice of n̂` elucidates whichm modes are preferred. The statistic used is,

r` = max
m~n

C`m
(2`+ 1)Ĉ`

, where, C`0 = |a`0|2, and C`m = 2|a`m|2 form> 0, (1.106)

since m 6= 0 contribute twice to C`m. Thus r` quantifies both statistical anisotropy and

preference of anym mode, by helping find the direction n̂` for which the highest value of r`
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is obtained. The asymmetry between odd and even modes is given by,

r±` = Ĉ+
` (n̂`)− Ĉ−` (n̂`)

Ĉ`
, (1.107)

where, the values of Ĉ±` are as in Equation (1.105), while those of n̂` can be found using

Equation (1.106). The authors considered various cleaned maps of WMAP [32, 271, 91]

and found an even mirror parity preference (r+
` > 0). Further they found that the alignment

of preferred axes of the quadrupole and octupole extends up to ` = 5, and their preferred

shapes unlike those of ` = 2,3 is not planar. They found that ≈ 10% of simulated maps are

as unusual as the observed data for such a preferred r+
` > 0, in the range ` ∈ [2,5]. However,

the parity feature studied alongside the n̂` alignments is highly significant at∼ 99.99% level.

Since mirror parity and the alignment of n̂` are independent effects, as seen through Monte

Carlo simulations, their joint significance increases from 99.9% to 99.99%.

1.8.2.4 Rotational symmetry based statistics related to the power

In the paper [246], the authors develop new statistical tools based on considerations of

rotational symmetry. They introduce two new measures of randomness, namely, the power

entropy and the directional entropy. Assuming SI, tensor products constructed using a`m’s

must be isotropic. The focus of this work is on second rank tensors. Two quantities which

can be defined are the isotropic power, and the power tensor, respectively,

A(`)δij = 1
(2`+ 1)

∑
mm′

a∗`mδijδmm′a`m′ ,

Aij(`) = 1
(2`+ 1)

∑
mm′

a∗`m(JiJj)mm′a`m′ . (1.108)

Here, Ji’s are the multipole representations of the angular momentum operators for Cartesian

indices of i= 1, ,2,3. SI dictates the following ensemble averages,

〈A〉= C`, 〈Aij(`)〉= C`
3 δij . (1.109)

The authors note that the angular power spectrum is not the only rotationally invariant

quantity, and that several other entities formed from the spherical harmonics are not examined

as much as the Ĉ`’s are. In orders of `≥ 2, there exist three rotationally invariant eigenvalues

of Aij(`). Since eigenvectors are independent and covariant quantities, under isotropy
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considerations, they must be randomly oriented. The sum of the eigenvalues of Aij(`) must

equal the usual power spectrumC`, whereas two independent combinations for a given range

of multipoles, can be used to form new invariants as follows.

If one considers a representation of the spherical harmonic coefficients, a`m = 〈`,m|a(`)〉,

using the Dirac notation for states (not ensemble averages), then the states |`,m〉 are eigenvec-

tors of the angular momentum operators J2 and Jz, with the eigenvalues of `(`+ 1) andm.

The temperature fluctuations being real valued, provide the constraint a`m = (−1)ma∗`,−m.

For a small rotation by an angle ~θ that changes the state |a(`)〉 → |a(`)〉′, we have

|a(`)〉′ = |a(`)〉+ |δa(`)〉, where, |δa(`)〉=−i~θ · ~J |a(`)〉. (1.110)

To assess the impact of the rotation, the authors compute the Hessian of the change,

∂2

∂θi∂θj
〈δa(`)|δa(`)〉= 〈a(`)|J iJj |a(`)〉= Aij , (1.111)

using which the Rayleigh-Ritz variation provides the understanding that the maximum rota-

tion occurs along the eigenvectors of the tensorAij , which are naturally the principal axes of

the spherical harmonic coefficients considered in multipole space. Further, using the notion

of a linear map or a wavefunction [232], a vector factorisation,

ψkm(`) = 1√
`(`+ 1)

〈`,m|Jk|a(`)〉, (1.112)

helps compare the various spin-1 representation factors of a vector across differentmultipoles.

Thus the mapping between ψkm(`) and a`m can be obtained as,

ψkm(`) = 1√
`(`+ 1)

∑̀
m′=`
〈`,m|Jk|`,m′〉〈`,m′|a(`)〉 = ∑̀

m′=−`
Γkmm′a`m′ , (1.113)

where, the coefficient matrix,

Γkmm′ =
1√

`(`+ 1)
〈`,m|Jk|`,m′〉, and, a`m = ∑

km′
Γmm

′
k ψkm′(`), (1.114)

such that, Γmm
′

k = 1√
`(`+ 1)

〈`,m|Jk|`,m′〉= Γkmm′ . (1.115)

The behaviours of ψkm(`) and hence a`m under a rotation are

ψkm→ ψk
′
m′ =Rkk

′
(1)Rmm′(`)ψkm, (1.116)
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a`m→ a′`m = Γmm
′

k Rkk
′
(1)Rmm′(`)ψkm =Rmm′(`)a`m′ . (1.117)

A standard invariant obtained from the product of ψkm is ∑mkψ
k
mψ

k∗
m = ∑

ma`ma
∗
`m. The

quantities ψkm represent the decomposition of a(`) as a unique sum of outer products of a

basis vector eα (spin-1 representation) with a basis multiplet uα (spin-` representation). The

expansion can be written using singular value decomposition:

ψkm(`) =
3∑

α=1
eαkΛαuα∗m . (1.118)

These angular values Λα are rotationally invariant with respect to the k and m indices.

Additionally they are invariant under the higher order symmetry of independent rotations

corresponding to the SO(3)×SO(3) group. Diagonalisation of the Hermitian matrices

helps provide the requisite decomposition,

(ψψ†)kk
′
(`) =∑

m
ψkm(`)ψk

′∗
m (`) =∑

α
eαk (Λα)2eα∗k′ , (1.119)

(ψψ†)mm′(`) =∑
k
ψk∗m (`)ψkm′(`) =∑

α
uαm(Λα)2uα∗m′ . (1.120)

The orthonormality condition for these basis vectors is∑k e
α∗
k eβk = δαβ ,

∑
mu

α∗
m uβm = δαβ .

Moreover, as the (Λα)2 are eigenvalues of hermitian matrices, they are expected to be real

and positive, and thus, one considers Λα > 0 as the sign convention for eα. The set of eα

and uα form preferred frames for the vector components of ψ. In a preferred frame common

to both these basis vectors, the matrix ψkm can be seen to be diagonal in form with its three

invariant singular eigenvalues being Λα, and hence Λδαβ is known as the singular value

matrix. For detection of violations of isotropy, the following matrix is considered (with Tr

denoting trace),

Aij(`) = 1
`(`+ 1)Tr

(
J i|a(`)〉〈a(`)|Jj

)
,

Aij = ∑
m
ψim(`)ψj∗m (`) =∑

α
eαi (`) [Λα(`)]2 eα∗j (`). (1.121)

Assuming SI and using the orthogonality of the angular momentum operators, we arrive at

〈Aij(`)〉= C`
`(`+ 1)Tr

(
J iJj

)
= C`

3 δij . (1.122)

The assumption of isotropy indicates that there must be no preferred eigenvector, and hence

53



the eigenvalues must be closely spaced in value (≡
√
C`
3 ). The most anisotropic case

corresponds to that of a single preferred direction, with only one singular value carrying the

full power, while the other two are zero. Then the a`m’s can be written as the product of a

vector e(1), and a multiplet u(1), thus forming a ‘pure’ state. However, if all the eigenvalues

are degenerate (the isotropic case), then the matrix is a multiple of the unit matrix I, given

by the sum of outer products of the frame vectors, i.e., I =∑
α |eα〉〈eα|.

The tensor power entropy is defined in the following manner. Recognising that ρkk
′ =

(ψψ†)kk′ is proportional to a 3D-space density matrix, and that the proportionality constant

itself is the power, the normalised form of the density matrix can be written as, ρ̃kk
′ =

(ψψ†)kk
′∑

j(ψψ†)jj
, and the associated entropy as originally given by von Neumann [279] for a

normalised Hermitian matrix ρ̃ is

S = Tr(ρ̃ log (ρ̃)) =−∑
α

(Λ̃α)2 log (Λ̃α)2, (1.123)

which provides the constraint, 0≤ S ≤ log (3). The eigenvalues are also normalised to sum

to one, as (Λ̃α)2 = (Λ)2∑
α′(Λα

′)2 , and hence, Tr(ρ̃) = 1. Thus the entropy is zero for a pure

state, and additionally, it adheres to the expectations of rotational invariance, positivity, and

additiveness for independent subsystems under investigation.

Further, using the previously established formalism, the authors of this work explored

the concept of alignment of the power tensor across different multipole classes, by using the

principal eigenvector ẽ(`) corresponding to the largest eigenvalue for any `. Following from

Equation (1.122), we understand that the set of all the (normalised) principal frame vectors

will symmetrically span a unit sphere due to isotropy. However, when anisotropy is present,

these vectors will be preferentially directed along some axis, or will tend to lie in a certain

preferred plane. To study such deviations, the following matrix is constructed,

Xij(`max) =
`max∑
`=2

ẽ`i ẽ
`
j , (1.124)

the eigenvalues of which help investigate the shape of such a bundle of principal eigenvectors,

considered together for the multipole range `∈ [2, `max]. After constructing a density matrix

from X , the equation for entropy (1.123) can be used to quantify the extent of adherence

to isotropy. This directional entropy is independent of the the power entropy since it does
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not utilise the singular values extracted from the CMB data. Isotropy is confirmed only for

SX ∼ log (3), whereas an unusually low value of SX indicates a signature of anisotropy.

Another quantity formulated by the authors of this work is the traceless power tensor,

Bij = Aij− 1
3Tr(A(`))δij (1.125)

which compares the alignment inclusive of the weights due to singular values from data.

The eigenvectors of A and B are the same. A useful statistic associated with the tensor B is

Y (`,`′) = Tr(B(`)B(`′))√
Tr(B(`)B(`))

√
Tr(B(`′)B(`′))

, (1.126)

which gives the correlation between two angular momentum classes. Hence in the isotropic

case, the correlation between dissimilar modes should vanish or Y (`,`′) = δ``′ .

On analysing the real CMB data, in the form the foreground cleaned CMB data of the

WMAP-ILC map, the authors found that the power entropy for full sky case, is highly

unlikely (. 5% of simulated maps exhibit such power entropy) for ` = 6,16,17,30,34,40.

Additionally, the principal axes of the power tensor for `= 3,9,16,21,40,43 align unusually

(p-values . 5%) with that of the quadrupole. Further, the principal axis of X matrix for

` ∈ [2,50], is well aligned with the principal axes of the quadrupole and octupole from their

power tensor matrices, and all of which are aligned in the direction of the Virgo supercluster.

Thus the authors conclude that the alignment issues or violations of isotropy are not confined

to low ` only but extend to a broader range of multipoles. A plot of the Y matrix describing

correlations validate these findings. Moreover, the authors showed with a random CMBmap

to which was added simulated synchrotron contamination (at 23 GHz, and at 2% of the actual

strength), that such a map produces a principal axis for X in the galactic plane, quite unlike

the preferred directions of alignment observed in the WMAP-ILC map. This weakens the

possibility of residual contamination being causative of the detected signals.

1.8.3 Finding preferred directions and alignments

Deviations from isotropy as discernible in the correlations of ∆T (n̂) or the asymmetries in

power must have arisen from preference of directions in the CMB 2-sphere itself. Hence

methods to directly detect the same warrant our attention. In this subsection, we review a
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few well known studies of unusual alignments and preferred directions in the real CMB.

1.8.3.1 Maximisation of angular momentum for largest scale modes

A technique developed in the work of [78] helps estimate the vector components of the

preferred direction or axis for a given multipole. This was done to assess the quadrupole and

octupole of the foreground cleaned CMBmap fromWMAP, because the authors of this work

observed that the both the quadrupole and octupole components are very planar in structure,

that is, the centres of their hot and cold spots seem to be highly aligned along some specific

planes in either case. Further they noticed that the normals to these planes for `= 2 and `= 3

appear to be very well aligned with each other, whereas in the isotropic Gaussian random

case of fluctuations, such specific alignments or planarity are not expected.

Expressing the temperature fluctuation as a wavefunction, i.e, ∆T (n̂) = ψ(n̂), it is

possible to find an axis n̂, for which the angular momentum dispersion,

〈ψ(n̂)|
(
n̂ · ~L

)
|ψ(n̂)〉=∑

m
m2|a`m(n̂)|2, (1.127)

can be maximised. The a`m(n̂) represents the spherical harmonic coefficients of a CMB

map rotated to a coordinate system for which the ẑ-axis and n̂ coincide. The procedure

of maximisation is carried out as follows. Corresponding to maps at a HEALPix [117]

resolution of nside = 512, the expression (1.127) is evaluated for n̂’s of all the pixel centres.

The n̂ for which the quantity is maximum to within a spacing of half a pixel (∼ 0.06◦)

is noted. As regards the rotation of the maps, alternatively, the a`m’s are transformed to

different coordinate systems by using the Wigner’s formula. The values of the components

corresponding to the preferred axes of the quadrupole and octupole are

n̂2 = (−0.1113,−0.5055,0.8556) , n̂3 = (−0.2459,−0.3992,0.8833) , (1.128)

each of which approximately point towards the Virgo supercluster with the value of n̂2.n̂3 =

0.9849. The statistical independence of the quadrupole and octupole n̂’s dictates that n̂2 · n̂3

must be uniformly distributed in [−1,−1], or that |n̂2 · n̂3| is uniformly distributed in [0,1].

Hence the chance of occurrence of the observed alignment is once in 1
1−0.9849 ≈ 66 times.

The authors found that the planarity of the quadrupole is not as pronounced as that of the
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octupole. They quantified the statistical significance of the latter with help of the t statistic,

t= max
n̂

|a3,−3(n̂)|2 + |a3,3(n̂|2)∑3
m=−3 |a3,m(n̂)|2

, (1.129)

which estimates the amount of power of the octupole that can be ascribed to the contributions

from |m|= 3. They found that for the WMAP cleaned map, t= 94%. Besides, comparisons

with a large number of simulated maps based on isotropic Gaussian random a`m’s revealed

that only 7% of such maps exhibit values of t larger than that from WMAP TOH [271] map.

Another statistic , i.e., the angular momentum dispersion relative to the total power,

ψd = 〈ψ|(n̂ ·
~L)2|ψ〉

〈ψ|ψ〉
, (1.130)

provides a similar statistical significance of the effect of planarity of the octupole, whereas

that of the quadrupole is rendered insignificant.

1.8.3.2 Multipole vectors

With the previous formalism, unusual features with respect to the quadrupole and octupole

were identified. However, to extend such analyses to all multipoles, and to associate vectors

with each of the multipoles, a novel mathematical approach was prescribed in the paper

[63]. The authors of this work introduced ` vectors {v̂`,i|i = 1, ...`}, and a scalar A(`) to

characterise any multipole ` of the temperature fluctuations given by

f`(n̂)δT`(n̂)
T0

= ∑̀
m=−`

a`mY`m(n̂). (1.131)

Here, f`(n̂) can be represented by a symmetric and traceless rank-` tensor Fi1,...,i` (ik =

1,2,3), and can be formed using outer products of the proposed ` unit vectors v̂`,i and the

scalar A(`). These vectors being headless facilitate the absorption of any associated sign

within the scalar A(`). The Cartesian representation of the dipole, Y1,0 → ẑ, Y1,±1 →

∓ 1√
2 (x̂± ŷ), helps express it in terms of a multipole vector as follows,

1∑
m=−1

a1,mY1,m(n̂) = A(1)
(
v̂(1,1)
x , v̂(1,1)

y , v̂(1,1)
z

)
· (sinθ cosφ,sinθ sinφ,cosθ)

= A(1)v̂(1,1) · ê, (1.132)
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where, the radial unit vector in spherical polar coordinates is given by ê. For a real valued

function, the various components can be found out to be,

v(1,1)
x =−

√
2areal(1,1), v(1,1)

x =
√

2aimag(1,1) , v(1,1)
z = a(1,0), A(1) = |~v1,1|. (1.133)

Extending this procedure to higher multipoles, one may write,

∑̀
m=−`

= a`mY`m(n̂)≡ A(`)(v̂(`,1) · ê)....(v̂(`,`) · ê). (1.134)

Such a decomposition is justified on the grounds that after imposing the conditions of reality

on the a`m, the ` unit vectors and the scalar A(`) contain the same number of degrees

of freedom as those of the a`m, i.e., (2`+ 1), considering that all the components of the

right hand side of the previous equation (1.134) are not completely independent. Generally,

the vectors are extracted one at a time from Equation (1.134) in a procedure elucidated

as follows. A vector v̂(`,i) (whose components are v̂(`,i)
i1 ) must be found, alongwith a

symmetric and traceless tensor with the rank-(`− 1). Here the index i1 runs over three

components x,y,z or 1,0,−1. Following this, a matrix of the form a`,1i2,...,i` , having a shape

of 3×3×3...×3 (taken (`−1) times) can be constructed to represent a(`,1). To denote the

degrees of freedom (2`−1 in number) for this quantity, the symbol used instead is a(`,1)
`−1,m,

with m = −(`− 1), ...,(`− 1). In the next step, from the matrix denoted by a(`,1), the

vector v̂(`,2) and the symmetric traceless tensor a(`,2) (of rank (`−2)) are extracted. Thus,

recursively, the method described is repeated on the remnant tensors which are symmetric

and traceless, until the full set of ` vectors v̂(`,i)|i= 1, ..., ` have been ascertained. Thus, in

the last step of such a procedure, when the penultimate vector is being extracted, namely

v̂(`,`−1), then the leftover symmetric and traceless tensor is a(`,`−1), which is the product of

the scalar A(`) and the vector v̂(`,`). The recursion relation used is

Y1,jY`−1,m− j = C
(`,m)
j Y`,m+D

(`,m)
j Y`−2,m, (1.135)

with j taking the values −1,0,1, and where the symbols C(`,m)
j ,D

(`,m)
j are given by,

C
(`,m)
0 =

√
3

4π

√√√√ (`−m)(`+m)
(2`−1)(2`+ 1) , C

(`,m)
±1 =

√
3

8π

√√√√(`±m−1)(`±m)
(2`−1)(2`+ 1) , (1.136)

58



D
(`,m)
0 =

√
3

4π

√√√√(`−m−1)(`+m−1)
(2`−3)(2`−1) , D

(`,m)
±1 =

√
3

8π

√√√√(`∓m−1)(`∓m)
(2`−3)(2`−1) . (1.137)

For a certain multipole, the vectors can be extracted using the relation,

∑̀
m=−`

a`,mY`,m =
(`−1)∑

m′=−(`−1)

1∑
j=−1

v̂
(`,1)
j a

(`,1)
(`−1,m′)Y1,jY`−1,m′−

(`−2)∑
m′′=−(`−2)

b
(`,1)
m′′ Y`−2,m′′ ,

(1.138)

given that |v̂(`,1)|= 1, and the sum overm′′ ensures that the trace of the rank-(`−1) matrix is

subtracted off. With the help of the recursion relation (1.135), one obtains (4`−1) quadratic

equations which are coupled, and can be solved for v̂(`,1)
j ,a

(`,1)
`−1,m−j and b

(`,1)
m′′ which constitute

4`−1 unknowns. Consequently, one finds,

a`m =
1∑

j=−1
C

(`,m)
j v̂

(`)
j a

(`,1)
`−1,m−j , b

(`,1)
m′′ =

1∑
j=−1

D
(`,m′′)
j v̂

(`)
j a

(`,1)
`−1,m′′−j . (1.139)

The above expressions for a`m and b(`,1)
m′′ constitute (2`+ 1) and (2`− 3) equations, re-

spectively, which must be solved along with one equation for |v̂(`)| = 1, thus giving us a

total of 4`− 1 equations as before. These equations, as noted by the authors can be solved

numerically. The components of b(`,1)
m′′ being functions of the v̂(`,1)

i1 and a(`,1)
`−1,m−i1 are not

independent. In conclusion, the general procedure for ascertaining these multipole vectors

is as follows: firstly the v̂(`,1) and a(`,1)
`−1,m are computed from a given a`m, and this process is

continued to obtain the v̂(`,2) and a(`,2)
`−2,m, and so on. A repetition of this sequence of steps

ensures that finally, the a(`,`−2)
2,m will be found, along with the vectors v̂(`,`−1) and v̂`,`.

Additionally, the authors of this work noted that pixel noise limits the accuracy of

estimating these multipole vectors. It depends on the number of times a point in the sky is

observed, and is given by σpix ∼ σ0√
Nobs

for WMAP , where σ0 is the noise per observation,

and per pixel number of observations are Nobs. Then, the full-sky noise covariance is

〈a`ma∗`′m′〉= Ω̂pixσ
2
pixδ``′δmm′ . (1.140)

Here the solid angle subtended by each pixel is assumed to be equal to Ω̂pix. The authors

considered the WMAP V-band map parameters as the standard for pixel noise given by√
ˆΩpixσpix = 2.7×10−4 mK. In order to ascertain the accuracy of estimation of themultipole

vectors, they used Gaussian distributed noise with standard deviation σa`m =
√

ˆΩpixσpix,

which was added to the statistically isotropic Gaussian random a`m’s of maps conforming to
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the standard model of Cosmology. They found that the multipole vectors can be ascertained

within ±1◦ order when noise was added to the map, which is within the order of the pixel

noise. However, the authors noted that in the case of larger strength of noise (σa`m &

10
√

Ω̂pixσpix), the deterioration in accuracy renders the multipole vectors inappropriate for

representation of the CMB anisotropies. The effect is most pronounced for higher multipoles,

since the number of vectors being estimated is large.

Considering the multipole vectors to be headless, the magnitudes of the following prod-

ucts were investigated by the authors for detecting violations of SI.

1. “vector-vector” products: These are dot products of vectors such as
∣∣∣v̂(`1,i) · v̂(`2,j)

∣∣∣,
where `1 6= `2, and v̂(`1,i) is the ith vector for `1, and v̂(`2,j) is the jth vector for `2.

They are `1`2 in number and quantify the orientation of the vectors.

2. “vector-cross” products: These are a total of `1`2(`2−1)/2 dot products of the form∣∣∣v̂(`1,i) ·
(
v̂(`2,j)× v̂(`2,k)

)∣∣∣∣∣∣v̂(`2,j)× v̂(`2,k)
∣∣∣ , where, j 6= k, (1.141)

representing the orientation of a plane with a vector.

3. “cross-cross” products: As a total of `1`2(`1−1)(`2−1)/4 dot products of the form∣∣∣(v̂(`1,i)× v̂(`1,j)
)
·
(
v̂(`2,k)× v̂(`2,m)

)∣∣∣∣∣∣(v̂(`1,i)× v̂(`1,j)
)∣∣∣ ∣∣∣(v̂(`2,k)× v̂(`1,m)

)∣∣∣ , where, i 6= j,k 6=m, (1.142)

these “cross-cross” products quantify the orientation of planes.

4. “oriented area” products: These are a total of `1`2(`1− 1)(`2− 1)/4 dot products

representing the orientation of areas, and given by

∣∣∣(v̂(`1,i)× v̂(`1,j)
)
·
(
v̂(`2,k)× v̂(`2,m)

)∣∣∣ , where, i 6= j,k 6=m. (1.143)

They are unnormalised versions of the previous “cross-cross” products.

In order to compare these statistics from WMAP data against Monte Carlo simulated

maps, the authors considered rank-ordering of the products of each type. This is done because

one does not specifically know which ith vector of a certain `1 is obtained upon computation,

and neither is such information carried in the dot products. They simulated 105 maps with
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isotropic, Gaussian random spherical harmonic coefficients, to which the inhomogeneous

noise based on WMAP V-band data was added. After ascertaining multipole vectors for

some `1 and `2, the Nd dot products corresponding to any one the categories above are

computed, and rank ordered. Thus there will be Nd histograms with 105 elements each.

Thereafter the likelihood corresponding to the WMAP map is

LWMAP = ΠNd
k=1

Nk,WMAP

Nk,max
, (1.144)

where, Nk,WMAP is the value of the ordinate for the kth histogram for the kth product

from WMAP after rank-ordering, and Nk,max is the maximum value of the kth histogram.

Similarly, such likelihoods ((1.144)) are also computed for another set of 5× 104 Gaussian

random and statistically isotropic realisations of a`1m and a`2m. Further their multipole

vectors are computed and the product statistics are evaluated. Then the likelihood LWMAP

is rank-ordered among the 5×104 likelihoods from simulated maps to obtain the rank,R`1,`2

for WMAP, and the rank order as a fraction (for e.g., if the rank is 800 out of 1000, then the

rank order is 0.9). This entire procedure is repeated for several such pairs of `1 and `2.

The rank quantifies the probability of the statistics being consistent with the null hypoth-

esis of SI and Gaussianity. For obtaining the confidence level another test was considered,

wherein the rank orders of various multipole pairs (Nr in number), were evaluated as ui

(∈ [0,1]), arranged in descending order, and the following statistic was computed:

Q(u1, ...,uNr) =Nr!
∫ 1

u1
dv1

∫ v1

u2
dv2...

∫ vNr−1

uNr

dvNr , (1.145)

which represents the probability that the largest rank is greater than u1, the second largest rank

is greater than u2 and so on, until the smallest rank is greater than uNr . The fraction of maps

with Gaussian random a`m’s possessing a value of Q smaller than that from WMAP was

computed. The authors found similar results for the TOH cleaned and Weiner filtered maps

[271] and the WMAP-ILC [32] map, hence they presented those only for the WMAP-ILC

map. The multipoles considered were only `1, `2 ∈ [2,8], and for the vector-cross products,

both combinations (`1, `2) and (`2, `1) were taken care of since they are distinct entities.

Among the cross-cross ranks, they observed that for `1 = 3, `2 = 8, the rank order is

0.99988, which is highly significant. Further the previously known quadrupole-octupole
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alignment effect was corroborated with the new multipole vector analysis, using vector-cross

products for (2,3) and (3,2), the cross-cross product for (2,3), and the oriented area products,

all of which had considerably low ranks (. 0.05). Additionally, ranks for some oriented

areas showed unusual results, such as, out of 21 ranks, a total of 2 were> 0.99, 5 were> 0.9

and 8 are > 0.8. With respect to 104 simulated maps, the WMAP Q value was compared,

and it was seen that only 107 of these maps possessed aQ value lower than that fromWMAP.

Variations of the multipole range under scrutiny could have affected the findings. Hence

the lower limit `min was increased and the change in probability for `min = 3,4 were

1%,5.6%, respectively, indicating a slight weakening of the signals of statistical anisotropy.

Similarly when `max was decreased, some diminution of the significance of the anomalies

was seen, but not a complete disappearance. Further, increasing `max to 12 introduced

more unusually high ranks. These indicate that the findings are not altogether dependent

on the specific range of multipoles considered, but are definitely most visible in the range

` ∈ [2,8]. Moreover, the authors corroborated the persistence of these unusual signals even

when synthetic noise or small foreground contamination was added to the simulated CMB

maps. Besides, this formalism, as noted by the authors is most suitable for full-sky maps,

whereas for partial-sky maps [64] very large errors are introduced since multipole vectors

are sensitive to the partial sky mode couplings intrinsic to the a`m’s themselves, which may

lead to weakening of correlations observed previously in the full sky case. Hence partial sky

multipole vectors may be used primarily to assess consistency with full-sky results.

1.8.3.3 The axis of evil

The notion of a preferred direction, known as the “Axis of Evil” (AoE) was proposed by

[167]. The authors of the work utilised the statistic r` defined in an earlier work (Equation

(1.106)). The information provided by this statistic is three-fold: (a) the direction ~n`, (b)

the shape of the power denoted by m` and (c) the ratio r` itself, which quantifies the power

absorbed by the modem` in the direction of ~n`. The statistic is unambiguous in determining

these quantities, except when `= 2 has a planar structure, which corresponds to eitherm= 2

or m = 1 modes having their axis ~n2 rotated by 90◦. For this convention, the multipole
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and its azimuthal number are taken to be `= 2,m= 2. Additionally the authors studied the

angles between any preferred axes of subsequent multipoles.

The authors analysed three maps: the power equalised map of [39], the WMAP ILC map

[91], and the Wiener filtered map [271]. Using the cleaned and Wiener filtered maps, the

authors reproduced the results of quadrupole-octupole alignment along the AoE which is

≈ (b, l) = (60,−100) in Galactic coordinates. They also observed that `= 5 is approximately

concentrated as a mode of m = 3, aligned with the (b, l) = (50,−91) axis. The multipole

alignments seen for ` = 2, ...,5 do not extend towards higher `’s. Further, the authors

examined the angles between various multipoles ` = 2, ...,5 and found that on an average

these are never more than 20◦ apart. On comparing the same with Monte Carlo simulations

obeying Gaussianity and SI, they could conclusively reject the null hypothesis of isotropy

by 99.9% confidence for these angular scales. The authors found that r` is consistent with

Gaussianity, and only some features like the power for ` = 3 being concentrated in m = 3

mode appears to be anomalous at the 93% confidence level when one specifically probes the

unusual planarity of the multipole. Otherwise the authors noted that a majority of simulated

maps have power concentrated in a singlem for a given `. They conducted a scrutiny of the

phase correlations and found that the ` = 3 and ` = 5 modes have a very close alignment

of their phases rejecting isotropy at 94.5% confidence. This finding along with the unusual

alignments for `= 2, ...,5 increases the rejection confidence to about 99.995%.

1.8.3.4 Directions associated with features of parity

In their paper [208], the authors defined some statistics to compute preferred directions

associated with the parity asymmetry feature of the CMB. To extract the symmetric and

antisymmetric functions for ∆T (n̂), they considered the following,

∆T±(n̂) = ∑̀ ∑̀
m=−`

a`mΓ±(`)Y`m(n̂), (1.146)

such that Γ+(`) = cos2 π`
2 and Γ−(`) = sin2 π`

2 . We note that Y`m(n̂) = (−1)`Y`m(−n̂). The

theoretical two-point angular correlation function,

Cth(Θ) = 〈∆T (n̂)∆T (n̂′)〉=
∞∑

`=`min

(2`+ 1)
4π Cth` P`(cos(Θ)), (1.147)
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can be rewritten for the largest angular separation Θ = π, as

Cth(π) =
∞∑

`=`min

(2`+ 1)
4π Cth` (Γ+(`)−Γ−(`)). (1.148)

Further, a ratio which helps estimate the contribution of even multipoles in the correlation

function to that of odd multipoles is,

g(`) =
∑`
`′=`′min

(2`′+1)
4π C`′Γ+(`′)∑`

`′=`′min
(2`′+1)

4π C`′Γ−(`′)
. (1.149)

Here, `′min can be equal to 1 or 2. Thus, using this, the equation (1.148) can be recast as

C(π) = P−(`) [g(`)−1] , where, P± = ∑̀
`′=`′min

(2`′+ 1)
4π C`′Γ±(`′), (1.150)

which means that the correlation C(π) = 0, when g(`) = 1. By plotting the theoretical

correlation function for a theoreticalCth` , and the functionC(π) forWMAP 7-year foreground

cleaned map, the authors noted that generally, odd-parity is always favoured for `′min ≤ 15 in

real CMB. Theoretically the chance to be parity asymmetric with g(`) > 1 when `′min = 2,

is favoured slightly, whereas there is minimal chance of g(`) < 1. However, for WMAP 7

year data, C(π)< 0 at 95% confidence level (C.L.). The statistically isotropic and Gaussian

random a`m’s ensure that the correlation function C(Θ) corresponding to the actual Cth` and

pseudo-C` (Ĉ`) are both rotationally invariant. Therefore in order to identify the direction

associated with the parity asymmetry, the authors formulate the statistic,

D̂(`) = 1
(2`+ 1)

∑̀
m=−`

|a`m|2 (1− δm0) . (1.151)

Thus, the difference between the rotationally invariant and variant counterparts is

∆(`) = D̂(`)− Ĉ`
Ĉ`

= −a2
`0∑

m |a`m|2
. (1.152)

This difference is of the order ∼ 1
2` , hence it is most prominent for multipoles ` = 2,3 and

the contributions would be lesser than 10% for `≥ 5.

If the Galactic coordinate system is rotated by Euler angles (χ,ξ,ψ), then the spherical

harmonic coefficients a`m(χ,ξ,ψ) in the rotated frame are given by

a`m(χ,ξ,ψ) = ∑̀
m′=−`

a`m′D
(`)
mm′(χ,ξ,ψ). (1.153)

The Galactic coordinate system corresponds to (χ,ξ,ψ) = (0,0,0), andD(`)
mm′ is the Wigner
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rotation matrix. Using these a`m(χ,ξ,ψ)’s, one may define the corresponding rotationally

variant power spectrum D̂(`;χ,ξ,ψ). Additionally, since the D̂(`;χ,ξ,ψ) are independent

of the angle χ, a vector can be considered for the effective Euler angles q̂ ≡ (ξ,ψ), as χ= 0.

The q̂ vector labels the direction of the z−axis in the rotated coordinate system, such that in

the Galactic coordinate system, the polar coordinates for this direction are (ξ,ψ). In order

to define a rotationally variant parity parameter, the authors used

G(`, q̂) = P+(`)−X+(`, q̂)
P−(`)−X−(`, q̂) , where, X

±(`, q̂) = 1
4π

∑̀
`′=2

a2
`′0(q̂)Γ±(`′),

a2
`0(q̂) = ∑

mm′
a`ma

∗
`m′D

(`)
0m(q̂)D(`∗)

0m′ (q̂) = 4π
(2`+ 1)

∑
mm′

(−1)(m+m′)a`ma
∗
`m′Y

∗
`m(q̂)Y`m(q̂).

(1.154)

Hence the cross terms a`ma∗`m provide the angular dependence of G(`, q̂). The difference

between this parity parameter in rotated coordinates, relative to the unrotated one (1.149) is,

∆g(`) = G(`, q̂)−g(`)
g(`) ' X−(`, q̂)−X+(`, q̂)/g(`)

P−(`) . (1.155)

Since Equation (1.152) states that ∆(`) ∼ O( 1
2`), and it is known that X±(`, q̂)� P−(`),

hence ∆g(`)� 1 for ` > 3. Thus, G(`, q̂) provides us with an amplitude very close to g(`),

but with the additional information of the preferred direction, due to its rotational variance.

On plotting theG(`, q̂) for various ` ∈ [3,22], as a function of the direction q̂, the authors

of this study found that the plots showed similar visual features for `≥ 4 in terms of directions

q̂ for which the parity parameter is minimised. The structural pattern of the G(3, q̂) for the

octupole is slightly different possibly due to its alignment with the quadrupole. An interesting

finding is that the preferred directions q̂ for which the violation of the parity symmetry is

greatest, align very well with the direction of the kinematic dipole for theWMAP 7-year map.

Moreover, the directions q̂ for which the parity asymmetry is the least, are almost normal to

the direction of the kinematic dipole. These results indicate a possible residual contamination

of the WMAP maps with the kinematic dipole which causes the parity asymmetry to appear.

In a different paper [301], six types of statistics were designed to probe the directional

associations of the parity asymmetry feature and the foreground-cleaned maps of SMICA,

NILC, and SEVEM from Planck 2013 release [6] were analysed. The author compared
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the power spectra from these full-sky maps with that from a masked Planck Commander-

Ruler (C-R) map, and showed that the biases affecting the low multipoles due to residual

contamination in thesemaps is low. Moreover, the differences between thesemaps is small for

low ` < 10, but that the biases become relatively prominent for `= 10 and `= 17. Despite this

observation the morphologies of the maps for these individual multipoles remains unaffected

by residual contamination biases. To study the directional characteristics of the CMB parity,

the author defined a new statistic for the rotationally variant power,

D` = 1
2`

∑̀
m=−`

|a`m|2(1− δm0), (1.156)

such that for the Gaussian random a`m’s, one notes that 〈D`〉 = 〈Ĉ`〉 = Cth` . Thus D` is

also an unbiased estimator for Cth` . In its definition, the preferred axis is chosen to be the

z−axis, because of the exclusion ofm= 0 component. Similar to the previous paper [208],

the definition of this statistic in a rotated coordinate system can be expressed as,

D`(q̂) = 1
2`

∑̀
m=−`

|a`m(q̂)|2(1− δm0). (1.157)

Another statistic for power estimation in a rotationally variant form can be written as,

D̃` = 1
(2`+ 1)

∑̀
m=−`

m2|a`m|2, (1.158)

which favours the higherm values, and is therefore useful in searching for planarity of these

modes when m = ±`, whereas the statistic D` contains the same weights for the modes

m 6= 0. Further, the value of D̃` increases rapidly with the multipole number `, due to the

m2 factor. Then this statistic in a general coordinate frame can be expressed as,

D̃`(q̂) = 1
(2`+ 1)

∑̀
m=−`

m2|a`m(q̂)|2. (1.159)

Using these definitions, the six parity parameters or directional statistics are as follows.

1. The first parameter which describes parity asymmetry is

g1(`, q̂) =
∑`
`′=2 `

′(`′+ 1)D`′(q̂)Γ+
`′∑`

`′=2 `
′(`′+ 1)D`′(q̂)Γ−`′

, (1.160)

since g1 < 1 denotes an odd-parity preference, whereas g1 > 1 denotes an even-parity

preference. For any given `, the sky map for this parameter can be constructed using

the directions q̂ corresponding to the various pixels of the CMB map in question.
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2. The second parameter based on the correlation function estimator is,

g2(`, q̂) =
∑`
`′=2(2`′+ 1)D`′(q̂)Γ+

`′∑`
`′=2(2`′+ 1)D`′(q̂)Γ−`′

,

since, C(Θ = π, q̂) =
∞∑
`=2

(2`+ 1)
4π D`(q̂)(Γ+

` −Γ−` ). (1.161)

It measures the contribution of the even `’s to C(π), relative to that of the odd

`’s. Further, as C(π) ∝ g2(`, q̂)− 1, hence g2 > 1 indicates a positive correlation

for the opposite directions, while g2 < 1 accordingly represents an anti-correlation.

Noticeably, the relative weights of the low `’s are higher in g2 as compared to g1.

3. The third parameter, similar to the one introduced in the work [19], is

g3(`, q̂) = 2
`odd−1

`odd∑
`′=3

(`′−1))`′D`′−1(q̂)
`′(`′+ 1)D′`(q̂)

, (1.162)

with the summation is over odd multipoles only (and `odd ≥ 3). It measures mean

deviation from unity, of the ratio of the even ` power to its subsequent odd ` power.

4., 5., 6. The fourth, fifth and sixth parameters are the same as the first, second and third

parameters respectively, but with D` replaced with D̃`:

g4(`, q̂) = g1(`, q̂)|D`→D̃` , g5(`, q̂) = g2(`, q̂)|D`→D̃` , g6(`, q̂) = g3(`, q̂)|D`→D̃` .

(1.163)

The author applied the first three statistics to the data from SMICA, SEVEM and NILC

maps of Planck, and found that for ` ∈ [3,21], and for the highest of odd multipoles, with

directions q̂, the gi < 1 where, i = 1,2,3. Thus the odd-parity preference is seen to be

independent of the choice of the parity parameters used. It is well understood that the D̃` is

quite different fromD`, and due tom2 in D̃` the contribution from the higher `∼ `max takes

precedence. Hence the author applied the last three statistics to ` < 10 for which the parity

asymmetry is most prominent. Again the author found that the gi(`, q̂)< 1 (i= 4,5,6) for the

three CMB maps under study, regardless of the direction q̂. Thus the odd-parity preference

is also independent of the change of the power spectrum estimator from D` to D̂`.

On generating sky maps for these statistics, the author found that the morphologies for

the first three gi(`, q̂)’s were very similar for ` > 3, and the same was seen for the last three
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gi(`, q̂). Further, the author computed the alignments of the preferred directions q̂ with the

kinematic dipole direction of the CMB, and found that the two axes are very close to each

other, in all cases of the parity parameters. Further, the author noted that these directions are

aligned towards the ecliptic plane. To assess if the parity asymmetry direction aligns with

the axes of preference for the quadrupole and the octupole, the author used the statistic,

〈|cosθij |〉=
N∑

i,j=1,i6=j

|r̂i · r̂j |
N(N −1) , (1.164)

where the number of directions being investigated is given by N , and the inner products

r̂i · r̂j are evaluated for pairs of normalised preferred directions of the qudrupole, octupole,

the kinematic dipole and those of the parity asymmetry. For assessing the significance of the

alignments, the values of the statistics from actual CMB data and 105 simulated maps were

compared. The author concluded that the parity asymmetry feature has a preferred direction

which aligns closely with those of the kinematic dipole, quadrupole and the octupole,

indicating that these anomalies may have a common origin.

In order to study the preference of parity asymmetry directions frommasked CMBmaps,

the authors of [57] noted that the spherical harmonic coefficients (ã`m) can be expressed as

ã`m =
∫

∆T (n̂)W (n̂)Y`m(n̂), ã`m = ∑
`1m1

a`1m1K`m`1m1 ,

K`m`1m1 =
√

(2`1 + 1)(2`+ 1))
4π

∑
`2m2

(−1)m(2`2 + 1)w`2m2

×

 `1 `2 `

0 0 0


 `1 `2 `

m1 m2 −m

 . (1.165)

Here, K`m`1m1 is the coupling matrix, and w`m =
∫
W (n̂)Y ∗`m(n̂)dn̂ for the mask W (n̂).

Thus, the partial sky form of D̃` (1.156) and the unbiased estimator D̂` for Cth` read,

D̃` = 1
2`

∑̀
m=−`

ã∗`mã`m(1− δm0), D̂` = ∑̀
′
N−1
``′ D̃`′ , (1.166)
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where,

N``′ = M``′−
(2`′+ 1)

2`
∑

`2`′2m1

√
(2`2 + 1)(2`′2 + 1)

4π ×

 `′ `2 `

0 0 0


 `′ `′2 `

0 0 0



×

 `′ `2 `

m1 −m1 0

×
 `′ `′2 `

m1 −m1 0

w`2m1w`′2m1 , (1.167)

M``′ = (2`′+ 1)∑̀
2

(2`2 + 1)
4π

 `′ `2 `

0 0 0


2

w̃`2 , w̃`2 = 1
(2`2 + 1)

`2∑
m2=−`2

w∗`2m2w`2m2

(1.168)

Thus, the parity asymmetry statistic defined using Equation (1.166) is,

g(`, q̂) =
∑`
`′=2 `

′(`′+ 1)D̂`′Γ+
`′∑`

`′=2 `
′(`′+ 1)D̂`′Γ−`′

. (1.169)

When applying g(`, q̂) on masked maps of the observed CMB, the authors note the several

effects that are likely. For example, due to the loss of information from the masked region of

a map, the unbiased estimator D̂` and its uncertainties might be affected. Additionally the

shape and positioning of the mask may influence how the directional preference manifests.

However, the authors opine that these effects may be minimal if the mask itself is small.

Using Planck 2015 [5] release maps of NILC, Commander, SMICA and SEVEM, the authors

show that the preferred directions are very similar to those of the full-sky case, and they

align closely with those of the kinematic dipole and the preferred axes of the quadrupole

and octupole. Further, the authors conclude that there is negligible influence of residual

contamination and masking on the lowest multipoles (`max . 21) being considered.

In yet another study [20], the authors describe statistics related to the power tensor and

the alignment tensor of Section 1.8.2.4. The power tensor defined by them,

Aij(`) = 1
`(`+ 1)(2`+ 1)

∑
mm′m′′

a`mJ
i
mm′J

j
m′m′′a

∗
`m′′ , (1.170)

provides the notion of an ellipsoid as a map of each multipole with its different eigenvector

strengths denoted by its eigenvalues. Thus, the concepts of axiality, planarity and isotropy of

each multipole can be studied by assessing the ratio of the eigenvalues of this tensor, and any

associated preferred eigenvector. The strength of the anisotropy or axiality of a multipole
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can be measured with the power entropy given as,

Sp =−
3∑

α=1
λα ln(λα), (1.171)

where the λα are eigenvalues of the power tensor after normalisation by the sum of the

eigenvalues. Perfect anisotropy or a single preferred direction is indicated by a value of

Sp→ 0, whereas the case of SI is indicated by λα = 1/3 for all α, i.e., Sp→ ln(3). If the

eigenvectors are given by eiα (i denotes the vector components), and the principal eigenvector

corresponding to the largest λα is ẽi, then for ` ∈ [`min, `max], the alignment tensor is,

Xij(`min, `max) =
`max∑
`=`min

ẽi`ẽ
j
`, (1.172)

where ẽi` is the principal eigenvector of the power tensor for a certain `. If the normalised

eigenvalues and eigenvectors of Xij(`min, `max) are ζα and fα, respectively, then,

SX =−
3∑

α=1
ζα ln(ζα), (1.173)

is the alignment entropy. For uncorrelated principal eigenvectors over an ` range, the

alignment tensor is Xij ∼ δij , and all the ζα become equal. Whereas, when all the principal

eigenvectors are aligned along a single eigenvector for the whole ` range, then, except one

eigenvalue, all ζα→ 0. Thus, similar to the power entropy, a completely uncorrelated case

for SI is represented by SX → ln(3), while that of maximal correlation is represented by

SX → 0. The principal eigenvector of the alignment tensor Xij(`min, `max) represents the

collective alignment vector for the set of multipoles under consideration, denoted by f̃α.

Further using the Planck 2015 CMBmap cleaned with the Commander algorithm, the au-

thors found that the collective alignment axes of the odd and even multipoles exhibit different

behaviours. The odd-parity preferred anisotropy axes are not highly concentrated together,

but definitely directional as indicated by low values of the alignment entropy. Whereas for

the even parity multipole alignment axes, the authors note that those are well concentrated

along the kinematic dipole direction. Further the alignment entropy SX indicates uncorre-

lated isotropic distribution of the principal eigenvectors of even multipoles. Whereas, SX is

unusually low for oddmultipoles. 27, beyondwhich the effect is insignificant. If a few of the

low multipoles (` ∈ [2,7]) are excluded, then the anomaly ceases to exist. When `max = 61
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is fixed, and `min is varied, the lowest p− value for SX occurs at `&26. Additionally, as the

axes for ` > 27 lie close to the Galactic plane, this indicates that residual Galactic bias could

be causing the same. Moreover, the authors found that the axis for even mirror parity from

Planck 2015 results [7] and the collective axes of even multipoles as computed by them for

large angular scales point broadly towards the kinematic dipole. Whereas, the axes of odd

mirror parity and that of the low odd multipoles associated with the hemispherical power

asymmetry from Planck 2015 results lie closely within the region demarcated by odd multi-

pole alignment axes computed by the authors. These findings illustrate a possible common

origin of the various parity symmetry or asymmetry features of the CMB.

1.8.3.5 Preferred direction leading to the hemispherical power asymmetry

We have discussed about the hemispherical power asymmetry (HPA) in Section 1.8.2.1, as

seen in the actual CMB, which is a prominent SI violating feature. In order to hypothesise a

possible mechanism for the occurrence of features which spontaneously break isotropy in the

CMB, the authors of the paper [116] suggested additive and multiplicative contributions to

the temperature fluctuations. Of these, authors of the study [94] proposed the use of a dipole

direction modulating the temperature fluctuations as a highly probably method to introduce

the HPA. They performed both frequentist and Bayesian analyses to endorse their claims.

The model of the CMB temperature fluctuations used by the authors [94] is,

Td(n̂) = Ts(n̂)[1 +Tf (n̂)] +Tn(n̂), (1.174)

where the Ts(n̂) denotes a Gaussian random SI obeying field with the power spectrum Cth` ,

the dipole modulation field is Tf (n̂) which has a modulus less than one, and Tn(n̂) is the

instrumental noise. The Td(n̂) remains a Gaussian random field, with a covariance matrix,

T̃s(n̂, m̂) = [1 +Tf (n̂)]Ts(n̂, m̂)[1 +Tf (m̂)], Ts(n̂, m̂) = 1
4π
∑̀(2`+ 1)Cth` P`(n̂ · m̂).

(1.175)

Considering both the instrumental noise and possible contamination from foregrounds, the

complete covariance matrix and the log likelihood (up to an irrelevant constant) are,

C(n̂, m̂) = T̃s(n̂, m̂) +N +F, −2logL= T Td C
−1Td+ log |C|, (1.176)
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respectively, and where N , F represent the noise and foreground covariance matrices that

depend on the processing of data. Then the posterior distribution P (θ|d), where the θ are the

set of all free parameters, needs to be quantified for the Bayesian approach. These parameters

depend on either the isotropic or anisotropic modulation part of the CMB fluctuations.

The isotropic component of the CMB is modelled as, Cth` = q
(
`
`0

)n
Cfid` . Here, the free

amplitude is q and the tilt in the power spectrum is n, while the `0 is a pivot scale in ` space,

and Cfid` is a fiducial model of the power chosen as per [134]. The modulation field itself is

modelled in terms of a preferred direction p̂, the amplitudeA, Tf (n̂) =A(n̂ · p̂). The authors

choose p̂ to be uniform over the 2−sphere while using flat priors for all other parameters.

The amplitudeAwas chosen to be≤ 0.3, while q was taken∈ [0.5,1.5], and the tilt was taken

∈ [−0.5,0.5]. The choices, as noted by the authors, are sufficiently generous to include most

of the non-zero portions within the likelihood. Thus, the posterior distribution is written as,

P (q,n,A, p̂|Td)∝ L(q,n,A, p̂)P (q,n,A, p̂), (1.177)

which can be mapped out using the Markov Chain Monte Carlo (MCMC) process. The

authors used a Gaussian proposal density for q,n,A, and a uniform one for p̂. Thereafter,

the mean likelihood over the prior volume, known as the Bayesian evidence,

E ≡ P (Td|H) =
∫
P (d|θ,H)P (θ|H)dθ, (1.178)

estimates how good the model is. For two contesting models, H0, and H1, the difference,

∆log(E) = log(E1)− log (E0) determines if the evidence forH1 is substantial (∆log(E)>

1), or strong (∆log(E)> 2.5). Additionally, the authors computed the maximum likelihood

estimate of parameters from isotropic simulated CMB maps for a frequentist analysis.

The authors analysed two versions of the WMAP 3-year release of data, namely, the

template corrected frequency band maps of Q,V,W and the ILC map, at a resolution such

that the pixel sizes were∼ 3◦.6, and for `. 40, since the maps were smoothed by a Gaussian

beam of FWHM= 9◦. They used the WMAP Kp2 mask directly, and after extending it by

9◦ in all directions and manually removing some pixels near the galactic region if they are

larger than noise in the difference maps between two channels. The former was used for the

ILCmap, and the latter for the other maps. The noise covariance is uniform, i.e,Nij = σ2
nδij .
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The authors reported the best-fit dipole axis and its amplitude of modulation, in addition

to the maximum likelihood difference and ∆log(E) for both modulated and unmodulated

models. The authors found that the best-fit dipole axis for modulation points towards

(l, b) = (225◦,−27◦), and its amplitude is 0.114, for the WMAP-ILC map. They assessed

the probability of finding such a high modulation amplitude in the isotropic simulations, and

found it to be ∼ 1%, with ∆log(E) = 1.8. They reported that these results are independent

of the data set or the sky coverage, since the Q band map which is not very reliable given

its relatively larger foreground residuals, provides a frequentist confidence of 98.7%, and

∆log(E) = 1.5. Further the authors showed that the dipole axis reported in [93], and those

computed in their work, agree within 2σ, thus ensuring the stability of the findings against

the method of statistical estimation, the data sets used, and the whole process of the analysis.

In a subsequent work, authors of [140] similarly analysed higher resolution maps of

WMAP 5-year data, with pixel sizes ∼ 1◦.8, smoothed using a Gaussian beam of FWHM=

4◦.5. The authors found that for ` ≤ 64 and the ILC map with a galactic cut as defined

by the KQ85 mask, the amplitude of modulation is 0.072± 0.022 at 3.3.σ, and the dipole

axis points towards (l, b) = (224◦,−22◦)± 24◦. All these results are consistent to within

the confidence region of 1σ. Further, the Bayesian evidence difference is ∆log(E) = 2.6,

which indicates a strong evidence for the anisotropic modulated feature.

A different technique [11] employs local variances of maps inside discs, since the dipolar

structure manifests in a smaller resolution map of such local variances. The data used by

authors of this work are the WMAP 9-year foreground-reduced and co-added maps from the

V and W bands. As for Planck 2013 release, they presented results for SMICA and noted

that consistent results exist for C-R, NILC, and SEVEM maps. They used the KQ85 mask

for WMAP maps, and the U73 mask for Planck maps. For comparing with WMAP maps,

they simulated 103 CMB-plus-noise maps based on the WMAP 9-year best fit to the ΛCDM

power spectrum [136]. The Gaussian uncorrelated noise was ascertained by the number of

observations per pixel. As for the Planck maps, they used 103 “Full Focal Plane” (FFP6)

simulations from Planck, which include the instrument and noise characteristics besides

lensing effects. On the original high resolution maps, the authors considered npix = 3072
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discs corresponding to all pixels of an nside = 16 map in HEALPix [117] nomenclature.

Ignoring discs with more than 90% masked areas, the authors computed their variances, and

assigned them to nside = 16 maps. In order to subtract off the bias from the unmodulated

part of the CMB, they computed the expected mean and variance inside each disc from an

ensemble of simulations. Such a mean variance map was then subtracted from the observed

real CMBmaps and a simulated ensemble which was to be used for comparison. These local

variance maps were then subject to the HEALPix routine “remove_dipole”, with inverse

variance weighting to determine the amplitude and direction of the dipole.

The authors demonstrated the usefulness of the method on simulated modulated and

unmodulated data. The anisotropic simulations were generated using the amplitude 0.072

and direction (l, b) = (224◦,−22◦) from [140]. Additionally they considered two sets of

maps, one without smoothing, so that all the scales are modulated, and another with scales

larger than 5◦ being modulated. They chose disc radii ∈ [1◦, 90◦] and noted that for & 20◦,

the simulated anisotropic maps tend to exhibit amplitudes overlapping with the isotropic

case. This made them restrict the disc sizes to [1◦,20◦]. This manner of ascertaining disc

sizes before assessing the real data, mitigates the problem of a posteriori inference, and

restriction to sensitive disc sizes alleviates the “looking elsewhere” criticism. The authors

found that none of the 103 FFP6 simulated maps possess amplitudes of modulation larger

than the SMICA map for discs ∈ [6◦,12◦] at ≈ 3.3.σ. Histograms for local variances from

unmodulated maps versus disc radii ∈ [4◦,12◦], with fitting of Gaussian distributions to the

same, reveal that the real data carries a dipole modulation amplitude ≈ 4σ away from all

such histograms. Similarly, in WMAP, the authors observed that albeit the trend of findings

is similar to Planck, yet the significance could be capped up to ∼ 2.9σ.

1.8.4 Local extrema or hot and cold spots

The shapes and arrangement of local maxima and minima of the temperature or polarisation

anisotropy field on the 2−sphere offer an important perspective to understand the CMB.

Anisotropic distribution of local extrema could provide alternate mechanisms of relating

previously known violations of isotropy. Considerable literature exists on the use of extrema
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statistics for non-Gaussianity detection. However, we will limit our discussion to some well

known techniques of studying the hot and cold spots of the CMB to assess its isotropy.

1.8.4.1 Peak arrangement asymmetries

In the paper [169], the authors assessed one-point statistics (mean, variance, skewness,

kurtosis and number) of peaks of the CMB temperature anisotropies using WMAP 1-year

Q,V, and W frequency maps. The masks employed were Kp0, Kp2, Kp12, GN, GS, EN,

and ES, with the first three from WMAP [33], while the rest extend Kp0 to discard the

galactic (G) or ecliptic (E) northern (N) or southern (S) hemispheres, respectively. Gaussian

skies at HEALPix nside = 512 were simulated using WMAP best-fit power spectra, to which

random Gaussian noise was added according to the noise characteristics of each frequency

band [148]. Using the HEALPix subroutine “hotspot”, the local extrema were computed on

full skymaps, after which the maxima andminima inside the masked regions were discarded.

The authors found that generally the mean of WMAP temperature anisotropy extrema

and the variance in a few cases, significantly differ from simulations, whereas the skewness,

kurtosis, and the number of extrema statistics agree fairly well. However an ecliptic north-

south asymmetry exists in the variance of the extrema. Further, none of the simulations with

power law or running spectral index power spectra agree with mean extrema values, and the

maxima are too cold, while the minima are too hot. The ecliptic north-south asymmetry is

significantly discordant relative to simulations for all the four statistics.

In another work [24], the authors studied the WMAP 5-year maps for assessing the

abundances of spots in the CMB. Their definition of a spot is as follows. The authors average

over temperature fluctuations within the size of the anticipated spot, as demarcated using

window functionsW (θ,φ),

∆Tmean =
∫
dΩ∆T (θ,φ)W (θ,φ). (1.179)

Thus, for a threshold ∆T, a hot spot should obey ∆Tmean ≥ ∆T, while a cold spot is

expected for ∆Tmean ≤ ∆T. The scale for the mean temperature contrast is given as

∆rms =
√

∆T 2
mean. Thus, if the ∆T� ∆Tmean, then the most of the regions will be

characterised as spots, and vice versa. The window function could be a top hat circle or a
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square, and the authors demonstrated that the results are independent of the shape ofW (θ,φ),

provided that the areas enclosed are the same. Such regions were identified as sectors within

the intersections of rings of latitude and longitude, i.e, say, between θ0, θ1 and φ0,φ1. The

equal area and equal boundary length criteria were imposed respectively, using

A=
∫
S
dΩ =

∫ φ1

φ0
dφ
∫ θ1

θ0
sinθdθ, (φ1−φ0)sinθ∗ = (θ1− θ0), (1.180)

where the θ∗ = θ1 on the northern hemisphere and θ∗ = θ0 in the southern hemisphere. For

masked maps, the spots were selected for up to 5% masked regions within a sector. The real

CMBmaps analysed were the partial sky foreground-reducedWMAPQ,V andWbandmaps

using theKQ75 mask, and the full sky WMAP-ILC map. The authors found that compared

to the simulated maps of the ΛCDM model, there are significantly lesser number of spots in

the cut-sky WMAP 5-year data. Additionally removing the quadrupole or simulating with

the WMAP 5-year pseudo-C` weakens the discrepancies. Further only 0.16%− 0.62% of

the simulated maps possess mean temperature fluctuations below that of the cut-sky WMAP

data on angular scales of 4◦−8◦. On removing the quadrupole the significance decreases as

this percentage increases to 2.5%− 8%. Further, for full sky, the WMAP-ILC map agrees

well with the simulations, however, outside the mask, there are very few spots, while inside

the mask, the majority of the spots are present, clearly indicating the existing anisotropy.

1.8.4.2 Harmonic space characterisation of peaks

We primarily refer to the works [190, 191] for this discussion. The authors in the paper

[190] shed light on expressing derivatives of a scalar field like the temperature anisotropy

field on the 2-sphere, for evaluating peak positions, shapes, eccentricities and the like

from second order derivatives which help determine the peaks. Spin raising and lowering

operators are defined as /∂ and /∂∗, which are related to the Cartesian coordinate system of

reference as /∂ ≡ −∂x− i∂y, /∂
∗ = −∂x + i∂y. Thus the first and second derivatives of the

∆T (θ,φ) =∑
`ma`mY`m(θ,φ) are given by,

/∂
∗(∆T ) =

∞∑
`=0

√
(2`+ 1)

4π

√√√√(`+ 1)!
(`−1)!a`1, (/∂∗)2(∆T ) =

∞∑
`=0

√
(2`+ 1)

4π

√√√√(`+ 2)!
(`−2)!a`2,

76



∇2(∆T ) = /∂
∗/∂(∆T ) =

∞∑
`=0

√
(2`+ 1)

4π
(`+ 1)!
(`−1)!a`0. (1.181)

The quantities ∆T , ∇2(∆T ) are scalars, whereas, /∂∗(∆T ) is a vector and (/∂∗)2(∆T ) is

a spin-2 tensor. Under the assumption of isotropy, since these tensors of different ranks

are statistically independent, the scalars ∆T and ∇2(∆T ) are correlated with each other,

while the other two quantities /∂∗(∆T ) and (/∂∗)2(∆T ) are uncorrelated. After normalising

these four quantities by their appropriate variance weights, they can be represented in their

harmonic decompositions respectively as,

ν = ∆T
σν

, κ=−∇
2(∆T )
σκ

, η =
/∂
∗(∆T )
ση

, ε= (/∂∗)2(∆T ))
σε

, (1.182)

ν =
∞∑
`=0

ν`a`0, κ=
∞∑
`=0

κ`a`0, η =
∞∑
`=0

η`a`1, ε=
∞∑
`=0

ε`a`2, (1.183)

and in terms of their degrees of freedom they are described as follows:

1. Scalar ν denotes the height of the peak, or the value of the temperature at the extremum.

2. Scalar κ represents the local curvature in terms of the temperature field.

3. Vector η which is a complex number, encapsulates the geometric features of the peak,

given as the gradient of the temperature fluctuation field. Ideally, for local extrema,

the first derivative η must vanish, however the discretisation of the temperature field

obviates η = 0. Nonetheless, η is considered to be very small, relative to ση.

4. Tensor or 2-spinor ε is a complex number with its modulus quantifying the eccentricity

of the peak, while its phase provides the direction of the principal axes on the sky.

These peak variables, ν,κ,η,ε help determine the minima and maxima. For a critical

point, ideally, η = 0 and additionally for the extremum, the eigenvalues of the Hessian must

be of the same sign, such that |ε| ≤
√
a|κ|, and a= σ2

κ/σ
2
ε . If the κ > 0, then a maximum is

found, and if κ < 0, then a minimum is found, while for κ= 0, the point is flat up to second

order, but the probability of such an occurrence is null. Constraints on the extremum are

provided by application of the probability of the peak degrees of freedom,

P (ν,κ,ε)dνdκd2ε= 2|ε|
2π
√

1−ρ2
exp

(
−ν

2−2ρνκ+κ2

2(1−ρ2) −|ε|2
)
dνdκd|ε|dα

π
, (1.184)
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where, the eccentricity is ε= |ε|e2iα. Here, ρ is the correlation quantity, and ρ= σ2
η

σνσκ
. Since

ε itself is a Gaussian random number, |ε| is a Rayleigh distributed variable, and α is uniform

in the range [0,π]. The expression (1.184), provides a way to compute the number density

of the peaks, which in turn depends on the size of the peak, and is given as,

n(ν,κ,ε)dνdκd2ε= 1
2πθ2
∗

(aκ2−|ε|2)P (ν,κ,ε)dνdκd2ε, (1.185)

where the variable θ2
∗ = 2σ2

η

σ2
ε
. Upon integrating the number densityn(ν,κ,ε) over the complete

space of ν andκ, while restricting the integration over ε to regions for which |ε| ≤
√
aκ (which

guarantees the point to be an extremum), one obtains,

〈Next〉= 2
1 + 1

θ2
∗
√

3 + 2θ2
∗

 , (1.186)

which is the expectation value of the total number of extrema. Using these, the authors

produced curves of 〈Next〉 as a function of the peak size, and demonstrated that the flat

approximation is violated for peaks having sizes > 30◦. They noted that since such peaks

will be few, stacking of peaks may not be plausible to minimise cosmic variance. However,

such large peaks are nonetheless useful for understanding properties of the large scale CMB.

The authors noted that expectation values of peak shapes depend on factors constraining

the peak variables. For example, using thresholds for ν may induce bias in 〈ν〉, making

it non-zero. Similarly, the notion that 〈ε〉 may possess a bias, with a φ dependence in the

pattern of peaks on the sphere, must be accounted for. This was addressed by introducing

“multipolar profiles”. Since a field X(θ,φ) can be represented in the basis of φ as

X(θ,φ) =
∞∑

m=−∞
Xm(θ)eimφ, (1.187)

the profile for X(θ,φ) is Xm(θ). Such profiles contribute to a peak with different rotational

symmetries. For a real field X , X∗m(θ) = X−m(θ). Since peaks are determined using

second order derivatives, the authors noted that profiles with spin m > 2 must equal zero.

Additionally, the dipole profile (m= 1) is zero as the first order derivatives must also vanish.

Thus, only the scalar (m= 0) and quadrupolar (m= 2) modes characterise these profiles.

For a qualitative study of peaks, the authors considered fixing ν to a given value, and

analysed the pattern produced by such a peak. Both the temperature and polarisation fields
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can be studied with this formalism, and the monopolar profiles for these are

〈∆T0(θ)〉 =
∞∑
`=0

[bν + bκ`(`+ 1)]CTT` P`(cosθ),

〈Qr0(θ)〉 = −
∞∑
`=2

(2`+ 1)
4π

√√√√(`−2)!
(`+ 2)! [bν + bκ`(`+ 1)]CTE` P 2

` (cosθ),

〈Ur0(θ)〉 =
∞∑
`=2

(2`+ 1)
4π

√√√√(`−2)!
(`+ 2)! [bν + bκ`(`+ 1)]CTB` P 2

` (cosθ). (1.188)

Here, Qr, Ur are the Stokes parameters in polar coordinates, with the origin placed at the

centre of the extremum. The subscript r denotes that these Stokes parameters are rotated

forms of the standard ones. The bias parameters bν , bκ are evaluated from bνσν

bκσκ

= Σ−1

 〈ν〉
〈κ〉

 , (1.189)

where, the covariance matrix between κ and ν is Σ. Thus, for 〈ε〉 6= 0, or that the peaks are

oriented towards a particular direction, breaking isotropy, we have non-zero measures

〈∆T2(θ)〉 = bε
∞∑
`=0

(2`+ 1)
4π CTT` P 2

` (cosθ),

〈Qr2(θ)〉 = −2bε
∞∑
`=0

(2`+ 1)
4π

√√√√(`−2)!
(`+ 2)! [C

TE
` P+

` (cosθ) + iCTB` P`(cosθ)],

〈Ur2(θ)〉 = 2ibε
∞∑
`=0

(2`+ 1)
4π

√√√√(`−2)!
(`+ 2)! [C

TE
` P−` (θ) + iCTB` P+

` (cosθ)], (1.190)

which represent the quadrupolar profiles. The bias parameter bε = 〈ε〉
σε
, and,

P+
` = −

[
(`−4)

(1−x2) + 1
2`(`−1)

]
P 2
` (x) + (`+ 2) x

1−x2P
2
`−1(x),

P−` (x) = −2
[
(`−1) x

1−x2P
2
` (x)− (`+ 2) 1

1−x2P
2
`−1(x)

]
. (1.191)

The authors in their formalism mentioned that these quadrupolar profiles being complex

quantities possess phase angles which represent rotations of the system of reference, such

that bε is real when the principal axes coincide with the xy axes. In case of polarisation,

when the peak itself has non-zero eccentricity, the gradient and curl contributions will be

mixed as the peak is elongated. Further a reduction of noise can be undertaken for better

estimation of the orientation axes, by selecting principal axes in the inverse Laplacian of the

temperature as done in [7].
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Studies of peaks are intrinsically related to those of non-Gaussianity, such as the early

work of [277], wherein a non-Gaussian Cold spot (NGCS) was discovered in the southern

hemisphere of the CMB. The authors of this paper applied a technique using the spherical

Mexican hat wavelet (SMHW) on WMAP 1-year combined Q-V-W map. They computed

the skewness and kurtosis of the SMHW coefficients at various angular scales ranging from

arcminutes to degrees. The NGCS was detected as a peak around an SMHW scale of 4◦,

with a size of ≈ 10◦ on the sky, and a one-sided p-value of 0.1%. Additionally the authors

found that the northern hemisphere obeys Gaussianity while the southern hemisphere does

not. They found that their results were fairly independent of systematics and residual galactic

foregrounds. The detection of the NGCS and other large scale peaks paved the way for the

further scrutiny of their isotropy as is discussed in the following paragraphs.

In another work [191], the authors analysed temperature maps of the Planck 2015 data,

in order to characterise large scale peaks based on the formalism of the paper [190] as

discussed in this Section. They focused on five known large-scale peaks [192], which

include two maxima, and two minima obtained by Gaussian filtering at angular scales (R) of

10◦, and the fifth one is the NGCS, numbered 1,2,3,4,5, respectively. For comparisons with

simulated data, the fiducial model considered by themwas determined using the Planck 2015

TT-low P best fit cosmological parameters. With a CMB map showing these five peaks, the

authors noted that ellipses for the first four extrema (R = 10◦) are narrower than that for the

NGCS (R = 5◦), since the correlation between κ and ν are dependent on the scale of peak

selection, whereas for the eccentricity tensor, its one-point distribution does not depend on

the scale R, and hence the contours of probability for all the peaks are the same.

The authors study the multipolar profiles for these five large scale peaks to assess their

shapes. The profiles themselves can be expressed as an inverse of Equation (1.187),

∆Tm(θ,φ) = 1
2π

∫
dφ∆T (θ,φ)e−imφ, (1.192)

where the θ,φ are radial and azimuthal coordinates centred at the location of the peak. With
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a conditioning of ν,κ,η,ε with fixed values at the centre, the mean profiles are

〈∆T0(θ)〉 =
∞∑
`=0

(2`+ 1)
4π [bν + bκ`(`+ 1)]b`w`C`P`(cosθ),

〈∆T1(θ)〉 = bη
∞∑
`=0

(2`+ 1)
4π b`w`C`P

1
` (cosθ),

〈∆T2(θ)〉 = bε
∞∑
`=0

(2`+ 1)
4π b`w`C`P

2
` (cosθ), (1.193)

and 〈∆Tm(θ)〉 = 0 for m 6= 0,1,2. Here, the temperature field is assumed to have been

filtered with a window function w`, and the profiles are computed from the field observed

with a beam b`. The bias parameters (bν , bκ, bη, bε) are determined with the derivatives at

the centre. The authors compared the monopolar, dipolar, and quadrupolar profiles from the

peaks in observed maps with those of simulated ones. Tominimise adverse effects of galactic

foregrounds, and isotropy violations due to masking, on profiles with m> 0, they used the

inpainted Planck Commander map. The multipolar profiles were computed using Equation

(1.192), while averaging the pixels within rings of width 1◦, centred at various values of θ.

They found that deviations for profiles (m= 0,1,2) of any of the peaks considered was well

within 2σ. Additionally, the multipolar profiles ofm≤ 10 were found to agree with ΛCDM

at the 3σ level. As for the NGCS, the authors found that a conditioning of both ν and κ

ensure an agreement of the monopolar profile with the standard model. However, if ν is fixed

to the observed value, while κ is averaged over, then, the NGCS represents a profile which

deviates by 4.7σ for angular scale θ < 10◦, which makes it certain that the large discrepancy

of the NGCS is caused primarily due to the large value of curvature κ at its centre.

Further, for an anisotropic random field, the CMB temperature a`m’s may have phases

which are non-uniformly distributed between 0 and 2π. The authors analysed these phases of

themultipolar expansion centred at varying peak locations, usingmultipolar profiles∆Tm(θ)

which elucidate how individual multipolar patterns contribute to the shape of the peak. For

a certain m, the phases for Tm(θ) will not be independent due to correlations intrinsic to

the field, which cause alignments of the multipoles. For comparing these correlations with

theoretical predictions, a binning scheme is employed wherein the profiles are defined for
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independent bins in θ. So for n bins in the angle θi, the profiles computed are

∆T̂m(θi) =
i∑

j=1
λmij [∆Tm(θj)−〈∆Tm(θj)〉], (1.194)

where the coefficients λmij are chosen in order to impose unit variance for ∆T̂ (θi) and zero

correlations between different i’s. The mean field 〈∆Tm(θj)〉 subtraction ensures that the

peak degrees of freedom are removed from the phase analysis. Since ∆T̂m(θi) has phases

which are independent, they manifest in a Rayleigh random walk inside the complex plane

defined for eachm value. For the N th time step, the random walk position is

zmN =
N∑
i=1

∆T̂m(θi)
|∆T̂m(θi)|

. (1.195)

If r be the distance between the origin and the random walk position at N th step, then the

probability density of the same and a precise formula for r are,

PN (r) = 2r
N

exp−r
2

N
, rmN =

√(
1− 1

2N

)
|zmN |2 + |z

m
N |4

4N2 . (1.196)

Thus, for correlated phases of ∆T̂m(θi), the distances from random walks will be larger than

those expected from Equation (1.196). The authors found using this approach that some

correlation for the phases ofm= 8 exists in peaks 2 and 4, whereas for peak number 3, and

the NGCS, m = 4,5 are most correlated. For the NGCS, maximum correlation is achieved

at an angular scale of 15◦ corresponding to the hot ring which surrounds the NGCS.

1.8.4.3 Tensor Minkowski functionals

The authors of [59] introduced tensor Minkowski functionals (TMFs) for random fields on a

2-sphere, e.g., galactic foreground maps to assess their isotropy and Gaussianity. Further, in

[107] the first application of TMFs was done to CMB temperature and polarisation maps to

ascertain the net orientation of a set of structures, and their intrinsic anisotropies.

In the work [107], the authors explained that an excursion set K, having a smooth

boundary ∂K can be simply connected (without a hole) or multiply connected (containing

one or more holes). A hotspot is a connected region, whereas a coldspot is a hole, either of

which is a structure. By convention, a hole is enclosed in the clockwise detection, whereas
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the contour for a hotspot is anticlockwise. The scalar Minkowski functionals (SMFs) are,

W0(K) =
∫
K
d2r, Wi(K) = 1

2

∫
∂K

Gidr, (1.197)

where, i stands for 1,2, such G1 = 1, and G2 = κ, which is the local curvature associated

with each point in ∂K. Thus, W0 and W1 define the area and the boundary length for the

connected region ofK, whileW2 is the difference between the number of connected regions

and the number of holes inK. For a single structure inKs ⊂K, the TMFs of rank a+ b≥ 0

are constructed as a tensor product of a copies of the radial vector of position ~r, and b copies

of the unit normal n̂ at each point on the contour ∂K,

W a,0
0 (Ks) =

∫
Ks
~rad2r, W a,b

i (Ks) = 1
2

∫
∂Ks

~ra⊗ n̂bGidr. (1.198)

A tensor product can be written as ( ~A⊗ ~B)ij = (AiBj+AjBi)
2 . When a+ b = 0, then the

Equation (1.198) gives three SMFs, whereas for a = 1, b = 0, one obtains three vecto-

rial Minkowski functionals, and when a+ b = 2, one obtains the seven TMFs of rank 2.

Being tensors, the TMFs vary under a coordinate transformation. Further, the quantities

W 1,1
1 ,W 0,2

1 W 1,1
2 ,W 0,2

2 are translation invariant. The authors specifically chose to study

W 1,1
2 , as the others are interrelated. The expression forW 1,1

2 in pixelised space is,

W 1,1
2 (Ks) = ∑

(i,j)

1
2 |eij |

−1(eij⊗ eij), (1.199)

such that the pair (i, j) is the edge of the polygon between the vertices i and j. The vector

along the edge is ~eij with length |eij |. The tensor W 1,1
2 is a matrix of size 2× 2, with two

real eigenvalues λ1 and λ2, as λ1 ≤ λ2. An average over all possible structures in a single

map 〈...〉s, gives Λ1 ≤ Λ2 as eigenvalues of the matrix 〈W 1,1
2 〉s, and the statistics

α = Λ1
Λ2
, β =

〈
λ1
λ2

〉
s

. (1.200)

Generally the value of β is between 0 (anisotropy) and 1 (isotropy) for the shapes of the

structures. Additionally, the orientation parameterα= 1 for no preferred direction, otherwise

β ≤ α ≤ 1. For a single structure, or a set of structures which are arranged in some fixed

pattern having an anisotropic shape, α = β. The degree of alignment of the structures is,

O = 1−α
1−β . (1.201)
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For perfectly aligned structures, O is 1, while that for zero net orientation, O = 0.

The αT for CMB temperature (denoted by superscript T ) simulations about threshold

ν = 0 appears symmetric, but for large |ν|, there is a decrease in αT , since the alignment in

structures strengthens for fewer structures at higher |ν|. As for βT , the authors noted that

the structures on an average exhibit an intrinsic anisotropy, and the mean value of βT over

various threshold values is ≈ 0.68. In case of the E mode field, denoted with superscript E ,

the mean βE over thresholds is ≈ 0.69. Further, the curved portion of a generic contour can

be approximated by a part of an ellipse using which they could subtract off the numerical

error in βT = 0.68,βE = 0.69 for the case of elliptic polygons. The corrected values stand

at βT = 0.62,βE = 0.63. Moreover, as the values of αT ,αE are both close to 1, the authors

noted that there is no need to correct for the numerical error in α.

The authors found for the Planck 2015 Commander, NILC, SMICA, and SEVEM tem-

perature andE mode field maps, that the values of β are roughly= 0.68, and after application

of the numerical error correction, they obtained β = 0.62. Both kinds of fields (T,E) from

observed foreground-cleaned maps, possess structures that obey the ΛCDMmodel to within

2σ, except the NILC half mission 2 map which deviates by 2.1σ. As regards α, the tem-

perature maps agree with those of the simulated ensemble. But for the E-mode field, the

authors found 3σ deviations for all the datasets, apart from the SMICA full mission map.

Besides, for all the methods of foreground cleaning, the half mission 1 maps have a signif-

icant alignment of the structure at 5σ level. The authors attributed statistical uncertainties

of about 0.4% for β, and 0.7% for α, apart from pixelisation errors. They also confirmed

that these deviations are not flukes arising due to the choice of stereographic projection, by

considering other choices of projection planes, and finding similar results. However, there

could be the effect of instrumental systematics and shape of beam detection devices, and

noise in inducing spurious anisotropies. This is most likely in the case of E mode results,

since the signal-to-noise ratio for the 44 GHz channel which is used for modelling the beam

and noise characteristics, is well below unity.
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1.9 Prelude to the subsequent chapters

In the previous Section 1.8, we discussed some existing state-of-the-art techniques which

have been employed by several researchers to scrutinise the isotropy of the CMB. These

methods are formalised mathematically in multipole or harmonic space of the CMB power

spectrum, angular and pixel space for correlations, eigenspace of tensors like the power

tensor or the tensor Minkowski functional, or with perspectives of determining preferred

directions, through geometric and parity asymmetries, or by understanding the shape and

distribution of local extrema in real and harmonic space, to name a few.

Thus, existing literature lends us considerable motivation to develop and assess new

methods for studying the isotropy of the CMB. Additionally any statistical tools and tech-

niques employed for studies of isotropy of the CMB must be robust against the presence of

any remnants of foregrounds or other sytematics at different frequencies in the CMB maps,

even after they have been minimised using sophisticated algorithms. In the subsequent chap-

ters, we present three novel and robust approaches which we have explored in this thesis,

brief descriptions of which are as follows.

1. Large angle correlation deficit [32, 67] and parity preference in power [159] of the

CMB are known to us. We further explore a parity based study of correlations of the

CMB angular power spectrum using the concept of level spacings.

2. Hot and cold spots in the CMB arose simultaneously with matter density perturbations,

which were “seeds” of structure we see today. It is interesting to study the strength and

shape of any deviation from isotropy of placement of these spots in the CMB.

3. Hemispherical power asymmetry [92] could have arisen due to dipolar modulation

[116, 94, 260]. Intriguingly, we are able to train a machine to artificially develop

intelligence for detecting such a dipolar modulation signal in actual CMB data.
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CHAPTER 2

LEVEL CORRELATIONS OF THE CMB TEMPERATURE

ANGULAR POWER SPECTRUM

2.1 Introduction

Large scale fluctuations in the CMB temperature potentially encode information about infla-

tion [56], and hence any signatures that might have arisen primordially. These fluctuations

are expected to be statistically isotropic since the power spectrum of the quantum pertur-

bations is hypothesised to be rotationally invariant. This directly implies that the angular

power spectrum (APS) measures are uncorrelated between different multipoles. A violation

of the assumption of statistically isotropic CMB temperature field then manifests in the form

of correlations in the APS measures [54, 237].

In this work, we propose a novel method, that has not been explored in existing literature,

to study correlations among the temperature fluctuations of the CMB. The method investi-

gates the spacings between the CMB APS measures, namely Ĉ`’s and D`’s (= `(`+1)
2π Ĉ`’s)

1. Hereafter, we will drop the hat (ˆ) from Ĉ`’s for simplicity, and denote 〈Ĉ`〉 = Cth` or

Cfid` as the ensemble average of the same. The principal objective of the work discussed

in this chapter is to detect any signature of correlations in the angular power spectra of the

foreground minimized CMB maps following the methodology of hypothesis testing. The

null hypothesis corresponds to the assertion that the CMB angular power spectrum from the

foreground cleaned CMB maps are uncorrelated. This is an important scientific question

to ask since if the null hypothesis can be invalidated it may warrant new physics if the

correlations are generated due to any small level of a primordial signal. If the correlations

1 Here, apostrophes (’) are used to denote plural forms.
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are induced by the residual foregrounds or any other systematic effects present in the cleaned

maps, then special care must be adopted in using these cleaned maps in cosmological param-

eter estimation for accurate interpretations of these variables. Some unknown systematics

may creep in during the analysis pipeline of satellite data collection and/or during the map

making process. These discussions illustrate the fundamental importance of the research

work carried out in this work.

To motivate more into the focus of the current research work in the context of studies of

CMB anisotropies we note that, in existing literature, the deficit of large angle correlation

was seen for COBE-DMR four year maps [132] and subsequently for the WMAP first year

data [32]. Thereafter, almost negligible correlation was seen above 60◦ for later WMAP and

Planck releases [66, 65, 68], with increasing statistical significance. Hence it was argued

to be a truly anomalous feature instead of being causative of a specific a posteriori choice

of statistic [66]. In addition, this anomaly has recently been shown to exist in the latest

Planck polarisation data [60]. Besides, parity asymmetry in the APS was found [156, 157]

and it was shown that the anomaly disappears without the contribution from first six low

multipoles (`= 2, ...,7) [19]. Later [158] also showed that the parity asymmetry in the APS

is phenomenologically equivalent to deficit of large angle correlation.

Thus, in literature, there are independent studies of (a) the deficit of large angle correlation

and (b) its equivalence with odd-parity preference of the APS. However, there exist no

investigations in the literature regarding whether there are any unusual correlations in either

even or odd or both parities of multipoles of APS when their APS estimators (C`’s and

relatedD`’s) are separately considered instead of the two point angular correlation function.

Further, the authors of [65] have noted that any covariance between C`’s must be studied in

addition to the two point angular correlation function. Besides, understanding correlations

among the APS is important as these are directly used for cosmological parameter estimation.

The nature of correlations among separate sets of odd multipole and even multipole APS

as well as the complete set, can be captured by their respective average spacing estimators

(Section 2.4) that we have devised as a novel statistic for our study.

Several studies can be found in existing literature that claim signatures of statistical
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anisotropy in the foreground cleaned CMBmaps [77, 232, 247, 251, 246, 167, 301]. Besides,

theoretically anisotropic models over large scales have been proposed to account for some

of such observed statistically anisotropic signatures [4, 188, 258, 53, 177, 83]. In the

past, analysis of CMB data unveiled many anomalies in the foreground minimized maps of

WMAP [67] and Planck [253] satellite missions. This has entailed the study of anomalies in

both WMAP and Planck maps to make departures more discernible if any such exist. Such

anomalies include the north-south power asymmetry [37], which is relatively insignificant for

all scales from Planck [229], high degree of octupole-quadrupole alignment [271, 78, 252]

that strengthens on removing the frequency dependent kinetic Doppler quadrupole [211],

quadrupole power deficit [32, 111] and planarity of the octupole [77], the power excess

for lower odd multipoles [166], the non-Gaussian cold spot [277, 70, 72], unusually weak

non-uniformity in the placement of CMB hot and cold spots [154], and the like.

Foreground cleaned CMB maps are obtained upon application of elaborate cleaning

methods [6, 100, 50, 80, 31, 269, 49, 162, 242, 265, 294, 227] such as those of Gibbs

sampling [95], Spectral Matching Independent Component Analysis [79], Internal linear

combination (ILC) in needlet space [28], and ILC in pixel space [33] to the foreground

contaminated maps of CMB radiation observed at different frequencies. In the case of

foreground cleaned CMB maps, a breakdown of statistical isotropy may be caused due

to primordial features which are unaccounted for in the concordance (ΛCDM ) model of

cosmology, or due to unaccounted agents between the surface of last scattering and the

observer, or any possible residual foregrounds left over after cleaning, or due to some minor

systematics that may have crept in during the analysis pipeline of satellite data collection

and/or the map making procedure.

Our study here focuses on an effort to discover unusual signatures of correlations between

consecutive multipole APS as manifested by their spacings. This chapter is organised as

follows. In Section 2.2, we discuss about the statistics of Poisson and Wigner-Dyson in

context of level spacings, and describe the basic variables, i.e, the APS spacings, used

for our study. In Section 2.3 we elucidate level clustering and repulsion for CMB APS.

Section 3.2 specifies the average spacing estimator as the novel statistic devised for our study
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of foreground cleaned CMB maps. Section 2.5 describes our way of testing consecutive

multipole spacings with simulations. We report our primary results in Section 2.6 for all

multipole and even/odd multipole spacings using the average spacing estimator. In Section

2.7 we establish the robustness of our findings with inpainted maps. And, in Section 2.8 we

summarise these results and state our inferences.

2.2 Statistics and basic variables

In this section we review the relevant statistical distributions and the basic variables of our

work. The analogue of ‘level spacings’ in the form of absolute differences of the consecutive

multipole APS measures are given by,

∆C` = |C`1−C`2|,

∆D` =
∣∣∣∣∣`1(`1 + 1)

2π C`1−
`2(`2 + 1)

2π C`2

∣∣∣∣∣ , (2.202)

where, `1, `2 are consecutive multipoles. Assuming statistical isotropy, C`’s represent the

unbiased APS estimators defined as [133],

C` = 1
2`+ 1

∑̀
m=−`

|a`m|2, (2.203)

and, the a`m’s are coefficients of the expansion,

∆T (n̂) = ∑̀ ∑̀
m=−`

a`mY`m(n̂). (2.204)

∆T (n̂)’s are the temperature anisotropies relative to the uniform mean temperature of nearly

2.726K [103] of the CMB. Here n̂ denotes a direction in the sky. The APS measures used

in this work are of low multipoles (` ∈ [2,31]) corresponding to large angular scales. For

reference, we show the two natural APS measures, C`’s and D`’s in Figure 2.1. As D`

fluctuates about a nearly constant curve over large scales, it is interesting to study spacings

of the same in addition to C`’s.

SinceC`’s arise from independent and uncorrelated Gaussian random a`m’s (2.203), they

should be uncorrelated. As D`’s differ from C`’s only by a multiplicative factor of `(`+1)
2π ,

they are expected to be uncorrelated as well. Therefore, low spacings (level clustering)

for the C`’s and D`’s may be favoured because of Poisson statistics [38], which holds for
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Figure 2.1: C` and D` versus `: the subfigures compare the theoretical APS best fit to Planck 2018
data (purple) with estimated APS from COMM (green), NILC (light blue), SMICA (ochre) and
WMAP (yellow) maps used here. The monopole and dipole have been excluded in this figure. The
vertical axis is in log-scale.

i.i.d. variables. However, there will be some deviations from purely Poisson nature for

spacings of statistically isotropic realisations of the CMB having uncorrelated APS, since

they are constrained by cosmic variance, and are not identically distributed 2. If the observed

C`’s were specially correlated, the Wigner-Dyson statistics [42] which favour level repulsion

could effectively describe these spacings, and preclude the possibility of consecutive C`’s

and D`’s being arbitrarily close.

It is known that Poisson statistics (describing a possibly integrable underlying system) and

Wigner-Dyson statistics (describing those with classically chaotic or non-integrable coun-

terparts) can be represented as in equation (2.205) for a spacing s between two consecutive

eigenvalues of the associated random matrix, with a probability distribution p(s) [196].

p(s) ∝ e−s (Poisson statistics),

p(s) ∝ sαe−bαs
2

(Wigner-Dyson statistics), (2.205)

(where, α > 0). There can be a large class of random matrices, which may have i.i.d entries

extracted from distributions other than those of the standard Gaussian ensembles. It has been

seen for such matrices [126, 89] as well that their eigenvalue spacings obey some appropriate

Wigner-Dyson form in the presence of correlations. This is the concept of universality [120],

2 Each C` is a χ2 variable but with 2`+ 1 degrees of freedom. Thus the closest to nearly identical
distributions for any two C`’s can be considered by taking spacings of consecutive multipoles, as done
here. This minimizes the difference between the distributions of the two C`’s in a spacing to that of
(2(`+1)+1)− (2`+1) = 2 degrees of freedom.
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which we seek to explore in the context of the APS measures.

Due to the parity inversion property of spherical harmonics 3, the temperature anisotropy

field can be reconstructed as a sum of a symmetric and an anti-symmetric function [159].

These functions are of even and odd parity, respectively and the power for a multipole range

can be rewritten as a sum of contributions from the even and odd multipole APS. Hence, we

study nearest neighbour spacings of separate sets of even and odd multipole APS measures

in addition to an analysis of APS spacings without a parity distinction. This may help us find

if any parity preference of spacings exist, which can indicate deviations from the assumed

isotropy of the universe on large scales.

2.3 Level clustering and level repulsion in CMB APS

In this section, we discuss how the transition between level clustering (Poisson statistics) and

level repulsion (Wigner-Dyson statistics) for the CMB angular power spectrum (APS) may

occur, due to introduction of correlations in otherwise uncorrelated CMBAPS of statistically

isotropic CMBmaps. We demonstrate how the respective phenomena of level clustering and

level repulsion are also applicable in the context of CMB APS. Level clustering occurs when

the APS is uncorrelated between multipoles for statistically isotropic CMB. Whereas level

repulsion takes place when the APS gets correlated on introduction of statistical anisotropy.

To illustrate clustering and repulsion between ‘levels’ of the CMBAPS at different multi-

poles, we utilised some typical foregrounds to introduce correlations in otherwise statistically

isotropic CMBmaps. However, we must note that there can be several mechanisms by which

correlations may be introduced in the CMB APS, such as a small statistically anisotropic

primordial signal, any minor residual foregrounds, or other systematics left over due to the

analysis pipeline followed in satellite data collection and/or the algorithms used for preparing

foreground cleaned CMBmaps. Thus, introduction of statistical anisotropy in the CMBAPS

by addition of foreground contamination is only one of various possible mechanisms, and

has been chosen solely as a representative example for demonstrating level clustering in

correlated CMB APS. This helps benchmark our methodology and also provides important

3 Under a parity transform, i.e., n̂→−n̂,Y`m(n̂)→ Y`m(−n̂) = (−1)`Y`m(n̂) =⇒ a`m→ (−1)`a`m
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insights regarding the classification of possible nature of correlations that are detected on

the foreground cleaned CMB maps.

Statistically isotropic (SI) CMB maps can be generated as Gaussian random realisations

based on the concordance (ΛCDM ) model. Foregrounds introduce statistical anisotropy in

the SI CMB realisations. Thus, an addition of foregrounds to SI CMB maps is expected

to enhance correlations between C`’s that may cause the level spacing distributions to obey

an appropriate deviation from level clustering. To quantify such a departure, the gap ratio

introduced by [212], is:

r` = min(∆`,∆`−1)
max(∆`,∆`−1) . (2.206)

Here,∆` can be either of∆C` or∆D`. The ensemble average of this ratio has standard values

for various distributions. For Poisson, 〈r〉 ' 0.38, for GOE (GaussianOrthogonal Ensemble),

〈r〉 ' 0.5295. Further, [23] calculated the same for GUE (Gaussian Unitary Ensemble)

and GSE (Gaussian Symplectic Ensemble), as 〈r〉 ' 0.60266, 0.67617, respectively. The

advantage of using the mean gap ratio is that we need not concern ourselves with unfolding,

to remove effects of local densities of the variables being investigated for their spacing

distribution. Besides, the mean gap ratios may help us assign the appropriate distributions

to these spacings, and give a measure of the how chaotic the underlying system is.

As our APS measures C`’s andD`’s are not i.i.d., we may expect slightly deviated forms

from the Poisson and Wigner-Dyson behaviours given by their gap ratios of consecutive

spacings. We have generated 104 realisations of SI CMB maps based on the theoretical APS

best fitted to Planck 2018 data [9]. To these, three typical foregrounds (synchrotron, thermal

dust and free-free emission maps obtained by the Commander cleaning algorithm of the

Planck Legacy archive [98]) were added after being extrapolated at 100GHz, to obtain 104

statistically anisotropic (SA) CMB maps.

From these realisations, we find that 〈r〉 = 0.41702294, 0.67770755, respectively for

SI and SA CMB C`’s. For spacings of C`’s, we can say that roughly Poisson statistics is

followed by SI CMB ∆C`’s, whereas for SA CMB, the GSE form of Wigner-Dyson statistics

may be appropriate. It is well known that the GSE form is obeyed by underlying systems that

do not have rotational symmetry, and the value of the mean gap ratio found for ∆C`’s may
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Figure 2.2: Left panel: Distribution of the ∆C` spacing from SI CMBmaps without any foreground
addition (in purple) and with addition of three foregrounds (in light-blue), i.e, synchrotron, thermal
dust, and free-free emission extrapolated at 100GHz. There is a clear departure from nearly Poisson
(p(s) = e−s, green curve) to Wigner-Dyson form of GSE (p(s) = 218

36π3 s
4e− 64

9π s
2 , orange curve) for

SA CMB maps. Right panel: Distribution of the ∆D` spacing from SI (purple) and SA (light-blue)
CMB maps. Again a departure from approximately Poisson to some appropriate level repulsion
statistics is seen.

be related with the lack of rotational symmetry for SA CMB maps. Likewise, for ∆D`’s we

find 〈r〉 = 0.45045788, 0.82103559 for SI and SA CMB, respectively. These higher values

of 〈r〉 are indicative of additional dependence amongD`’s as `(`+1)
2π 〈C`〉 ' constant for low

`’s. In the first panel of Figure 2.2 we have plotted the probability distribution of ∆C` to

illustrate the change in the spacing distribution from approximately Poisson to GSE form of

Wigner-Dyson statistics. In the second panel of Figure 2.2, we see that the curves for ∆D`’s

are not easily classifiable into the standard forms given by Poisson orWigner-Dyson statistics.

However, the subfigure shows the transition between level clustering to level repulsion. This

is in agreement with the values of mean gap ratios for ∆D`’s which show a departure from

very low to high correlations, for SI and SA CMB maps.

2.4 Level correlation estimator

We propose a novel estimator for probing correlations among the APS of the foreground

cleaned CMB temperature maps. For the range of multipoles [2,31], the spacings between

consecutive C`’s and D`’s are estimated. Say, such consecutive multipole spacings are

[∆1,∆2, ...], then the average spacing estimator is

avgi = ∆i
1 + ∆i

2 + ...

N
. (2.207)
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Here, i = a,o,e, where a,o,e stand for all, odd and even multipoles, and N = number of

spacings for the given range of `’s.

This estimator helps characterise behaviours of APS spacings and hence large angle

correlations in an easily quantifiable way. Besides, the choice of this estimator is a priori.

The behaviour of all, even and odd multipole spacings for simulated SI and SA CMB maps,

is shown in Figure 2.3. These have been obtained from 104 realisations of SI CMB to

which foregrounds were added to obtain 104 SA CMB maps, as described in Section 2.3.

The overall effect of addition of foregrounds to statistically isotropic CMB realisations is

to shift the average estimator to higher values. Thus it may be highly unlikely to attribute

unusually low mean spacings in foreground cleaned CMBmaps to any residual foregrounds.

The advantage of using this estimator is that we can consider the mean spacing from many

statistically isotropic CMB realisations to compare with that from foreground cleaned CMB

data. Otherwise, with entities like the gap ratio, any individual spacing, or the Pearson’s

correlation coefficient, we need an ensemble of realisations, while we have only one universe

to observe.

2.5 Methodology

We have compared values of the average spacing estimator for foreground cleaned CMB

APS with those of the theoretical APS (Planck 2018 best fit [9]). With the help of the

HEALPix [117] package, we generate 104 statistically isotropic CMBmaps of the theoretical

temperature APS to account for statistical fluctuations.

CMB maps used here for probing APS spacings are full-sky foreground cleaned maps of

WMAP 9 year ILC and 2018 release full mission Planck Commander (COMM), NILC

and SMICA maps from latest sources, i.e., [209] and [98], respectively. These have

been downgraded with the help of HEALPix [117] software facilities to a HEALPix

nside = 16,n`max = 32 (hence, an appropriate pixel-window) with no beam smoothing

(fwhm_arcmin= 0.0) and the statistically isotropic CMB maps are obtained using the same

resolution. With all foreground cleaned and simulated statistically isotropic CMB maps

thereof on an equal footing, we have proceeded with the analysis. We have excluded multi-
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Figure 2.3: Probability distributions of avga, avge, and avgo from 104 statistically isotropic (purple)
and anisotropic (light-blue) CMBmaps forC`’s andD`’s. Foreground impurities added to statistically
isotropic CMB maps enhance correlations between consecutive multipole APS and cause average
spacings to be larger.
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poles `= 0,1 as these correspond respectively to the monopole of uniform CMB temperature

(≈ 2.726K) [103], and the dipole which arises due to our peculiar motion relative to the

CMB rest frame [47]. In addition, we have ignored contributions from noise, as it is not

expected to be significant at the large scales studied here [270].

We have taken the average (avgi) spacing (2.207) of C`’s and D`’s for consecutive mul-

tipoles firstly without any parity distinction and later separately for odd and even multipoles.

For example, for the 6 multipoles in the range [2,7] for C`’s, we have 5 spacings with no

parity based distinction namely, |C2−C3|, |C3−C4|, ..., |C6−C7|. Whereas for even and

odd multipoles taken distinctly, in the same range, we have 2 spacings each for even and odd

multipoles i.e., |C2−C4|, |C4−C6| and |C3−C5|, |C5−C7| respectively. Thus avga is the

mean value of 5 spacings, while avge, avgo are mean values of 2 spacings each. Average

spacings for consecutive D`’s are found in a similar fashion. The range of multipoles used

for our study is ` ∈ [2,31]. With this chosen range of multipoles (i.e, ` ∈ [2,31]), we are able

to consider an equal number of odd and even multipole spacings.

For characterising the extent to which the average spacing from foreground cleaned CMB

maps may be different from statistically isotropic realisations of the CMB in a quantitative

way, we define the probability P t(avgi). Here, i= a,o,ewhich stand for all (no parity based

distinction), odd and even multipoles respectively. The fraction P t(avgi) is calculated by

counting the number of statistically isotropic CMB simulations having the value of the avgi

estimator greater than the foreground cleaned CMB map and dividing the number by the

total number of simulations, that being 104 for the work presented in this chapter.

2.6 Results

We have computed the probabilities P t(avgi) and report those which feature below 5% or

above 95%, corresponding to departures from the 5%–95% confidence range of hypothesis

testing methodology [40, 101, 210].

From the left panel of Figure 2.4, we see that the average spacings of C`’s for all and odd

multipoles are well within our confidence range. For even multipoles, however, all the four

maps exhibit unusually low average spacings. From the right panel of Figure 2.4, again, we
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Table 2.1: Values of P t(avge) for four maps, for C`’s and D`’s.

Map for C`’s for D`’s
COMM 99.33% 95.07%
NILC 98.86% 96.27%
SMICA 99.26% 97.61%
WMAP 98.90% 99.08%

see that the average spacings ofD`’s for all and odd multipoles are as expected, but those for

even multipoles are unusually low for all the four maps. The values of P t for even multipoles

are in Table 2.1.

Overall, we see that the multipole spacings of even multipoles are unusually low relative

to those based on the ΛCDM concordance model, and rejected at & 95% C.L. for all the

four foreground cleaned CMB maps. This may mean that the unexpected signal is either

truly characteristic of the CMB sky or that it has been left over due to a generic systematic

error or a similar foreground residual in all the maps, despite the use of different cleaning

methods. In either case, such occurrences must be further checked for their robustness. In

the next section, we subject our findings to rigorous checks of robustness with the help of

an inpainting method based on constrained Gaussian realisations with two kinds of galactic

masks. In addition, we mask the non-Gaussian cold spot (NGCS) and inpaint over the

same. Thus, evaluating the average spacing estimator for the foreground cleaned inpainted

CMB maps helps us explore any variations of the signal with respect to (a) possibly minor
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foreground residuals in the galactic region, and (b) the NGCS.

2.7 Robustness with inpainted realisations

The unusually low valued estimator (avge) found in the previous section albeit is seen con-

sistently for all four maps, yet, the result could be due to foreground residuals or other

unresolved systematics. To distinguish the occurrence of unusual patterns as being charac-

teristic of the CMB sky as opposed to residual uncertainties, we use masks for the galactic

region and some extragalactic point sources. Since foreground residuals in and around the

galactic region may cause such unexpected signatures. The KQ75 mask of WMAP, and a

product of the temperature confidence masks of COMM, NILC, SEVEM, and SMICA of

Planck, referred to as the U73 mask, are used here. These are shown in Figure 2.5.

Figure 2.5: Low resolution (HEALPix nside = 16) versions of WMAP’s KQ75 and Planck’s U73
masks. Masked regions are indicated in cyan.

To obtain these low resolution (HEALPix nside = 16) masks, we downgrade the available

high resolution masks and apply a threshold of x = 0.85 to the KQ75 mask and that of

x= 0.98 to the U73 mask. This implies that after downgrading, we set all pixels with value

≤ x to 0, and the others to 1. Being a conservative mask, KQ75 includes a wider galactic

cut and many point sources relative to the U73 mask. Choices for the thresholds are based

on [14], and help us keep a considerable sky fraction (62.9% forKQ75 and 67.5% for U73)

while masking regions with dominant foreground sources at large scales [270]. Hence the

analysis for avge is repeated on full sky inpainted realisations of the masked CMB maps.
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2.7.1 Mathematical framework for inpainting

The inpainting method we use is that of local constrained Gaussian realisations (CGRs) in

pixel space in regions of the sky that are masked. The mathematical framework behind this

algorithm of generating the CGR of the map pixels in the masked region can be understood

in the following manner. Consider the complete covariance matrix of the map m=

 p

q

,
as

C =

 Cpp Cpq
Cqp Cqq

 . (2.208)

We suppose that pcg are pixels of the map as required in the form of a CGR, which is

constrained by a covariance matrix Cpp corresponding to a fiducial angular power spectrum

Cfid` . For convenience, we drop the subscripts from p,q and concern ourselves with only the

maximum likelihood estimate (MLE) of the masked region pixels. The Gaussian probability

distribution for the map can be written as:

P (m) = 1√
2πdet(C)

exp
(
−1

2m
TC−1m

)
. (2.209)

Equivalently, the log-likelihood for the vector array p given the pixel values of q can be

defined as:

logL= constant− 1
2
(
pT (C−1)ppp+pT (C−1)pqq+ qT (C−1)qpp

)
, (2.210)

where, we have absorbed terms that are independent of p in the constant. If we denote

E = (C−1)pp,F = (C−1)pq,G= (C−1)qp, then,

logL= constant− 1
2 (piEijpj +piFijqj + qiGijpj) , (2.211)

in Einstein’s summation convention. If we take the first derivative of the log-likelihood with

respect to p and equate it to zero, we get the MLE of p. Hence,

∂(logL)
∂(pk)

= Ekjpj +pjEjk +Fkjqj + qjGjk (2.212)

= Ep+pTE+Fq+ qTG= 0.

The solution to this equation is p= pml =−E−1Fq, which is theMLE.With this information,
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we can rewrite the expression (2.209) for the probability distribution of p given the complete

covariance matrix (C) of the mapm, as

P (p|q)∝ exp
(
−1

2(p−pml)T (C−1)pp(p−pml)
)
. (2.213)

Thus, in order to accomplish the task of generating the pixels p when pixels of q are known,

has reduced to creating a realisation of pixels, say pr = (p−pml) knowing from (2.213) that

pr must follow a covariance matrix ((C−1)pp)−1. However, this task is fairly non-trivial,

since we would need to find the equivalent of a square root of the covariance matrix, which

can be computationally expensive. Instead we utilise the technique first given by [139] and

extended by [48] which is as follows.

Consider the block decomposition relation [185] for the inverse of the covariance matrix:

 Cpp Cpq
Cqp Cqq


−1

=

 (Cpp−Cpq(Cqq)−1Cqp)−1 −(Cpp−Cpq(Cqq)−1Cqp)−1Cpq(Cqq)−1

−(Cqq−Cqp(Cpp)−1Cpq)−1Cqp(Cpp)−1 (Cqq−Cqp(Cpp)−1Cpq)−1

 .
(2.214)

Hence, the covariance matrix that pr must follow is ((C−1)pp)−1 = Cpp−Cpq(Cqq)−1Cqp.

With a random realisation of a full sky map, we can denote the map pixels as mT =

(pT qT ), which obeys the full sky covariance matrix (2.208) . If we suppose that a linear

transformation of p which takes it to a variable p′ is given by

p′ = p−Aq, (2.215)

then p′ will obey the covariance matrix

Cp′p′ = 〈p′p′T 〉 (2.216)

= 〈(p−Aq)(p−Aq)T 〉

= 〈ppT 〉−〈pqT 〉AT −A〈qpT 〉+A〈qqT 〉AT

= Cpp−CpqAT −ACqp+ACqqAT .
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This relation holds for any general linear transformation with a matrix A. Analogically, if

p′ = pr, then A=−((C−1)pp)−1(C−1)pq. Using (2.214), we get,

A= Cpq(Cqq)−1. (2.217)

Hence using (2.216) and (2.217), we arrive at

Cprpr = Cpp−Cpq(Cqq)−1Cqp = ((C−1)pp)−1, (2.218)

which is the correct covariance matrix as required for pr. Thus, when a full sky Monte Carlo

realisation is generated using the fiducial power spectrum, and the masked region pixels from

this map are taken, they are expected to obey the correct covariance matrix structure.

2.7.2 Algorithm for inpainting

This algorithm is based on [48, 35] and can be outlined in the following steps:

1. Consider the entire set of pixels of an foreground cleaned CMB full sky map, as

m =

 pobs

qobs

, where, pobs represents the set of pixels in a masked region, and qobs

represents those of the unmasked region that will be used to constrain the pixels in the

masked region.

2. With a fiducial power spectrum Cfid` , a full sky Gaussian random realisation is gen-

erated given by mr =

 pr

qr

. Here Cfid` is the theoretical best fit to Planck 2018

data.

3. Set qin = qobs− qr

4. Calculate covariance matrices Cpq,Cqq of pairs of masked-unmasked and unmasked-

unmasked pixel sets, respectively, determined from random Gaussian realisations

based on a theoretical (ΛCDM model, say) power spectrum best fitted to some data

(here, Planck 2018 data). A simpler method to calculate these covariance matrices, as

used here is by considering the expression for elements of the CMB covariance matrix
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C [264] :

Cij =
n`max∑
`=2

2`+ 1
4π Cfid` B2

`P
2
` P`(cos(γij)),

cos(γij) = cos(θi)cos(θj)

+sin(θi)sin(θj)cos(φi−φj), (2.219)

where, (θi,φi) are the spherical polar angles for the ith pixel, B`,P` are the beam and

pixel window functions, respectively, and P` is the Legendre polynomial.

5. Set pml = CpqC−1
qq qin. The inverse can be found using the Moore-Penrose generalised

pseudo inverse [87, 218, 264].

6. Set pcg = pml + pr. Thus pcg corresponds to pixels of a local constrained Gaussian

realisation.

7. The set of pixels for the complete inpainted map are given bymcg =

 pcg

qobs


To demonstrate the efficacy of the inpainting algorithm employed here, we consider a

statistically isotropic CMB realisation map and its inpainted version. The inpainting is done

on the partial sky map obtained with a mask which is a product of theKQ75 and U73 masks,

and hence a more conservative mask relative to either of the two. Beside the inpainted map,

we present a Mollweide projection of their difference. Say, for the original map, given by

m, and its inpainted version given bymip, the difference map ismd =mip−m. Som,mip

andmd, for a statistically isotropic CMB map are shown in Figure 2.6.

2.7.3 Results from inpainting over KQ75 and U73 masks

After separately applying the KQ75 and U73 masks to cleaned CMB maps, we generated

103 inpainted realisations of each of those, and have shown normalised counts (N ) of the

avge estimator. This quantity N (avge) is the number of realisations with a value of avge in

a certain bin, divided by the total number of realisations. Notably, these curves for both C`’s

and D`’s have very small spreads. Hence these resemble nearly vertical lines when shown

along with N (avge) from statistically isotropic CMB realisations. We calculated P t(avge)
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Figure 2.6: Top left panel: Original statistically isotropic CMB map m; top right panel: Map m
after masking; bottom left panel: map mip after inpainting over the masked region; bottom right
panel: difference between the original and inpainted maps. The difference map has values of order
10−3. This helps demonstrate the efficacy of the inpainting method used, which is that of a local
constrained Gaussian realisation.
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for each of the 103 inpainted realisations of a particular map and for a certain mask. We

found that the values for all realisations of each of the four respective cleaned maps are the

same as those in Table 2.1, regardless of the mask used.

In the first row of Figure 2.7, from left to right, the four subfigures correspond toN (avge)

of C`’s from inpainted realisations of COMM, NILC, SMICA and WMAP using theKQ75

mask (dark-green). Vertical red lines indicate values of avge from the four originally cleaned

full sky maps. The second row shows the same curve ofN (avge) (in dark-green) along with

that from 104 statistically isotropic CMB realisations (in cyan). The third and fourth rows

show the same curves as the first and second rows, respectively but with the use of the U73

mask.

The fifth and sixth rows of Figure 2.7 follow the same pattern as the first and second

rows, but for D`’s. The curves of N (avge) for D`’s from 103 inpainted realisations using

the KQ75 mask are shown in orange, while that from 104 statistically isotropic CMB maps

is shown in pink. The seventh and eighth rows follow the same pattern as the fifth and sixth

rows, but with the U73 mask.

From these subfgures we see that the spreads of N (avge) from inpainted realisations

are very small and closely centred around the red lines from the full sky foreground cleaned

CMB maps. Besides, some curves of N (avge) from inpainted realisations that are shifted

significantly tend to favour lower values of avge compared to these red lines (for e.g., fifth-

row-first-column and seventh-row-fourth-column subfigures of Figure 2.7). Again relative to

the curve from statistically isotropic CMB maps, these confirm that they lie on the leftmost

unlikely regions, as seen before (Table 2.1). Thus inpainting over the twomasks indicates that

the signal of anomalously low avge persists for both C`’s andD`’s of ` ∈ [2,31], robustly for

four different cleaning methods and two different masks. This makes it difficult to attribute

the same to foreground residuals.

2.7.4 Effect of the non-Gaussian cold spot (NGCS)

TheNGCS [71, 194, 276, 36] approximately centred at (θ,φ) =−57??jnltextdegree,209??jnltextdegree

was shown to be correlated with the north-south power asymmetry [37, 229, 11, 92, 93, 94].
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Figure 2.7: First row: Normalised counts N (avge) for C`’s using 103 inpainted realisations of
COMM, NILC, SMICA, WMAP with theKQ75 mask. Second row: N (avge) as in first row, along
with that from 104 statistically isotropic CMB realisations. Third, fourth row: Same as first and
second rows, but with the U73 mask. Fifth row: N (avge) for D`’s using 103 inpainted realisations
of COMM, NILC, SMICA, WMAP with theKQ75 mask. Sixth row: N (avge) as in fifth row, along
with that from 104 statistically isotropic CMB realisations. Seventh, eighth row: Same as first and
second rows, but with the U73 mask. Vertical red lines indicate values from full sky cleaned maps.
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Figure 2.8: The non-Gaussian cold spot (NGCS) mask: the NGCS is shown in cyan; the unmasked
region is in white.

However, the significance of this effect was seen to be low for low resolution [215] maps

at HEALPix nside = 16. Nevertheless, a study of its relation with the deficit of large-angle

correlations has not been investigated. We therefore generate a mask for the NGCS by setting

all pixels in a radius of 8??jnltextdegree from its center to zero, as shown in Figure 2.8. We

utilise this mask in union with the KQ75 and U73 masks (referred to as the KQ75−CS

and U73−CS masks) and redo the analysis with such inpainted realisations of the four

foreground cleaned CMB maps.

In the first row of Figure 2.9, from left to right, the four subfigures correspond to

N (avge) of C`’s from inpainted realisations of COMM, NILC, SMICA and WMAP using

theKQ75−CS mask (in green). Vertical red lines indicate values of avge from the original

cleaned full sky maps. The second row shows the same N (avge) along with that from 104

statistically isotropic CMB realisations (in cyan). The third and fourth rows show the same

curves as the first and second rows, respectively but with the use of the U73−CS mask.

The fifth and sixth rows follow the same pattern as the first and second rows, but for D`’s.

The seventh and eighth rows follow the same pattern as the third and fourth rows for D`’s.

The values of P t(avge) for these inpainted realisations are again the same as those of

their respective full sky cleaned maps as in Table 2.1, regardless of the mask used. Thus,

inpainting over the union masks, KQ75−CS and U73−CS indicates that the signal is

107



0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

16.1728

16.173

16.1732

16.1734

16.1736

16.1738

16.174

COMM (KQ75)

17.9439

17.944

17.9441

17.9442

17.9443

17.9444

17.9445

17.9446

17.9447

17.9448

17.9449

NILC (KQ75)

16.6838

16.684

16.6842

16.6844

16.6846

16.6848

16.685

16.6852

SMICA (KQ75)

17.7892

17.7893

17.7894

17.7895

17.7896

17.7897

17.7898

17.7899

17.79

17.7901

17.7902

WMAP (KQ75)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

0 50 100
150

200
250

300
350

400

pure CMB &
COMM (KQ75)

0 50 100
150

200
250

300
350

400

pure CMB &
NILC (KQ75)

0 50 100
150

200
250

300
350

400

pure CMB &
SMICA (KQ75)

0 50 100
150

200
250

300
350

400

pure CMB &
WMAP (KQ75)

0
0.02
0.04
0.06
0.08
0.1

0.12

16.1734

16.1734

16.1734

16.1734

16.1734

16.1734

16.1734

16.1734

16.1734

16.1734

16.1734

COMM (U73)

17.9445

17.9445

17.9445

17.9445

17.9445

17.9445

17.9445

17.9445

17.9445

17.9445

NILC (U73)

16.6846

16.6846

16.6846

16.6846

16.6846

16.6846

16.6846

16.6846

16.6846

16.6846

SMICA (U73)

17.7898

17.7898

17.7898

17.7898

17.7898

17.7898

WMAP (U73)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

0 50 100
150

200
250

300
350

400

pure CMB &
COMM (U73)

0 50 100
150

200
250

300
350

400

pure CMB &
NILC (U73)

0 50 100
150

200
250

300
350

400

pure CMB &
SMICA (U73)

0 50 100
150

200
250

300
350

400

pure CMB &
WMAP (U73)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

142.494

142.496

142.498

142.5

142.502

142.504

142.506

COMM (KQ75)

135.748

135.749

135.75

135.751

135.752

135.753

135.754

135.755

135.756

135.757

NILC (KQ75)

128.134

128.135

128.136

128.137

128.138

128.139

128.14

128.141

128.142

128.143

128.144

SMICA (KQ75)

114.377

114.378

114.379

114.38

114.381

114.382

114.383

114.384

114.385

114.386

WMAP (KQ75)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0 100
200

300
400

500
600

pure CMB &
COMM (KQ75)

0 100
200

300
400

500
600

pure CMB &
NILC (KQ75)

0 100
200

300
400

500
600

pure CMB &
SMICA (KQ75)

0 100
200

300
400

500
600

pure CMB &
WMAP (KQ75)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

142.503

142.503

142.503

142.503

142.503

142.503

142.503

COMM (U73)

135.753

135.753

135.753

135.753

135.753

135.753

135.753

NILC (U73)

128.14

128.14

128.14

128.14

128.14

128.14

128.14

SMICA (U73)

114.381

114.381

114.381

114.381

114.381

114.381

114.381

WMAP (U73)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0 100
200

300
400

500
600

pure CMB &
COMM (U73)

0 100
200

300
400

500
600

pure CMB &
NILC (U73)

0 100
200

300
400

500
600

pure CMB &
SMICA (U73)

0 100
200

300
400

500
600

pure CMB &
WMAP (U73)

N
(a

v
g
e
)

fo
r

C
ℓ

’s
→

N
(a

v
g
e
)

fo
r

C
ℓ

’s

→
N

(a
v
g
e
)

fo
r

C
ℓ

’s

→
N

(a
v
g
e
)

fo
r

C
ℓ

’s

→
N

(a
v
g
e
)

fo
r

D
ℓ

’s

→
N

(a
v
g
e
)

fo
r

D
ℓ

’s

→
N

(a
v
g
e
)

fo
r

D
ℓ

’s

→
N

(a
v
g
e
)

fo
r

D
ℓ

’s

→

Figure 2.9: First row: Normalised counts N (avge) for C`’s using 103 inpainted realisations of
COMM, NILC, SMICA, WMAP with theKQ75−CS mask. Second row: N (avge) as in first row,
along with that from 104 statistically isotropic CMB realisations. Third, fourth row: Same as first
and second rows, but with the U73−CS mask. Fifth row: N (avge) for D`’s using 103 inpainted
realisations of COMM, NILC, SMICA, WMAP with theKQ75−CS mask. Sixth row: N (avge) as
in fifth row, with that from 104 statistically isotropic CMB realisations. Seventh, eighth row: Same
as first and second rows, but with the U73−CS mask. Vertical red lines indicate values from full
sky cleaned maps. We have omitted the suffix ‘−CS’ due to lack of space in the subfigures.
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independent of the NGCS. Thus a significantly low mean spacing of even multipole APS

exists which is robust against four different cleaning methods, two different masks, and the

presence or absence of the NGCS.

2.8 Summary and conclusion

Level spacings of eigenvalues of random matrices have been studied before to classify the

change of correlations between integrable and chaotic systems. Integrable systems are

those for which the energy eigenvalues show level clustering (Poisson statistics) as they are

uncorrelated, while those of chaotic systems show level repulsion (Wigner-Dyson statistics)

due to presence of correlations.

Within the framework of the concordance model of cosmology, we expect the CMB

to be statistically isotropic. This implies that the angular power spectrum (APS) of CMB

is uncorrelated between different multipoles. Since foreground cleaned CMB maps are

obtained from observed CMB radiation after application of various state of the art foreground

cleaning methods, these maps are expected to be representative of the actual CMB sky, which

is hypothesised to have no correlations in its APS measures. Thus it is interesting to probe

the nature of any possible correlations in the APS of foreground cleaned maps to ascertain if

the principle of statistical isotropy is obeyed. We note that a breakdown of statistical isotropy

could be due to several possible mechanisms. These include the presence of a statistically

anisotropic primordial signal, or some minor residual foregrounds, or any unaccounted

agents between the source and the observer, or due to any minuscule systematics left over

as a result of the analysis pipeline employed during satellite data collection and/or the map

making procedure.

The presence or absence of correlations can be concretely established with the help of

the mean gap ratio, which avoids the problem of unfolding. We show that in the context

of simulated statistically isotropic CMB maps, the mean gap ratio closely corresponds to

that for Poisson statistics, whereas, on introduction of statistical anisotropy in the maps,

we see a shift towards some appropriate level repulsion statistics. The mean gap ratio is

obtained by averaging over an ensemble of CMB realisations, similar to how quantities like
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the correlation coefficients are ascertained. Since we have only one CMB sky to observe

instead of an ensemble, therefore we devise a novel estimator which computes the average

APS spacing of a set of low multipoles (` ∈ [2,31]). We show that such an estimator

can distinguish between statistically isotropic and anisotropic CMB, and hence is useful

in categorising the nature of correlations present in foreground cleaned CMB maps. This

estimator is computed for even and odd multipole spacings in addition to all multipoles taken

together.

Without any parity distinction, for all multipoles, the spacings are seen to be in good

agreement with theoretical expectation. Parity based distinction reveals that the average

spacing of even multipoles (avge) is anomalously low for both C`’s (at ≥ 98.86% C.L.)

and D`’s (at ≥ 95.07% C.L.). Since all four maps, namely, COMM, NILC, SMICA, and

WMAP, are obtained with the help of different foreground cleaning algorithms, the amounts

of foreground residuals in these maps are different [170, 6, 91]. These systematic differences

are distinctly visible if we consider any two of these maps at low resolution and subtract

one from the other. Hence we perform further studies with inpainted realisations of masked

CMB maps, to establish whether the observed anomalously low avge spacings are due

to foreground residuals, and we find that the signal persists in all the foreground cleaned

inpainted CMB maps. We conclude that this signal of unusually low average even multipole

spacings is robust against

(a) the use of two different galactic masks,

(b) data from two different instruments, i.e, WMAP and Planck satellites,

(c) consideration of maps obtained from four different cleaning methods, namely those

of Gibbs sampling for COMM, Spectral Matching Independent Component Analysis

for SMICA, Internal linear combination (ILC) in needlet space for NILC, ILC in pixel

space for WMAP, and

(d) the presence or absence of the non-Gaussian cold spot.

Thus, we find a robust signal of low average spacing for ` ∈ [2,31] with even multipoles

of C`’s and D`’s which seems unlikely due to foreground residuals in the galactic region of
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cleaned maps. This finding is in agreement with previous findings of the deficit of large-

angle correlation and its equivalence with the odd-parity preference of the APS. However,

our findings may additionally indicate that correlations between odd multipole APS are

not anomalous, as opposed to those of even multipole APS. This accounts for a possibly

unusual level clustering of even multipole APS or a spacing distribution that favours low

even multipole spacings. The unusually low average even multipole spacing hints at possible

breakdown of statistical isotropy which is primordial in origin. For instance, there could be

the possibility of an anisotropic Finsler spacetime model [53] with a correction term that

lowers even multipole C`’s. A theoretical model that alters the correlations of primordial

fluctuation modes [298], could inspire some alternate work to shed light on the low even

multipole APS correlation.
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CHAPTER 3

ISOTROPY STATISTICS OF CMB HOT AND COLD SPOTS

3.1 Introduction

The anisotropies of the CMB temperature field play a fundamental role behind the formation

of large scale structure of the universe. Over large angular scales these anisotropies are be-

lieved to have originated dominantly due to quantum fluctuations of the inflaton field present

in the very early universe. The primordial curvature perturbation power spectrum contains

snapshots of these fluctuations at the time of horizon crossing. Under the assumption of

rotational invariance of this power spectrum, the observable CMB is expected to be statisti-

cally isotropic without picking up any preferred direction in the radiation field. However, in

recent literature there are discussions [125, 259, 92, 233, 156, 20, 157, 19, 63] and claims

of the presence of preferred direction [77, 232, 247, 251, 246, 167, 301] in the CMB field

or breakdown of rotational invariance of the primordial power spectrum [128, 11, 129].

These indicate possible hints towards new fundamental physics [4, 188, 258, 53, 177, 83].

Apart from the cosmological origin of any possible anisotropic signal in the CMB, a ques-

tion of equal importance is whether the foreground minimized CMB maps may have any

residual systematics, e.g., residual foreground contamination which may potentially induce

a breakdown from rotational invariance of the field and consequently give rise to a preferred

direction. Needless to mention, if the presence of such residuals are not taken care of,

cosmological parameters estimated from the CMBmaps will be potentially biased or contain

inaccurate confidence intervals on their estimated values. Thus, for proper and accurate

extraction of cosmological information from CMB maps it is utmost essential to analyse

from as many different perspectives as possible, if the observed maps contain any signal of
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breakdown of statistical isotropy.

In this chapter, we use a new method to investigate the isotropy of the anisotropy pattern

of the CMB radiation field. The local maxima (hot spots) and minima (cold spots) of the

CMB are uniformly distributed over the surface of a two-sphere if the field is isotropic and

does not contain any preferred direction. A breakdown from uniformity of the distributions

of either or both of these types of spots then needs to be investigated to validate the null

hypothesis of isotropy. We use the concept of the orientation matrix introduced by Watson

(1965) [285] and Scheidegger (1965) [249], to probe any violations of uniformity of the

distributions of hot and cold spots over the CMB sky. The method is unique in its nature,

since if there is any non-uniformity present in the data, it provides a geometric description

of the non-uniformity in terms of clustering or girdling (ring structure) and an additional

measure of the magnitude of such a deviation from uniformity in terms of the so-called

strength parameter.

In earlier literature, the distribution of hot and cold spots of the CMB maps have been

shown to encapsulate topological properties of the temperature field [281]. Apart from

possible primordial or residual systematic effects present in the cleaned CMB maps, any

unusual features such as clustered or girdled spots in cleaned maps may indicate presence

of organised collections of structures or voids [267] between the source and observer. In

addition, a higher signal-to-noise ratio at the hot spots [248, 43] as noted by [169], makes

them favourable to study.

A statistical analysis of such hot and cold spots on the pixelised sphere using the orien-

tation matrix has some other practical advantages as well. This reduces the large data set of

numerous hot and cold spots to their respective eigenbases [149]. For accurate estimation

of properties of the CMB sky, sometimes one analyses partial sky CMB maps, which are

obtained by masking out the foreground dominated regions near the plane of the Milky Way

[147]. Our study can easily be applied to partial CMB skies, without bothering about the

complications that may arise due to multipole mode couplings on masked CMB maps [138]

or due to any subtle biases introduced due to inpainting methods [234] when an underlying

statistically isotropic CMB theoretical angular power spectrum is assumed while trying to
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reconstruct the lost sky region due to masking.

Previously, authors of [169] have studied one-point statistics such as the number, mean

and variance of local extrema and demonstrated that on an average the hot (cold) spots of the

observed CMB data are not hot (cold) enough. Further with the help of two-point statistics it

was shown that possibly unusual properties associated with large angular scale structures are

related with the behaviour of hot and cold spots of the CMB [142]. Since the initial density

fluctuations are assumed to be Gaussian, a 3D Gaussian field model [26] was extended to

address the 2D Gaussian CMB temperature field [43]. Notable works that have followed

thereafter have dealt with the number density, shapes, separation distances and peak-peak

correlation functions for spots [223, 62, 272]. The discovery of the non-Gaussian cold

spot [277, 70, 72] and the theoretical frameworks for hot and cold spots of a 2D Gaussian

field as presented in [43, 223, 62] have inspired further research to probe non-Gaussianity

[272, 58, 199].

This chapter is organised as follows. In Section 3.2 we define the estimators for the shape

and strength of non-uniformity used in our study. In Section 3.3 we analyse the behaviour

of the chosen estimators on two toy model maps to illustrate clustering or girdling of spots.

In Section 3.4, we discuss the application of these estimators to observed CMB maps. In

Section 2.6 we present our results for any non-uniformity of spots in the observed CMB.

In Section 3.6, we assess if the results obtained may be related with low CMB variance.

In Section 3.7 we consider the composite set of both hot and cold spots and assess their

uniformity. In Section 3.8 we form general conclusions and summarise our findings.

3.2 Estimators

One can study the distribution of spherical data as an analogue of unit mass points on the

surface of a 2-sphere with the help of a unit-mass orientation matrix [286, 292, 102],

T =


∑
ixi

2 ∑
ixiyi

∑
ixizi∑

ixiyi
∑
i yi

2 ∑
i yizi∑

i zixi
∑
i ziyi

∑
i zi

2

 , (3.220)
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Figure 3.1: A 2-sphere for which all its data points or spots are considered to contribute equally to
the orientation matrix, such that these points can be assigned unit masses.

where, (x1,y1, z1)...(xn,yn, zn) are the direction cosines of unit mass points labelled with

index i= 1, ...,n. Scheidegger (1965) [249] used the principal eigenvector of the normalised

unit-mass orientation matrix (i.e, T/n) to find a ‘mean’ axis, while Watson (1965) [285]

used the eigenvalues of T to classify non-uniform placements of data points on a 2-sphere.

Woodcock (1977) [293] defined two kinds of eigenvalue ratios to quantify the shape and

strength of such non-uniformity.

The CMB has a nearly uniform background temperature of T0 = 2.726K [103]. However

there exist small directionally dependent differences of the order of a few hundred µK

relative to T0, which are called anisotropies. The hot and cold spots of the CMB temperature

anisotropy field can therefore be treated as data points on a 2-sphere and their placements

can be studied with the help of the orientation matrix.

In [102], the authors treat all data points on the sphere as equivalent in magnitude and

ascribe unit masses to the same, such as the sphere shown in Figure 3.1, containing all spots

in the same colour (black), to highlight their equivalent contribution to the orientationmatrix.

However, in the case of the CMB temperature field, as various extrema are offset differently

relative to T0 (illustrated in Figure 3.2), we extend the concept to include ‘non-unit masses’,

i.e, peak values of the hot spots or cold spots, and express an orientation matrix T (s) as,
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Figure 3.2: For the CMB temperature anisotropy field, its local extrema or spots contribute in
varying degrees of magnitude to the orientation matrix, as shown by their lightness or darkness of
colour. Hence we associate non-unit masses with these spots. Here, the CMB 2-sphere is shown in
an orthographic projection.

T (s) =
∑
im

(s)
i τ

(s)
i∑

im
(s)
i

(3.221)

where,
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Here, the superscript (s) stands for s = h,c, for hot or cold spots, respectively. For the ith

s-spot, x(s)
i ,y

(s)
i , z

(s)
i are its direction cosines. Its non-unit mass weight ism(s)

i = |∆T (s)
i |=

|T (s)
i −T0|, which is the magnitude of its temperature relative to T0. The normalisation by

the non-unit mass weights in equation (3.221) ensures that the sum of the three eigenvalues

of the non-unit mass orientation matrix (T (s)) used by us becomes unity, as it was in the case

of the normalised unit-mass orientation matrix (T/n) [102].

The principal advantage of using non-unit masses is that it helps take into consideration
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the additional randomness from peak values of the spots along with the randomness that

comes from eigenvector directions. In the case of perfect uniformity in the placement of

spots, there can be no preferred eigenvector directions, and hence all eigenvalues of the

orientation matrix must be equal. Inequalities of eigenvalues therefore indicate the presence

of non-uniformity. We note that each spot on the CMB sphere may contribute differently in

terms of its mass weights (|∆T (s)
i |) to determine the magnitudes of eigenvalues and hence

the preference of any eigenvector direction. Thus the inclusion of non-unit mass weights is

crucial for an accurate detection of non-uniformity in the arrangement of spots. In Section

3.3, we further elucidate this using two toy maps.

The orientation matrix is positive definite by construction, and thus all its eigenvalues

(λ(s)
i for i= 1,2,3) are positive and its eigenvectors aremutually orthogonal. Considering the

three eigenvalues arranged in ascending order, i.e., 0≤ λ(s)
1 ≤ λ

(s)
2 ≤ λ

(s)
3 , one can quantify

the manner and extent of non-uniformity in placements of hot and cold spots about their

respective eigenvectors. Isotropic or completely uniform distributions of spots on the CMB

sphere correspond to λ(s)
1 = λ

(s)
2 = λ

(s)
3 ; for planar girdles of spots that are evenly placed in

great circles, λ(s)
1 <λ

(s)
2 ' λ

(s)
3 ; whereas linear clusters manifest as λ(s)

1 ' λ
(s)
2 <λ

(s)
3 . Thus,

the following ratios,

γ(s) =
log λ

(s)
3
λ

(s)
2

log λ
(s)
2
λ

(s)
1

,

ζ(s) = log λ
(s)
3

λ
(s)
1
, (3.223)

can help us to study the nature of placement of spots on the CMB sphere. These are known

as the shape and strength parameters, respectively. By definition both these parameters take

positive values. The shape parameter describes the arrangement of spots on the sphere, in

terms of girdling (γ(s) < 1) as opposed to clustering (γ(s) > 1) and transitions (γ(s)→ 1)

between these two shapes of arrangement. The strength parameter quantifies the degree of

non-uniformity, starting from a value of zero which corresponds to the case when each of

the three eigenvalues are equal to 1/3 and the distribution of spots is absolutely uniform or
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Table 3.1: Value-based interpretations of isotropy estimators: The shape parameter categorises
non-uniformly placed spots into clusters or girdles (rings). The strength parameter tells us how weak
or strong is the extent of this non-uniformity. Here, (s) can be replaced by s = h,c for hot spots or
cold spots, respectively.

Isotropy estimators Ranges Interpretations

Shape γ(s) 0≤ γ(s) .∞ Girdling
for γ(s) ∈ [0,1) ;

Clustering
for γ(s) ∈ (1,∞) ;

Cluster-girdle
transitions
for γ(s)→ 1 .

Strength ζ(s) 0≤ ζ(s) .∞ Perfect uniformity
for ζ(s) = 0;

Perfect non-uniformity
for ζ(s)→∞ .

isotropic. We present the ranges of values of these estimators and associated interpretations

in Table 3.1. This table may be helpful as a quick reference to categorise the ways in which

hot and cold spots are placed on the celestial sphere of the CMB.

Further, to estimate the distributions of values of these estimators, we obtain 104 full

sky statistically isotropic Gaussian random realisations of the pure CMB using the ΛCDM

concordance model based on the Planck 2018 best-fit theoretical angular power spectrum

[9]. All pure CMB maps are at a HEALPix [117] resolution of nside = 16 with `max = 32.

We identify the hot and cold spots of the pure CMB maps with the help of the HEALPix

F90 facility called ‘hotspot’. The probability densities of isotropy estimators for these full

sky pure CMB maps are shown in Figure 3.3. From the left panel of Figure 3.3, we see

that pure CMB realisations exhibit a wide range of values of the shape parameter (γ(s))

and the probability densities of γ(s) for both hot and cold spot placements behave similarly.

From the right panel of Figure 3.3, we see that probability density functions of strengths of

non-uniformity (ζ(s)) of both hot and cold spots are also similar in behaviour as expected.
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Figure 3.3: Left panel: Probability density functions of the shape parameter (γ(s)) for hot spots
(green) and cold spots (orange) from 104 full sky pure CMB maps at HEALPix resolution of
nside = 16. The horizontal axis has been clipped at γ(s) = 10, else it ranges up to an order of 102.
Both curves show qualitatively similar behaviour. Right panel: Probability density functions of the
strength parameter (ζ(s)) for hot spots and cold spots. Both p(ζ(h)) and p(ζ(c)) behave similarly.

Figure 3.4: Two toy model maps of hot spots and cold spots, to show their girdled and clustered
distributions, respectively, with different extents of non-uniformity or anisotropy.

3.3 Analysis of toy models

We test our estimators with two toy CMB maps which have been constructed to illustrate

girdling and clustering of spots. Each of the toy maps have different strengths of non-

uniformity. We use HEALPix for constructing and analysing these maps. The maps are at a

resolution of nside = 16.

We form the first toy map (TM1) by constraining its spherical harmonic coefficients (a`m)

in the harmonic space. For this purpose, we randomly set the a`m for ` = 8 to a value of 6

and for ` = 28 to to a value of −6 for both real and imaginary parts. Rest of the spherical

harmonic coefficients are set to zero. We then convert these a`m coefficients to HEALPix
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Table 3.2: Values of the isotropy estimators for toy model maps. For the first toy map (TM1),
γ(s) < 1 indicates girdled hot and cold spots, with strengths of ζ(s) > 1. The second toy map (TM2)
is more non-uniform with ζ(s) > 2, and has clusters as γ(s) > 1.

Toy Map Spots(s) γ(s) ζ(s)

1 h 0.12690120 1.2989503
1 c 0.12694086 1.1855485
2 h 7.1326062 2.7095464
2 c 8.4651048 2.5985995

map at nside = 16.

We construct the second toy map (TM2) in the following manner. To assign clustered hot

and cold spots, we specify some positive and negative values for two groups of neighbouring

pixels of a map array (sayma) while setting other pixels to a value of zero. We also consider

a randomly generated map mb. Then TM2 is a linear combination of these maps, given

by ma +λ×mb. Here λ is a very small fraction which highly suppresses spots from the

randomly generated part (mb), making them almost invisible.

We show the maps TM1 and TM2 with their hot spots and cold spots in a standard

Mollweide projection in Figure 3.4. From the left panel of Figure 3.4 we see that TM1

contains an approximately girdled distribution of spots. Since the non-uniformity of spots

in TM1 is distinctly visible, the strength parameter should definitely be greater than zero but

it may not be very high due to the presence of several weak (lightly coloured) hot and cold

spots in the map. In the right panel of Figure 3.4 we see that the hot and cold spots of TM2

in the northern and southern hemispheres are quite clustered, and their non-uniformity is

stronger relative to TM1.

The values of the estimators ascertained from these two toy maps are given in Table 3.2.

Clearly, the strength of non-uniformity for TM1 is lower than that of TM2. The values of

γ(s) for TM1 are lesser than unity, indicating girdles, and those for TM2 indicate clusters as

those are greater than unity.

Both maps TM1 and TM2 contain several faint hot and cold spots which have low peak

values. Despite being faint, some of these spots are visible for TM1 but for TM2 they are

highly suppressed. These spots are numerous and their overall distributions are reasonably
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free from any signal of girdling or clustering. If such faint spots are considered on an equal

footing with the dark coloured spots which have higher peak values, our estimators may not

be able to correctly recover the signal of non-uniformity. This would be the case when all

spots are treated as unit masses. On such a treatment, we find that

(a) shape parameters of TM1 are γ(h) = 1.2926231, γ(c) = 1.5587367, neither of which

correspond to girdles.

(b) For TM2, we have γ(h) = 0.98292051, γ(c) = 0.47354657, neither of which correspond

to clusters.

(c) Strength parameters of TM1 are ζ(h) = 0.34948347, ζ(c) = 0.38412180, which indicate

very weak non-uniformity.

(d) For TM2, the strengths are ζ(h) = 0.19635766, ζ(c) = 0.17391740, which indicate

nearly uniform placement of spots.

These estimator values obtained with unit-mass weights are markedly insensitive to the

visible signatures of non-uniformity of spots. Hence, the use of non-unit mass weights in

the orientation matrix for CMB spots is indispensable for a reliable recovery of signals of

non-uniformity.

3.4 Application on foreground-minimized CMB maps

We simulate 104 pure CMB maps using the Planck 2018 best-fit theoretical angular power

spectrum [9] at nside = 16 with `max = 32. All these maps contain pixel smoothing corre-

sponding to the pixel resolution nside = 16. The advantage of pixel window smoothing is

two fold. First, if the maps are not smoothed by the window function unwanted errors in

the characterization of peaks may occur. Secondly, since the HEALPix pixel tessellation

does not follow an isotropic distribution, systematics can be introduced in the shape and

strength parameters if the maps are not smoothed by the pixel window functions. For the

observed CMBmaps we downgrade them from nside = 2048 (for Planck) or nside = 512 (for

WMAP) to nside = 16 using ‘ud_grade’ facility. Therefore, these low resolution data maps
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also correctly contain pixel window smoothing effects. We convert the pixel smoothed data

maps to spherical harmonic coefficients and reconstruct the actual data maps for our analysis

by taking multipoles between ` = 2 to 32. In addition, any existing beam smoothing effects

are removed from observed CMBmaps. Thus similar to pure CMBmaps, the observed maps

are not convolved with any beam window function.

We exclude multipoles `= 0,1 from our analysis since these correspond respectively, to

the monopole of uniform CMB temperature [103] and the dipole due to our motion relative to

the CMB rest frame [47]. We neglect noise in the analysis, as it is expected to be insignificant

for the low multipole range maps analysed here [270], as these correspond to large angular

scales. We utilise the F90 facility ‘hotspot’ of HEALPix for finding the hot and cold spots

for simulated as well as observed CMB maps.

We compute the values of the shape and strength parameters, denoted by x for each of

the observed and simulated maps. Then the fraction P t(x) for each observed data map can

be calculated by counting the number of simulations which have a value of xsim greater than

that from observed data (xdata) and dividing the same by the total number of simulations.

Conventionally, xdata for which P t(x) are found outside the confidence interval bounded by

the probability values 0.05 and 0.95 are considered unlikely relative to pure CMB realisations.

Thus for P t(x)< 5%, this would imply that xdata is unusually high, whereas xdata becomes

unusually low for P t(x)> 95%.

In the following Sections 3.4.1 and 3.4.2, we describe the observed CMBmaps andmasks

used for the analysis. We first choose to include the galactic region in the analysis along with

the other parts of the sky. In this case, our study concerns two cases. First we use the entire

sky and secondly we exclude only the region corresponding to the non-Gaussian cold-spot

(NGCS). Thereafter, we exclude the galactic regions from the analysis. The inclusion and

exclusion of the galactic regions in two different analyses help us understand effects of any

(minor) residual foregrounds that may be present in the galactic regions even after performing

foreground minimization. We present the results for isotropy statistics in Section 2.6.
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Figure 3.5: Mollweide projections of hot spots and cold spots for the four full sky cleaned CMB
maps, i.e., COMM, NILC, SMICA, and WMAP at a HEALPix resolution of nside = 16. These
subfigures illustrate how hot and cold spots are placed on observed full sky CMB maps.

3.4.1 Case I: Without galactic masks

3.4.1.1 Input maps

We use four cleaned maps, namely, those of the 2018 release [12] of Planck’s Commander

(COMM),NILC, and SMICA, andWMAP’s 9 year ILC [34] (hereafter referred to asWMAP)

for the full sky analysis. We present Mollweide projections showing hot and cold spots of

these four individual full sky maps in Figure 3.5 to illustrate how the spots are scattered on

the observed full sky CMB.

3.4.1.2 NGCS mask

The non-Gaussian Cold spot (NGCS) [71, 194, 276] is a well established anomaly, centred

at (θ,φ) =−57??jnltextdegree,209??jnltextdegree. The north-south power asymmetry [37,

229, 11, 92, 93, 94] was seen to be correlated with the NGCS [36], the significance of which

effect was seen to be low for low resolution [215] maps at HEALPix nside = 16. In order to
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Figure 3.6: The non-Gaussian cold spot (NGCS) mask at a HEALPix resolution of nside = 16: the
masked region is in cyan; the white region is unmasked.

check for any correlation between the isotropy estimators and the NGCS, we mask out the

map pixels in a radius of 8??jnltextdegree from the cold spot center. This mask is shown in

Figure 3.6. This mask is used independently for the four cleaned maps and all pure CMB

maps described above, and later along with two galactic masks for nine observed maps as

mentioned below.

3.4.2 Case II: With galactic masks

3.4.2.1 Input maps

In addition to the four cleaned CMBmaps (COMM,NILC, SMICA, andWMAP 9 year ILC),

we useWMAP’s foreground reducedQ,VandWfrequencymaps andPlanck’s ‘fgsub-sevem’

70GHz and 100GHz frequency maps. These five frequency maps will hereafter be referred

to as freqQ, freqV, freqW, freq70, and freq100, respectively.

3.4.2.2 Masks

Foreground residuals predominantly in the galactic region of cleaned CMB maps may cause

certain unusual patterns to manifest in the observed data when it is analysed relative to pure

CMB realisations. The use of a mask for the galactic region and some extra-galactic point

sources is required to check if such unusual patterns are truly characteristic of the CMB or

125



due to residual systematics.

We utilise low resolution versions of the KQ75 mask of WMAP 9 year data and the

U73 mask of Planck 2018 data, which is a product of the temperature confidence masks

associated with COMM, NILC, SEVEM, and SMICA. The two masks are shown in Figure

3.7. TheKQ75 mask is very conservative in the sense that it comprises a wider galactic cut

and conceals a larger number of point sources as compared to the U73 mask.

Figure 3.7: KQ75 and U73 masks at a HEALPix resolution of nside = 16: the masked region is in
cyan; the white region is unmasked.

These low resolution masks are obtained by downgrading their high resolution variants to

HEALPix nside = 16 and applying thresholds of 0.85 and 0.98 for theKQ75 andU73masks,

respectively. A threshold of y entails setting all pixels with values≤ y to 0, and the rest to 1,

after a mask is downgraded. The resulting sky fractions for the KQ75 and U73 masks are

62.9% and 67.5%, respectively. The thresholds chosen here are a bargain between a good

sky fraction of the CMB for signal detection vis a vis any dominant foreground sources at the

large scales [270] considered here. The choices for thresholds are not altogether arbitrary,

but inspired from [14]. Additionally, we consider the union masks of KQ75 and U73 with

the NGCS mask, referred to as KQ75−CS and U73−CS, respectively.

We apply these galactic masks one by one, simultaneously to the four cleaned CMB

and five foreground reduced frequency maps and 104 pure CMB maps. The partial sky

analysis with the nine input maps of observed CMB using galactic masks provides checks of

robustness of any detected signal, against the following:
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Table 3.3: Values of the isotropy estimators for observed full sky CMB maps: Strengths ζ(h) and
ζ(c) are low, indicating mostly uniform placements of hot spots and cold spots.

Data Map γ(h) ζ(h) γ(c) ζ(c)

COMM 1.5660 0.2137 1.5079 0.3479
NILC 1.5811 0.1849 0.7978 0.2800
SMICA 1.0435 0.2089 0.5460 0.2367
WMAP 0.4239 0.2148 2.4463 0.3408

1. Different galactic masks (KQ75 and U73),

2. Various methods of foreground cleaning (Planck’s COMM, NILC, and SMICA, and

WMAP’s ILC) and reduction (foreground template model reduction [134, 34] for

freqQ, freqV, freqW and SEVEM [100, 172] for fgsub-sevem freq70 and freq100

maps),

3. Several frequencies (Q, V, W bands and 70GHz,100GHz),

4. Presence or absence of the NGCS when the galactic region is masked out, and

5. Different instruments (WMAP and Planck’s Low Frequency [15] and High Frequency

Instruments [10]).

3.5 Results and analysis

We present results from the analysis of foreground minimized CMB maps with and without

galactic masks. Without galactic masks, we analyse four cleaned CMB maps, firstly, for

the full sky, and secondly after masking the NGCS. With galactic masks, we analyse nine

observed CMB maps.

3.5.1 Case I: Without galactic masks

For the four full sky cleaned CMB maps used, we tabulate the values of the estimators in

Table 3.3. We see that mostly uniform placements of hot spots and and cold spots can be

inferred from the values of the strength parameter.
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Figure 3.8: Left panel: P t(ζ(h)) (green) and P t(ζ(c)) (orange) are shown; for the four full sky
maps, unusual uniformity of hot spots is seen for all maps, and that of cold spots is seen for NILC
and SMICA. Right panel: for the four maps with the NGCS mask, unusual uniformity of hot spots
persists for all maps, but that of cold spots is seen for SMICA.

In Figure 3.8, we show P t for the four cleaned CMB maps, without galactic masks. On

the left panel of Figure 3.8, results from the full sky maps are presented. We find that the

strength parameters ζ(h) and ζ(c) are relatively lower than those from pure CMB simulations,

as P t(ζ(h)) ranges between 98.52%–99.25% and P t(ζ(c)) ranges between 88.97%–97.68%.

Thus, we see robustly low ζ(h) for all the four cleaning methods. The lowest value of

ζ(h) = 0.1849 with P t(ζ(h)) = 99.25% is seen for NILC. Low ζ(c) for NILC and SMICA are

seen, of which the lowest ζ(c) = 0.2367 with P t(ζ(c)) = 97.68% is seen for SMICA.

On the right panel of Figure 3.8, results from the four maps after masking the NGCS are

shown. We find that P t(ζ(h)) ranges between 98.53%–99.30%, and P t(ζ(c)) lies between

86.69%–97.06%. Thus removal of the NGCS very slightly increases the significance of low

ζ(h) while decreasing the significance of low ζ(c) relative to pure CMB realisations. Robustly

low ζ(h) for all the four cleaned maps is seen with the NGCS mask, and the lowest value of

ζ(h) = 0.1849 with P t(ζ(h)) = 99.30% occurs for NILC. Low ζ(c) is seen for SMICA with

ζ(c) = 0.2516 and P t(ζ(c)) = 97.06%.

Thus, unusually weak non-uniformity of hot spots in all four maps is seen for full sky as

well as for partial sky outside the NGCS mask. However, the shape parameters γ(h),γ(c) are

in good agreement with pure CMB realisations. Unusually low strength of non-uniformity

of cold spots is seen for NILC and SMICA for full sky. Interestingly, after masking the

galactic regions, this signal spreads over several cleaned maps. We discuss this in detail in
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the subsequent section.

3.5.2 Case II: With galactic masks

In Figure 3.9, we show P t for the nine observed partial sky CMB maps, with galactic

masks. On the top left panel of Figure 3.9, results obtained with the use of KQ75 mask are

shown. Significantly low ζ(c) is seen for all the maps, except SMICA and freq100. Lowest

ζ(c) = 0.4007 with P t = 96.75% is seen for freqW, without the NGCS mask. On the top

right panel of Figure 3.9, we again obtain robust results of anomalously low ζ(c) for the

KQ75−CS mask for all maps, except SMICA and freq100. Lowest ζ(c) = 0.3924 with

P t = 97.03% is seen for freqW.

On the bottom left panel of Figure 3.9, results obtained with the use of U73 mask are

shown. Again, an unusually low ζ(c) is seen robustly for various maps. Significantly low ζ(c)

is seen for all maps except freq100. Lowest value of ζ(c) = 0.2446 occurs for freqW with

P t(ζ(c)) = 99.37% without the NGCS mask. From the bottom right panel of Figure 3.9, for

U73−CS mask, we see significantly low ζ(c) for all maps except freq100. Lowest value of

ζ(c) = 0.2432 with P t = 99.44% occurs for freqW.

We have presented the numerical values of P t(ζ(c)) in Table 3.4. These numerical values

indicate that the unusually weak non-uniformity of cold spots is more significant with the

use of the less conservative U73 and U73−CS masks. The values of P t in Table 3.4 reveal

that the the absence of the NGCS slightly complements the unusual nature of ζ(c) with the

KQ75 mask.

Thus, unusually low strength of non-uniformity of cold spots is seen for all maps, except

SMICA and freq100 whenKQ75 mask is applied with and without the NGCS mask. Again,

suchweak non-uniformity of cold spots is seen for all maps, but with the exception of freq100,

when U73 mask is applied with and without the NGCS mask. Strength of non-uniformity of

hot spots (ζ(h)) is also low, but the effect is not significant relative to pure CMB realisations.

A single instance of an unusual ring structure of hot spots for freqQ (not shown in Figure 3.9)

is seen with P t(γ(h)) = 99.32% for the U73 mask and P t(γ(h)) = 99.33% for the U73−CS

mask. But no significantly unusual γ(h) was seen with the more conservative KQ75 and
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Figure 3.9: Top left panel: P t(ζ(c)) is in orange; ζ(c) is significantly low for all maps except SMICA
and freq100. Top right panel: unusual uniformity of cold spots is seen for all maps except SMICA
and freq100. Bottom left panel: similarly unusual uniformity of cold spots is seen for all maps except
freq100. Bottom right panel: again, ζ(c) is significantly low for all maps except freq100.

Table 3.4: Numerical values of P t(ζ(c)) for partial sky analysis with galactic masks. A very high
P t entails that the value of the estimator from observed data is unusually low, and vice versa. Hence,
we see anomalously low ζ(c) for several maps, albeit with different P t values for different masks.
Significant values of P t are in boldface.

Map KQ75 KQ75−CS U73 U73−CS
COMM 0.9533 0.9543 0.9848 0.9838
NILC 0.9605 0.9628 0.9867 0.9858
SMICA 0.9259 0.9276 0.9688 0.9655
WMAP 0.9637 0.9687 0.9917 0.9928
freqQ 0.9656 0.9682 0.9749 0.9752
freqV 0.9594 0.9615 0.9859 0.9858
freqW 0.9675 0.9703 0.9937 0.9944
freq70 0.9526 0.9555 0.9921 0.9926
freq100 0.9280 0.9294 0.9221 0.9138
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KQ75−CS masks. This implies that the ring structure of hot spots for freqQ could be due

to some foreground residuals when the U73 and U73−CS masks are applied. Apart from

this occurrence, no other unusual clustering or girdling is seen for any of the maps with the

four masks.

3.6 Is anomalously weak non-uniformity due to low variance?

It has been seen before that on an average hot and cold spots of the observed CMB have un-

expectedly low peak values [169]. Besides, the variance of the CMB temperature anisotropy

field is anomalously low [202]. Therefore such low variance in addition to low mean values

of local extrema entails that the peak values when measured will turn out to be lower than

expected from statistically isotropic Gaussian random fluctuations of the temperature field.

Since peak values of spots are incorporated as non-unit mass weights in the orientation ma-

trix, our novel isotropy statistics carry this information. Further, the low variance anomaly

was seen to be confined to the northern ecliptic hemisphere. Any such directional preference

is additionally manifested in the relative magnitudes of eigenvalues, which is encapsulated

by the strength of non-uniformity (ζ(s)). Thus it is important to check if the signal of anoma-

lously low strength of non-uniformity as seen for hot spots on full sky and partial sky with

the NGCS mask, or that for cold spots on partial sky outside galactic masks are correlated

with the low CMB variance anomaly. Another interesting question to consider is that of

how the shape and strength parameters behave on different scales. We can understand this

behaviour by analysing CMB maps containing different ranges of multipoles.

Thus, we seek to investigate the following:

(a) whether the signal of anomalously weak non-uniformity is correlated with low CMB

temperature variance, and

(b) how the isotropy statistics behave on different scales.

Since the CMB low variance anomaly disappears when the quadrupole and octupole are

excluded [73], therefore both these questions can be addressed by excluding the quadrupole

and octupole which correspond to two of the largest scales.
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Figure 3.10: The cosine filter function which is multiplied with the spherical harmonic coefficients
of CMB maps to study how quadrupole-octupole contributions and hence low CMB variance may
affect the strength of non-uniformity of hot and cold spots.

Thus we reconstruct all pure and observed CMB maps after multiplying their spherical

harmonic coefficients by a cosine filter,

w` = 0 for ` ∈ [0,3],

w` = 1
2

[
1− cos

(
π(`−3)

5

)]
for ` ∈ [4,7],

w` = 1 for ` ∈ [8,32]. (3.224)

This filter function (shown in Figure 3.10) excludes the quadrupole and octupole and smoothly

suppresses low multipoles upto ` = 7. We perform the same analysis as in Section 3.5 for

the new maps and find that:

1. without galactic masks, the signal robustly disappears across all cleaned maps for the

full sky and with NGCS mask. This is reflected in the values of P t, which range

between 48.68%–90.92% for ζ(h) and 30.12%–94.01% for ζ(c).

2. However, with galactic masks, the signal does not persist in any of the foreground min-

imized maps except maps of freqQ (with U73 mask) and freqV (withKQ75,KQ75−

CS masks) for which ζ(c) is unusually low. Thus we see that P t(ζ(h)) ranges between

31.22%–81.59% whereas P t(ζ(c)) lies between 47.93%–97.02%.

Since the signal of weak non-uniformity robustly disappears across all cleaned maps for
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full and partial sky coverage, this indicates that the signal could potentially be related with

low CMB variance and quadrupole-octupole contributions, and these may share a common

origin. Besides, the loss of robustness in disappearance of the signal occurs only for freqQ

and freqV maps outside the galactic region. This strongly suggests that some foreground

residuals in these two maps contribute to the signal.

3.7 Some other considerations

In our work we have considered separate sets of hot spots and cold spots. Further we have

taken into account the peak values of spots relative to the mean CMB temperature, in the

form of non-unit mass weights. In Section 3.3, we have demonstrated for two toy maps how

the use of unit mass weights is insufficient to accurately recover any signal of non-uniformity

of spots. However, for pure and observed CMB maps, one may be curious to consider:

(a) The use of unit masses for the hot and cold spots,

(b) The composite set of hot and cold spots taken together.

We attempt at shedding light on the consequences of these choices by analysing both types

of spots together, using a single orientation matrix,

T (h+c) =
∑
im

(h)
i τ

(h)
i +∑

jm
(c)
j τ

(c)
j∑

im
(h)
i +∑

jm
(c)
j

, (3.225)

for two cases, i.e, with unit and non-unit masses. Here, the superscript (h+c) denotes the

composite set including both hot and cold spots.

When both kinds of spots are taken together, we expect a more uniform (isotropic)

placement of the spots from pure CMB realisations, compared to the case when they are

considered separately. Thus we expect low strength of non-uniformity (ζ(h+c)) for most of

the pure CMB maps. A low ζ(h+c) corresponds to very closely spaced eigenvalues, so that

there are almost no preferred directions for any non-uniform placements of the spots.

We know that with the choice of non-unit masses as opposed to unit masses, we are

introducing the randomness which is attributable to the peak values of spots in the system.

This is in addition to the randomness associated with the eigenvector directions. Hence
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performing a comparative study of unit (m(h)
i ,m

(c)
i = 1) and non-unit masses will help

elucidate the advantage of considering non-unit masses to corroborate the expected isotropy

of eigenvalues. We show the probability distributions of the shape and strength parameters

for simulated pure CMB maps in Figure 3.11 and those for the three eigenvalues (λ(h+c)
1 ≤

λ
(h+c)
2 ≤ λ(h+c)

3 ) in Figure 3.12. We use the colour magenta for the case of unit-mass weights

and cyan for the case of non-unit mass weights.
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Figure 3.11: Left panel: Probability density functions of the shape parameter (γ(h+c)) obtained
from Monte-Carlo simulations are shown for unit masses (magenta) and for non-unit masses (cyan).
The horizontal axis is clipped at 10, else it ranges up to an order of 102. Both the densities show
qualitatively similar behaviour. Right panel: Probability density functions of the strength parameter
(ζ(h+c)) for unit-mass and non-unit mass weights are shown. For non-unit mass case p(ζ(h+c)) peaks
at lower values of ζ(h+c).

The left panel of Figure 3.11 shows that the distributions for unit and non-unit masses

behave similarly for the shape parameter γ(h+c). From the right panel of Figure 3.11, for

ζ(h+c) with non-unit masses, the range of values is more constricted relative to that with

unit-masses, and the peak of the p(ζ(h+c)) curve is at lower values of ζ(h+c) for non-unit

mass weights, hence corresponding to greater uniformity. From subfigures of Figure 3.12,

we see that the expectations of uniformity are adhered to for unit and non-unit masses.

However, in the case of non-unit masses, the most probable eigenvalues are definitely closer

in magnitude to each other and to 1/3. Further, the spread in the probability distributions of

the eigenvalues is smaller for non-unit mass weights.

As for observed CMB maps, we find that when both types of spots are taken together

with unit masses, the observed data is in good agreement with the concordance model. But

we see some unusual estimator values when non-unit masses are considered, as shown in
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Figure 3.12: Top left panel shows probability density functions of the smallest eigenvalue (λ(h+c)
1 )

in magenta for unit masses, and in cyan for non-unit masses. Top right panel shows the density
functions of the intermediate eigenvalue (λ(h+c)

2 ). Bottom panel shows the density functions of the
largest eigenvalue (λ(h+c)

3 ). All three density functions for non-unit mass weights have a smaller
spread. The most probable values of λ(h+c)

1 , λ(h+c)
2 , λ(h+c)

3 for non-unit masses are closer to each
other and to 1/3 as opposed to those for unit-masses. This is due to the additional randomness
introduced into the orientation matrix while using non-unit mass weights.
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Figure 3.13: For non-unit mass weights, the fractionP t(ζ(h+c)) is shown in light-blue. The observed
full sky maps of NILC, SMICA and WMAP have unusually low values of ζ(h+c).

Figure 3.13. From this figure we notice that for non-unit masses ζ(h+c) is unusually low for

NILC, SMICA and WMAP. The robustness of this signal is violated only for COMM which

has a higher value of ζ(h+c) compared to the other three cleaned maps. All the cleaned

maps are representative of the same CMB signal, possibly barring some minor foreground

residuals that differ among these maps. Such residuals could be causative of the differences

in values of ζ(h+c) between COMM and the other maps. We will study the cause of such

differences in detail in a future work. In addition we find that the value of γ(h+c) is unusually

high for NILC and WMAP, and low for SMICA (not shown in Figure 3.13). Hence, this

analysis illustrates how the use of non-unit masses is sensitive to any of the signals that could

arise from the randomness of the peak values of hot spots and cold spots, as well as that

from their eigenvector directions. This makes the use of non-unit masses in the orientation

matrix a more general and inclusive approach. Hence, treating hot and cold spots separately

with non-unit masses provides us with an opportunity to explore their distinct behaviours

regarding isotropy.
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3.8 Summary and conclusion

The principal property of isotropy of the distributions of hot spots and cold spots of the CMB

is an important facet that needs to be studied by performing detailed investigations using

foreground minimized CMB maps. An unusual observed property could give insights into

new physics as regards the existence of any structure in the early universe. In this chapter,

we presented a modified form of the orientation matrix to account for magnitudes of the

data points on a 2-sphere. Eigenvalues of this matrix can be used to construct the so-called

shape (γ(s)) and strength (ζ(s)) parameters, where the superscript s can be replaced with h

or c to denote hot or cold spots, respectively. We employed these parameters as estimators to

analyse distributions of hot and cold spots on the CMB maps at low resolution. The shape

parameter helps distinguish clusters or girdles (rings) of the spots, and the strength parameter

quantifies how strongly non-uniform (anisotropic) is their placement on the celestial sphere.

Large scale homogeneity and isotropy can be investigated quantitatively with the help of

these estimators. We demonstrated this with the help of two toy model CMB maps. The

estimators were also evaluated for observed CMB maps and compared with those from pure

CMB maps, which are Monte-Carlo simulations of statistically isotropic realisations of the

CMB obtained using the ΛCDM concordance model.

In our study we consider analysis over both full sky and partial sky CMB maps. For full

sky analysis we use four foreground cleaned CMB maps, i.e., Commander (COMM), NILC

and SMICA from Planck’s 2018 data-release, and WMAP’s 9 year ILC map (WMAP). For

partial sky analysis we use several masks. These include non-Gaussian cold spot (NGCS)

mask, WMAP KQ75 and Planck U73 masks. We also use two union masks which are

determined by the pairs of masks KQ75, NGCS and U73, NGCS. For partial sky analysis

with galactic masks, in addition to the four foreground cleaned maps mentioned above, we

use WMAP’s foreground reduced Q, V, W frequency band maps (freqQ, freqV, freqW),

and Planck’s foreground subtracted ‘fgsub-sevem’ 70, 100 GHz maps (freq70, freq100)

respectively, resulting in a set of nine foreground minimized CMB maps for this case. A

summary of important observations stemming out from the work presented in this chapter is
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mentioned below.

Employing isotropy statistics over full sky we find

(i) that the hot spots of all four cleaned maps exhibit highly uniform distributions. These

correspond to consistently low values of ζ(h) (> 95% C.L.) when compared with pure

CMB maps.

(ii) The values of ζ(c) are small. The distributions of cold spots are consistent with pure

CMB realisations except for NILC and SMICA.

(iii) Since the distributions of hot spots and that of cold spots tend to be uniform, neither

type of spots for the cleaned maps show any signature of a ring or clustering nature.

(iv) Masking the NGCS only slightly increases the significance of low ζ(h) for the four

maps, while slightly reducing that of low ζ(c) for SMICA and washing out the signal

of low ζ(c) for NILC. However, the conclusion of point (iii) above remains unchanged

with respect to the NGCS mask.

Analysing isotropy statistics over the KQ75 masked sky we find

(i) that the signal of highly uniform placement of hot spots as seen for the full sky

disappears. Instead, the cold spots for all nine maps tend to be very uniform. They are

significantly uniform (at> 95% C.L.) for all the partial sky CMBmaps except SMICA

and freq100 maps.

(ii) The significance of the above findings slightly increases after applying the NGCS

mask.

(iii) We do not find any clustering or girdling (ring) structure of either of hot or cold spots,

as in the full-sky case.

Instead of the KQ75 mask if we apply the U73 mask,

(i) the distribution of cold spots becomes even more uniform, pushing the probability of

observation of such high degree of uniformity compared to pure CMB realisations

further into the critical region for all the partial sky CMB maps, except freq100.
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(ii) However, unlike the case of the KQ75 mask, when the NGCS mask is applied, the

significance of the results slightly decrease for COMM, NILC, SMICA, freqV, and

increase for WMAP, freqQ, freqW, and freq70.

(iii) No specific signature of girdling or clustering is observed for hot or cold spots, except

with freqQ for which some ring structure exists with and without the NGCS.

Thus, with the analysis of partial sky outside galactic masks, very low ζ(c) is found to be

anomalous for most of the nine maps. This result is robust despite the use of two different

masks (KQ75 and U73), data from different instruments (WMAP and Planck’s HFI and LFI)

and at various frequencies, and masking of the NGCS. Exceptions to such robustness are

SMICA and freq100 with the KQ75 mask and freq100 with the U73 mask. However the

low values of ζ(c) for these two maps are still close to being unlikely at > 91% C.L.

The strength of non-uniformity for hot spots (ζ(h)) is seen to be robustly low for all the

cleaned maps (COMM, NILC, SMICA, and WMAP’s ILC) on the full sky and on the partial

sky outside the NGCS mask. As for the partial sky analysis with galactic masks, we find that

the low values of ζ(h) are no longer significantly unexpected. This could mean that some

galactic foreground residual common to all the four cleaned CMB maps is causative of the

unusually low ζ(h) when the galactic region is included for the analysis. Irrespective of its

actual nature of origin, a washout of this signal is probable due to masking of the galactic

region.

The use of galactic masks may not completely rule out any unknown foreground residuals

or other systematic errors creeping in from the unmasked region of the sky. However, the

simultaneous application of masks to both pure and observed CMB maps rules out a cut-sky

effect as a causative agent of the anomalies observed.

The average peak values of hot spots and cold spots and the CMB temperature variance

are known to be anomalously low. Sincewe consider peak values for studying non-uniformity

of spots, therefore the signal of low strength of non-uniformity may be related with the low

CMB temperature variance. The low variance anomaly is seen to vanishwhen the quadrupole

and octupole are removed. Hence we perform our analysis again after using a cosine filter

which excludes the quadrupole and octupole. A robust disappearance of the signal occurs
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across all cleaned maps, indicating that the low variance anomaly and the unusually weak

non-uniformity of spots are potentially related. The robustness is lost on the partial sky

outside galactic masks only for freqQ and freqV maps, which strongly suggests that some

foreground residuals in these two maps contribute to the signal.

The source of the signals observed in this work remains uncertain at present. Further

investigation will be necessary for understanding the possible origin of the signals observed

in this work. The robustness of the uniform signal of hot spots on the full sky and sudden

spill over of the cold spot signal over most of the cleaned CMB maps (obtained from two

different satellite missions, several different frequencies, detectors and foreground removal

algorithms) excluding galactic regions, raises a significant curiosity as to whether the signals

may be related to a cosmological origin. Additionally, both these signals are seen to be

independent of the presence or absence of the non-Gaussian cold spot. However, we find

that the signals of anomalously weak non-uniformity of spots could share a common origin

with the low CMB temperature variance and anomalous contributions of the quadrupole and

octupole.
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CHAPTER 4

DETECTION OF DIPOLE MODULATION IN CMB

TEMPERATURE ANISOTROPY MAPS FROMWMAP AND

PLANCK USING ARTIFICIAL INTELLIGENCE

4.1 Introduction

Departures from Statistical Isotropy (SI) of the Cosmic Microwave Background (CMB)

temperature field may indicate limitations or errors in measurement of the CMB despite the

use of highly precise instruments for observation, if not due to an actual breakdown of the

rotational invariance of the primordial power spectrum. However, by means of appropriate

statisticalmethods, systematic effects or foreground residualsmay be considerably eliminated

as possible causes of deviations from SI.

Several such departures from SI have been studied by authors in existing literature. These

include the unusually low cosmic quadrupole [32, 111, 77], and planarity of the cosmic

octupole and the quadrupole-octupole alignment as investigated by [77, 271, 78, 252]. The

quadrupole-octupole alignment was seen to get strengthened on removal of the frequency

dependent kinetic Doppler quadrupole [211]. The low multipole regime was studied by

[251] with the help of multipole vectors and found to be consistently anomalous with respect

to multipole aligments. Further, [167] showed that a mysterious correlation exists between

azimuthal phases of the third and fifth multipole moments. A significant power asymmetry

between the two hemispheres of the CMBwas found by [92, 128, 94] and further corroborated

by [37].

A power excess for odd multipoles was studied in the work of [166]. This parity
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asymmetry in the CMB angular power spectrum (APS) was confirmed by [156, 157] and

the anomaly was seen to disappear without the contribution of the first six low multipoles

[19]. Using symmetry-based methods of power and directional entropy statistics, [246, 247]

showed that the departures from SI extend to higher multipoles as well. For scales above 60◦,

nearly negligible correlation was seen by [65, 66, 68] with various CMB data releases. [158]

showed that the occurrence of parity asymmetry in the APS is equivalent to this deficit of

large angle correlation. Further, on the basis of behaviours of level clustering and repulsion

for uncorrelated and correlated values, [153] showed that only the level correlations between

even multipoles is anomalously low. [301] studied a directional dependence of the parity

asymmetry and suggested a common origin of the low multipole anomalies.

Additionally [169] showed that the mean values of hot and cold spots of the CMB are

unexpectedly low, while [202] found that the variance of the CMB temperature anisotropy

field is also anomalously low. The low CMB variance anomaly was seen to vanish when the

quadrupole and octupole were excluded from the CMBmaps under investigation [73]. Using

novel statistics to measure the strength and shape of distribution of CMB local extrema,

[154] found a strikingly weak non-uniformity in the distribution of hot and cold spots on the

CMB, which is due to the low CMB temperature variance and anomalous contributions of

the quadrupole and octupole.

It is important to investigate any CMB anomaly from as many perspectives as possible

to assess its significance and role in cosmological parameter estimation. For example, the

direction associated with CMB parity asymmetry aligns at about 45◦ from a best-fit dipole

form for various cosmological parameters [296]. Besides, a directional variation of the

cosmological parameters on the CMB sky was found to be significantly anisotropic and this

finding is corrrelated with the preferred direction for the hemispherical power asymmetry

anomaly [104]. Since these works report a correlation between these departures from SI of

the CMB and the anisotropic directional dependence of cosmological parameters, hence it

becomes difficult to disregard the violations of SI as mere statistical fluctuations [21].

These departures from SI were found to be robust against masking of the CMB sky,

instruments used for observation, foreground cleaning methods, periods of observation,
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bands of frequencies at which the CMB is observed, and the like. Further, checks of

robustness help reduce the possibility that the significant results can be attributed to look-

elsewhere effects. Many such independently conducted findings of deviations from SI also

weaken the inference that the consequent signal detection could have happened solely due

to the nature of estimators which were designed by hand ‘a posteriori’ [34, 235] to focus on

some unusual features.

However, despite the high statistical significance of most of such departures from SI,

they are ascertained to be fairly within the underlying probability distribution given by the

ΛCDM model. Thus we can have either of two possible conclusions: (a) we may say that

we happen to inhabit a rare realisation of the universe given by the ΛCDM standard model,

or (b) we inhabit a reasonably probable realisation of a different model. The latter case then

warrants contemplation of new physics beyond the Standard Model of Cosmology.

One of such departures from SI which has been robustly observed, is the hemispherical

power asymmetry [92, 94]. It was hypothesised to be engendered by the addition of a dipolar

modulation to otherwise statistically isotropic CMB temperature anisotropy fluctuations

∆T0(n̂), which wewill denote as T0(n̂) for simplicity. Thus, the net temperature anisotropies

in this scenario are

T (n̂) = T0(n̂)
(
1 +Aλ̂ · n̂

)
, (4.226)

where, the amplitude of modulation is denoted by A, and the preferred direction is given by

the unit vector λ̂ and ∆T (n̂) is denoted simply by T (n̂). In harmonic space, the temperature

fluctuations T0(n̂) are decomposed as:

T0(n̂) =
∞∑
l=0

∑̀
m=−`

a`mY`m(n̂) . (4.227)

These T0(n̂) are expected to be Gaussian random and generated from a rotationally invariant

primordial power spectrum. Hence there are no preferred directions in the standard model

that may couple modes of these temperature fluctuations in harmonic space. This notion of

SI is encapsulated in the relation

〈a`ma∗`′m′〉 = C`δ``′δmm′ . (4.228)
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Thus the spherical harmonic coefficients a`m are uncorrelated between different multipoles.

However, if the dipole modulated T (n̂) are similarly decomposed in spherical harmonics, the

corresponding a`m will contain correlations between multipoles ` and `+1 [237], indicating

a violation of SI.

As an entirely novel approach towards understanding the possible presence of a dipolar

modulation in CMB temperature anisotropy data, we employ Artificial Neural Networks

(ANNs). ANNs are computer based analogs of networks of biological neurons, and constitute

an importantmachinerywith decisionmaking and parameter estimation capabilities, that falls

under the umbrella of Artificial Intelligence (AI). We use deep learning techniques to train

the ANNs on a mixed set containing equal numbers of simulated SI obeying (unmodulated)

and SI violating (dipole modulated) CMB maps, which is inclusive of a large number of

possibilities of the presence or absence of the signal. Thus our trained ANNs can make

a self-guided and robust estimation of the presence of the signal of dipolar modulation,

quantified with the value of the amplitude. The rationale behind using the amplitude for

this purpose is that CMB maps that obey SI will have zero amplitude for such modulation,

whereas those that contain the modulation will have non-zero values of the amplitude. As a

realistic approach, we design an ANNwith partial sky coverage in addition to one that works

for full sky coverage, since wemay not always have completely reliable full sky observations.

Besides, we are able to compute the directions of the modulation with the help of the trained

ANNs. Thus our method serves as an independent investigation to establish or reject the

existence of the dipolar modulation signal as seen in existing literature.

Previously, statistics or estimators have been devised to ascertain the amplitude and

direction of a possible dipolar modulation in the CMB. Estimators can be constructed in

pixel or harmonic space, as per the requirements of the studies that undertake the same.

For example, since the amplitude of the modulation has been shown to be dependent on

the scale [140] and hence the multipole range under consideration, studying estimators in

multipole space helps estimate this scale dependence [189, 236]. Whereas, an analysis in

pixel space can be immensely useful so as to avoid subtle biases introduced due to masking

of the sky that causes extraneous couplings in multipole space [138], or those caused due
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to inpainting of partial sky maps [262]. In this work, we train ANNs with normalised or

re-scaled local variance maps [11] in pixel space, which serve as important input features

containing direct information of the amplitude and directions of the dipolar modulation in

the form of scalar products. This method helps us eschew the complex task of constructing

statistics for detection of the signal. The ANNs are designed to work on scales of observation

corresponding to the range of multipoles∈ [2,256]. We defer a study of the scale dependence

of A to future work.

The implementation of ANNs for detecting previously studied features in the CMB could

revolutionise perspectives towards understanding CMB anomalies as opposed to classical

fitting or regression methods and traditional frequentist approaches. ANN architectures

can ‘learn’ signal detection capabilities by being introduced to a training set of samples.

Once trained, the ANN can then be fed observed foreground-cleaned CMB data to predict a

possible signal in the same.

A comprehensive review of the preliminary use of ANNs in Astronomy and Astrophysics

can be found in the article by [200] with regard to telescope optics, object classification and

filtering of detector events. Further [268, 284, 84, 55] describe the growth of ANN based

algorithms to perform time series analysis, detection of noise, and data mining in addition to

classification and identification of astrophysical objects such as new stars, galaxies or even

dark matter.

In Cosmology, use of ANNs has ushered in a new era of numerical frameworks to ease

computations and analyses. They were used by [183] for generating dynamics of inflationary

trajectories in a multi-field scenario. [82] used ANNs to reconstruct late-time expansion

and LSS cosmological parameters. [282] used them to estimate quantities such as the

Hubble parameter and luminosity distance as a function of redshift of Type Ia supernovae.

[122]modelledANNswith Bayesian inference to calculate the likelihood function and reduce

computation time for cosmological parameter estimation. [96] provided a combinedBayesian

and Recurrent neural network approach to ascertain confidence regions for parameters from

dark energy models. Besides, ANNs can be designed for estimation of parameters using the

21 cm signal from the epoch of reionization [256, 61]. A general overview of ANNs and
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their applications in analysis of cosmological data can be found in the article by [76].

Recent applications of ANNs specific to CMB data analysis can be found in the following

works. [1] implemented an appreciable full-sky foreground cleaning of the observed CMB,

while [283] were able to recover CMB signals from foreground contaminated maps using

Convolutional neural networks (CNNs). [52] applied ANNs to successfully recover full

sky CMB temperature APS from a low resolution masked or partial sky CMB map, while

[217] designed ANNs for such estimation of full sky CMB temperature power spectrum with

higher resolution partial sky CMBmaps. Using CNNs [216] reconstructed the full sky power

spectra of CMB E and B modes for such high resolution CMB maps, while minimising the

leakage between the two modes. [118] implemented Bayesian inference algorithms to make

ANNs learn the likelihood function and estimate cosmological parameters from CMB data.

[205, 141] trained ANNs to mimic mixing of Markov chains (MCs) and parameterization of

Monte Carlo MC proposals. [261] developed ANN based estimators to compute the matter

and CMB power spectra as a replacement of Boltzmann codes suited for both LSS and CMB

surveys.

We have organised this chapter as follows. In Section 4.2 we present a mathematical

proof of how dipole modulation violates SI, and the underlying formalism behind normalised

local variance maps which can be directly used as input features for training a neural network.

In Section 4.3, we briefly describe the internal structures of ANNs and the algorithms with

which they function as trainable artificial analogs of biological neural networks. We elucidate

our procedure for obtainingmixed sets of unmodulated andmodulated CMBmaps, and using

them for training the ANNs in Section 4.4. Following this, we discuss the specific structure

of our ANNs and regularization methods used to train the same for both full and partial sky

maps in Section 4.5. The analysis of test sets and observed foreground-cleaned CMB maps

are presented in Section 4.6, after application of our trained ANNs to those. In Section 4.7,

we summarise our work, and enumerate the key findings of the same.
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4.2 Formalism

The effect of dipole modulation can be extracted in both harmonic and pixel or real space.

Therefore, in the following subsections, we present (a) a rigorous proof of how a dipole

modulation couples spherical harmonic coefficients of a CMB map, and (b) how normalised

local variances of such a map can be used to ascertain its modulated portion (Aλ̂ · n̂). We

employ the latter for detection of the dipole modulation signal in real CMB maps.

4.2.1 Dipole modulation in harmonic space

For the modulated temperature fluctuations in a spherical harmonic decomposition given by

T (n̂) = ∑
`m ã`mY`m(n̂), we present a mathematical demonstration of how the covariance

matrix of the ã`m’s digresses from the statistically isotropic expectation (Equation (4.228))

by coupling adjacent modes. Considering that the spherical harmonic coefficients of the

anisotropic temperature fluctuations are expressed as,

ã`m =
∫
dΩT (n̂)Y ∗`m(n̂) =

∫
dΩT0(n̂)

(
1 +Aλ̂ · n̂

)
Y ∗`m(n̂), (4.229)

where, the integration is over the solid angle Ω, we can write the covariance matrix of these

ã`m’s in the following manner,

〈ã`1m1 ã
∗
`2m2〉 =

∫ ∫
dΩ1dΩ2〈T (n̂1)T ∗(n̂2)〉Y ∗`1m1(n̂1)Y`2m2(n̂2)

= I1 +I2 +I3 +I4, (4.230)

where, 〈〉 represents an ensemble average and,

I1 =
∫ ∫

dΩ1dΩ2〈T0(n̂1)T ∗0 (n̂2)〉Y ∗`1m1(n̂1)Y`2m2(n̂2), (4.231)

I2 =
∫ ∫

dΩ1dΩ2〈T0(n̂1)T ∗0 (n̂2)Aλ̂ · n̂1〉Y ∗`1m1(n̂1)Y`2m2(n̂2), (4.232)

I3 =
∫ ∫

dΩ1dΩ2〈T0(n̂1)T ∗0 (n̂2)Aλ̂ · n̂1〉Y ∗`1m1(n̂2)Y`2m2(n̂2), (4.233)

I4 =
∫ ∫

dΩ1dΩ2〈T0(n̂1)T ∗0 (n̂2)A2(λ̂ · n̂1)(λ̂ · n̂2)〉Y ∗`1m1(n̂2)Y`2m2(n̂2). (4.234)
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Since the amplitude is assumed to be negligibly small at second order, wewill focus primarily

on I1,I2,I3 which introduce couplings between ` and `+1, and discuss I4 towards the end

of this subsection.

For, I1, we consider the spherical harmonic decomposition of T0(n̂) (Equation (4.227)),

and the condition of SI on the a`m’s (Equation (4.228)). Thus,

I1 =
∫ ∫

dΩ1dΩ2〈
∑
`′m′

a`′m′Y`′m′(n̂1) ∑
`′′m′′

a∗`′′m′′Y
∗
`′′m′′(n̂2)〉Y ∗`1m1(n̂1)Y`2m2(n̂2)

=
∫ ∫

dΩ1dΩ2

( ∑
`3m3

C`3Y`3m3(n̂1)Y ∗`3m3(n̂2)
)
Y ∗`1m1(n̂1)Y`2m2(n̂2). (4.235)

Further, using the orthonormality of spherical harmonic functions, i.e,
∫
dΩY`′m′Y`′′m′′ =

δ`′`′′δm′m′′ , we have,

I1 = C`1δ`1`2δm1m2 . (4.236)

Similarly, we can simplify I2 and I3 as,

I2 = AC`2

∫
dΩ1Y`2m2(n̂1)(λ̂ · n̂1)Y ∗`1m1(n̂1), (4.237)

I3 = AC`1

∫
dΩ2Y

∗
`1m1(n̂2)(λ̂ · n̂2)Y`2m2(n̂2). (4.238)

For evaluating I2 and I3, we note the following. The preferred direction λ̂ can be

expressed as,

λ̂ = λxx̂+λyŷ+λz ẑ

= λ+λ̂+ +λ−λ̂−+λ0λ̂0 (4.239)

where,

λ+ =
(
λx− iλy√

2

)
, λ− =

(
λx− iλy√

2

)
, λ0 = λz, (4.240)

and,

λ̂+ =
(
x̂+ iŷ√

2

)
, λ̂− =

(
x̂− iŷ√

2

)
, λ̂0 = ẑ. (4.241)
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In the basis of spherical polar coordinates, we can rewrite these vectors as,

λ̂+ = eiφ√
2
[
(sinθ)r̂+ (cosθ)θ̂+ iφ̂

]
,

λ̂− = e−iφ√
2
[
(sinθ)r̂+ (cosθ)θ̂− iφ̂

]
,

λ̂0 = (cosθ)r̂− (sinθ)θ̂. (4.242)

Thus, representing n̂= r̂(r,θ,φ), we can recognise the scalar product λ̂ · n̂ as

λ̂ · n̂ = λ+
eiφ√

2
(sinθ) +λ−

e−iφ√
2

(sinθ) +λ0(cosθ)

=
√

4π
3 [−λ+Y1,1(n̂) +λ−Y1,−1(n̂) +λ0Y1,0(n̂)] . (4.243)

Using this form of the scalar product and equations (4.237) and (4.238), we can express I2

and I3 as follows,

I2 =
√

4π
3 AC`2

∫
dΩ1Y`2m2(n̂1) [−λ+Y1,1(n̂1) +λ−Y1,−1(n̂1) +λ0Y1,0(n̂1)]Y ∗`1m1(n̂1),

(4.244)

I3 =
√

4π
3 AC`1

∫
dΩ2Y

∗
`1m1(n̂2) [−λ+Y1,1(n̂2) +λ−Y1,−1(n̂2) +λ0Y1,0(n̂2)]Y`2m2(n̂2).

(4.245)

We will make use of the identity for products of two spherical harmonic functions,

Y`1m1(n̂)Y`2m2(n̂) =

√
(2`1 + 1)(2`2 + 1)

√
4π

∑
`′m′

(−1)m
′√

(2`′+ 1)

×

 `1 `2 `′

m1 m2 −m′


 `1 `2 `′

0 0 0

Y`′m′(n̂). (4.246)

The conditions for this product to not vanish are the following:

1. m1 +m2−m′ = 0.

2. |`1− `2| ≤ `′ ≤ `1 + `2.

3. m1 ∈ [−|`1|,+|`1|],m2 ∈ [−|`2|,+|`2|],m′ ∈ [−|`′|,+|`′|].

4. `1 + `2 + `′ is an integer.

5. Additionally, for

 `1 `2 `′

0 0 0

 to be non-zero, we must have `1 + `2 + `′ = an even
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integer only.

Each of I2 and I3 can be broken up into three terms (say, I21,I22,I23, and I31,I32,I33)

which are functions of the spherical harmonic functions Y1,1,Y1,−1,Y1,0, respectively. We

will initially focus on I2, for which, the first term is

I21 = −

√4π
3 Aλ+C`2

∫ dΩ1Y`2m2(n̂1)Y1,1(n̂1)Y ∗`1m1(n̂1)

=
√4π

3 Aλ+C`2

 ∑
`′m′

√
(2`2 + 1)(3)(2`′+ 1)

√
4π

(−1)m
′+1

×

 `2 1 `′

m2 1 −m′


 `2 1 `′

0 0 0

∫ dΩ1Y
∗
`1m1(n̂1)Y`′m′(n̂1)

= Aλ+C`2(−1)m1+1
√

(2`1 + 1)(2`2 + 1)

 `2 1 `1

m2 1 −m1


 `2 1 `1

0 0 0

 .
(4.247)

Using the conditions outlined earlier (4.2.1), we realise that the permissible values are

m2 =m1−1 and `2 = `1−1 or, `2 = `1 +1. Thus, we need to evaluate theWigner-3j symbols

in the above expression for two cases, namely δm2,m1−1δ`2,`1−1 and δm2,m1−1δ`2,`1+1. The

products of the Wigner-3j symbols computed for these two cases are thus, `1−1 1 `1

m1−1 1 −m1


 `1−1 1 `1

0 0 0

= (−1)m1
√

2

√
(`1 +m1−1)(`1 +m1)

(2`1−1)(2`1 + 1) , (4.248)

 `1 + 1 1 `1

m1−1 1 −m1


 `1 + 1 1 `1

0 0 0

= (−1)1−m1
√

2

√
(`1−m1 + 1)(`1−m1 + 2)

(2`1 + 1)(2`1 + 3) .

(4.249)

such that the complete term I21 can be written as,

I21 = Aλ+√
2
δm2,m1−1

C`1+1δ`2,`1+1

√√√√(`1−m1 + 1)(`1−m1 + 2)
(2`1 + 1)(2`1 + 3)

−C`1−1δ`2,`1−1

√√√√(`1 +m1−1)(`1 +m1)
(2`1−1)(2`1 + 1)

 . (4.250)
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Similarly, we can evaluate the other two terms to yield

I22 = Aλ−√
2
δm2,m1+1

C`1−1δ`2,`1−1

√√√√(`1−m1−1)(`1−m1)
(2`1−1)(2`1 + 1)

−C`1+1δ`2,`1+1

√√√√(`1 +m1 + 1)(`1 +m1 + 2)
(2`1 + 1)(2`1 + 3)

 , (4.251)

I23 = Aλ0δm2,m1

C`1−1δ`2,`1−1

√√√√(`1−m1)(`1 +m1)
(2`1−1)(2`1 + 1)

+C`1+1δ`2,`1+1

√√√√(`1−m1 + 1)(`1 +m1 + 1)
(2`1 + 1)(2`1 + 3)

 . (4.252)

Considering the expression for I3 (Equation (4.238)), we show the computation of its

first term I31,

I31 = −

√4π
3 Aλ+C`1

∫ dΩ2Y
∗
`1m1(n̂2)Y1,1(n̂2)Y`2m2(n̂2)

=
√4π

3 Aλ+C`1

 ∑
`′m′

√
(2`2 + 1)(3)(2`′+ 1)

√
4π

(−1)m
′+1

×

 1 `2 `′

1 m2 −m′


 1 `2 `′

0 0 0

∫ dΩ2Y
∗
`1m1(n̂2)Y`′m′(n̂2)

= Aλ+C`1(−1)m1+1
√

(2`1 + 1)(2`2 + 1)

 1 `2 `1

1 m2 −m1


 1 `2 `1

0 0 0

 .
(4.253)

Here, using the conditions for non-zero products of the Wigner-3j symbols, the permissible

cases are δm2,m1−1δ`2,`1−1 and δm2,m1−1δ`2,`1+1. Thus the term now reads,

I31 = Aλ+√
2
C`1δm2,m1−1

δ`2,`1+1

√√√√(`1−m1 + 1)(`1−m1 + 2)
(2`1 + 1)(2`1 + 3)

−δ`2,`1−1

√√√√(`1 +m1−1)(`1 +m1)
(2`1−1)(2`1 + 1)

 . (4.254)

A similar approach to compute the other two terms results in the following expressions,

I32 = Aλ−√
2
C`1δm2,m1+1

δ`2,`1−1

√√√√(`1−m1−1)(`1−m1)
(2`1−1)(2`1 + 1)

−δ`2,`1+1

√√√√(`1 +m1 + 1)(`1 +m1 + 2)
(2`1 + 1)(2`1 + 3)

 , (4.255)

151



I33 = Aλ0C`1δm2,m1

δ`2,`1−1

√√√√(`1−m1)(`1 +m1)
(2`1−1)(2`1 + 1)

−δ`2,`1+1

√√√√(`1−m1 + 1)(`1 +m1 + 1)
(2`1 + 1)(2`1 + 3)

 . (4.256)

Thus, considering that O(A2)→ 0, we have the following expression for the covariance

matrix of the ã`m’s,

〈ã`1m1 ã
∗
`2m2〉= C`1δ`1`2δm1m2 +I21 +I22 +I23 +I31 +I32 +I33, (4.257)

where the forms of I21, ...,I33 are given in Equations (4.250), (4.251), (4.252), (4.250),

(4.254), (4.255), (4.256), respectively. Further we have seen from these equations that

couplings between consecutivemultipoles have been introduced, clearly leading to a violation

of SI.

As regards the last term I4 (Equation (4.234)) which is of the second order in A, we see

that it can be written as,

I4 = ∑
`3m3

C`3A
2
∫
dΩ1Y`3m3(n̂1)(λ̂ · n̂1)Y ∗`1m1(n̂1)

∫
dΩ2Y

∗
`3m3(n̂2)(λ̂ · n̂2)Y`2m2(n̂2).

(4.258)

We notice that the first and second integrals on the right hand side of this equation resemble

the forms of I2 and I3 as in Equations (4.237) and (4.238). If we focus solely on themultipole

number `, this leads us to recognise that first integral will provide conditions such as δ`3,`1−1

and δ`3,`1+1, while the second integral will furnish conditions of δ`2,`3−1 and δ`2,`3+1. Thus,

the product of these two integrals will help remove the summation (∑`3m3) by enabling

couplings of the form δ`2,`1−2 and δ`2,`1+2, in addition to the statistically isotropic forms

δ`1`2 . We must note that there will be couplings between the azimuthal numbers as well.

In conclusion, the term I4 introduces quadrupolar couplings, i.e, couplings between second

nearest neighbour multipoles, and since this effect is assumed to be negligible due to the

smallness of A2, we invariably refer to the modulation studied in this chapter as a dipolar

modulation, i.e, one between adjacent multipoles.
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4.2.2 Normalised local variances

For the CMB temperature anisotropy field defined on the 2-sphere of observation, we can

compute its variances inside different local regions of the sphere. We consider these regions

to be discs of equal area spanning the 2-sphere. In this section, we present the formalism of

how such local variances, after appropriate re-scaling are equivalent to the amplitude times

a scalar product of the constant unit vector of modulation and the mean direction of the local

disc, as first utilised in the work of [11].

In HEALPix [117] notation, the parameter nside characterises the pixel resolution of a

CMB map. For convenience, we denote the nside of a high resolution CMB map by nh and

that of a lower resolution CMB map by nl. We consider a disc of radius rh, on the map at

resolution nh. We then calculate the local mean and variance of temperature fluctuations

within the disc. Thus the mean of modulated disc temperature fluctuations from equation

(4.226) is,

〈T 〉d = 〈T0〉d+ 〈AT0λ̂ · n̂〉d , (4.259)

where 〈〉d denotes expectation value over the disc. Let us consider the second term in

the equation above where A is a constant. The statistically isotropic Gaussian random

fluctuations T0 are approximately independent of and uncorrelated with the variations of

λ̂ · n̂, if the disc is sufficiently small enough so that the λ̂ · n̂ term is slowly varying. Hence,

the expression (4.259) reads:

〈T 〉d = 〈T0〉d+A〈T0〉d〈λ̂ · n̂〉d . (4.260)

The local variance within the disc is

σ2
d = 〈(T −〈T 〉d)2〉d . (4.261)
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Expanding out, the expression for the disc variance becomes

σ2
d = 〈

[
(T0−〈T0〉d) +A

(
T0λ̂ · n̂−〈T0〉d〈λ̂ · n̂〉d

)]2
〉d

= 〈(T0−〈T0〉d)2〉d

+2A〈(T0−〈T0〉d)×
(
T0λ̂ · n̂−〈T0〉d〈λ̂ · n̂〉d

)
〉d

+O(A2)

= σ2
0d+ 2A

[
〈T 2

0 λ̂ · n̂〉d−〈T0〈T0〉d〈λ̂ · n̂〉d〉d

−〈T0〈T0〉dλ̂ · n̂〉d+ 〈T0〉2d〈λ̂ · n̂〉d
]

+O(A2)

= σ2
0d+ 2A

[
〈T 2

0 〉d−〈T0〉2d
]
×〈λ̂ · n̂〉d+O(A2) , (4.262)

where σ2
0d stands for the disc variance in the absence of a modulation. We can replace the

term 〈λ̂ · n̂〉d with λ̂ · 〈n̂〉d, since λ̂ for any particular CMB map is constant. Further, as the

average of position vectors n̂ is over a disc, 〈n̂〉d = N̂ , where N̂ is the centre of the disc.

Hence,

σ2
d−σ2

0d
σ2

0d
' 2Aλ̂ · N̂ . (4.263)

However, evaluating σ2
0d from a single Gaussian random realisation may give a biased

estimate. Instead, we will compute 〈σ2
0d〉e and use that in our expression above. This

expectation 〈〉e is over an ensemble of statistically isotropic realisations. Thus finally we

arrive at the following normalised local variance (NLV),

σ2
d−〈σ2

0d〉e
〈σ2

0d〉e
' 2Aλ̂ · N̂ , (4.264)

which shall be used in all analyses hereafter.

Several discs on the nh map are considered and their NLVs computed. These NLV values

are then assigned to corresponding pixels of another map at a lower resolution nl. Thus to

construct an NLV map, the total number of discs to be considered = 12×n2
l . The centre of

any particular disc on the nh map is taken to be the same as the position vector of the pixel

of the nl resolution map to which the NLV of that disc is assigned. With this information,

we can calculate the approximate number of pixels (npd) of the nh map inside each disc of
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Figure 4.1: An artificial neuron is the building block of an ANN. Its structure comprises inputs xi’s
which are weighted with wi’s, summed over and added to a bias b, the resultant of which is acted on
by an activation function A to give the output y.

given radius rh (in degrees). This is expressed as

npd = Area of the disc
Area of a pixel in nh

= π
(
rh×π

180

)2/ 4π
12×n2

h

,

npd = 3×
(
nh× rh×π

180

)2
. (4.265)

We can calculate the approximate number of pixels in possibly overlapping regions as follows.

For npl = 12×n2
l discs, the total number of pixels taken is npt = npl×npd. Thus if npt>nph,

then there are npt−nph number of pixels which are present in overlapping regions of discs,

and vice versa. Here, nph = 12×n2
h.
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Input
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Figure 4.2: An example of an ANN architecture, containing 5 inputs, two hidden layers with 3 nodes
each, and 2 outputs. Each layer after the input layer has nodes which are densely connected to those
of the preceding layer.

4.3 How does an ANN work?

An artificial neuron is the building block of an ANN, which is inspired from the concept

of the biological neuron [195, 240]. It combines a weighted sum of several inputs, adds

a bias to that sum to give a preliminary output. Since this preliminary output is a linear

mapping, no matter how many neurons are interconnected to form a network, the mapping

from initial inputs to the last output can always be described as a linear mapping [186]. In

reality, the complex relations between inputs and expected outputs may never be reducible to

a linear mapping. Hence using activation functions [88] to introduce non-linearity becomes

pertinent. Thus a modern day artificial neuron can be represented by the example in Figure

4.1, which shows how inputs xi are weighted by wi and summed together along with an

offset or bias b. An activation function A acts on this sum to give the subsequent output y.

The initial inputs x form a layer of nodes called the ‘input layer’. Several such outputs y

can be formed from these initial inputs, using different weights and biases. All these y are

then a new set of nodes that constitute the first ‘hidden layer’. The second hidden layer can be
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formed by considering y’s from the first hidden layer as inputs, and so on. A small ANNmay

have one or two hidden layers, whereas a larger ANN could comprise several such hidden

layers. The last layer of any ANN consists of the final outputs and is called the ‘output layer’.

The number of nodes in this layer is equal to number of expected outputs that the ANN is

being trained for. Due to the presence of hidden layers that are densely connected to their

preceding layers, the method of training such ANNs is referred to as ‘deep learning’ [90].

The activation function used to obtain the outputs usually differs from the choices in

other hidden layers. For example, while the ReLU or LeakyReLU activation functions

can be used for hidden layers, for the output layer, the respective activation used could

be a sigmoid or softmax for binary or multi-class classification problems, or linear for

regression problems [173]. To illustrate the arrangement of a neural network, we show an

example ANN in Figure 4.2. For all layers apart from the input layer, each node is fully

connected to all the nodes in the previous layer.

Beginning with the input layer as the 0th layer, we can successively number the other

layers. Consider the ith node in the (l− 1)th layer, which is connected to the jth node in

layer l. The associated weight and bias will be w(l)
ij and b(l)j . Thus the value taken by the jth

node in layer l is:

y
(l)
j = A

(∑
i
w

(l)
ij ×y

(l−1)
i + b

(l)
j

)
. (4.266)

If l = 1, then y(l)
j represents a node in the first hidden layer and y(l−1)

i = xi corresponds

to that of the input layer. The 2D weight matrix between layers (l− 1) and l is given by

[W (l)]ij = w
(l)
ij , while the bias column vector is [B(l)]j = b

(l)
j . To begin with, the weights

and biases for the ANN can be chosen randomly.

In the process of assigning values to nodes in subsequent layers, a forward propagation

in the ANN is achieved. To verify if the final outputs are as expected, a loss function is

computed for the outputs generated [115]. Since in this chapter, we are dealing with a

regression problem, we will consider the loss function as the mse or mean squared error,

given as

mse = 1
N
×∑(ytrue−ypred)2 , (4.267)
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where the summation is over a total number of output values N . Thusmse is the average of

squared differences between the predicted outputs (ypred) from the ANN and the true values

(ytrue). To train the ANN effectively, we must perform back-propagation [241], in which

the weights and biases associated with the different layers are updated iteratively so as to

minimize themse loss function. The rate or step-size for updating in this process is known as

the learning rate σ. Thus the basic relations which describe the process of back-propagation

for a loss function H are,

W (l) → W (l)−σ×∇W (l)H ,

B(l) → B(l)−σ×∇B(l)H . (4.268)

These relations correspond to the algorithm of gradient descent. However, such an algorithm

when applied to the whole data-set can be computationally expensive. Thus the data set is

divided into several batches [112] randomly, and the above algorithm is applied. A batch

represents the number of samples from the data-set which are used during a part of an iteration

for updating the parameters of weights and biases. A complete iteration during which the

whole data-set is made to undergo the algorithm for optimization is called an epoch. Due

to the random subdivision of the training set into batches, some stochasticity is introduced

into the loss function. For our problem of regression of the amplitude and directions of any

possible dipolar modulation, we have considered the Adam (adaptive moment estimation)

optimizer [160], which incorporates adaptive estimates of the gradients and their squares. In

this method, the parameters (weights and biases) are updated as follows.

1. A step-size or learning rate σ is specified.

2. Exponential decay rates for the moment estimates are γ1, γ2 ∈ [0,1).

3. Stochastic loss function H(δ) is given.

4. Parameters δ are initialised randomly.

5. The first moment vector m0, second moment vector v0 and time-step t are initialised

to zero.

158



6. The time step is updated as t→ t+ 1 .

7. Gradient gt =∇δHt(δt−1) .

8. mt = γ1×mt−1 + (1−γ1)×gt .

9. vt = γ2×vt−1 + (1−γ2)×g2
t .

10. Bias correction for first moment estimate: m̂t =mt/(1−γt1) .

11. Bias correction for second moment estimate: v̂t = vt/(1−γt2) .

12. Updating of parameters: δt = δt−1−σ× m̂t/(
√
v̂t+ ε) .

13. Steps 6–12 are repeated until δt converges.

14. Resulting parameters are δt .

Here, values of γ1 = 0.9, γ2 = 0.999, and ε = 10−7. Superscripts t in γt1,γt2, denote that

those are raised to the power of t. The algorithm described above for the Adam optimizer

is run for each of the batches within an epoch so that the ANN trains with the entire data

set during one epoch itself. Several epochs may be required for the ANN to become fully

trained.

At the end of an epoch, the ANN evaluates the final loss function from the set on which it

is being trained. To infer whether or not an ANN is fully trained, i.e, if it is able to generalise

its knowledge to sets on which it has not been trained, another data-set for validation is

simultaneously considered at every epoch. The ANN acts on this set and generates the

corresponding loss value. Depending on the nature of the loss function, the optimization

of the same may either correspond to that of minimisation or maximisation. We consider

the case of mse as the loss function, which must be minimized. Thus, over a considerable

number of epochs, if the training loss does not appear to minimize, then the ANN is said

to be ‘under-fitting’ and usually a more complex network architecture can help resolve the

issue. On the other hand, if the training loss adequately reaches its minimum, while that of

validation does not, then the ANN is said to be ‘over-fitting’. This can be seen from the loss

curves, where the validation loss curve is always above the training loss, whereas the training
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loss has converged to an appropriate minimum. The condition of over-fitting indicates that

the weights and biases in the ANN are very well suited for the training set, but those are not

optimal for the ANN to make appropriate predictions for new data sets that it has not ‘seen’

before.

Over-fitting can be resolved using regularization methods [297] such as those of the L1

or L2 penalty or with the help of a ‘dropout’. In designing our ANNs for estimation of

dipolar modulation parameters, we have used kernel regularizers with L1 and L2 penalties

in addition to a dropout. Kernel regularizers penalise the loss function of the training set by

adding to it a strength factor (S) times the penalty P , which is formed from entries in the

weight matrices. In case of the L1 kernel regularizer, P is the sum of absolute values of

the weights, whereas for the L2 regularizer, it is the sum of the squares of the weights. On

the other hand, if a dropout [137] is applied before a layer, a fraction of the inputs from the

previous layer are randomly dropped out, i.e, set to zero. This fraction is known as the rate

of dropout and its value lies ∈ [0,1].

4.4 Methodology

We have considered a mixed set of 5× 104 randomly generated CMB realisations of maps

at nh = 128. Half of these are statistically isotropic, and the other half are dipole modulated

versions of the same.

The statistically isotropic CMB temperature maps at nh = 128 are obtained by choosing

the spherical harmonic coefficients a`m as Gaussian random variables with zero mean and

variance given by the theoretical CMB temperature APS best fit to Planck 2018 data. Thus,

we generate 2.5×104 SI obeying maps with different seed values.

In order to obtain 2.5× 104 dipole modulated counterparts of the SI obeying maps at

nh = 128, we utilise equation (4.226). We pick A from a uniform random distribution in

accordancewith the order ofmagnitude of reported values fromobserved foreground-cleaned

data. We have further considered a wide range given by A ∈ [0.03,0.15] so as to sufficiently

accommodate a large number of possible values of amplitude. This further helps minimize

the epistemic uncertainty [145] of the ANN.
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Figure 4.3: As an example of partial sky coverage, we present the Planck 2013 Commander-Ruler
(C-R) map at resolution nh = 128 after application of the Planck 2013 U73 mask. The masked
regions are shown in grey colour. The CMB fluctuations are shown in thermodynamic temperature
units of µK.

The direction of the dipole for modulation (λ̂) is chosen in the following manner. For

three different seed values, we generate three random numbers from a normal distribution

with a mean of zero and standard deviation equal to one. The numbers are chosen such that

the sum of their squares are non-zero. They are then normalised by the square root of the sum

of their squares. Thus the three resulting numbers form components of the randomly chosen

unit vector λ̂, which gives the preferred direction of dipolar modulation for a particular

realisation. The rationale behind choosing the components as random normal numbers is to

take into account all possible directions on the sphere [207], since other choices such as those

of random uniform numbers restrict the randomness in directionality of the modulation.

The NLV maps at nl = 16 are constructed using discs of radius = 6◦. Thus inside

each disc, the approximate number of pixels at nh = 128 over which the local variances are

computed is approximately 540, according to equation (4.265), for which it can be shown

that there are about 1459237 pixels in overlapping regions of discs.

The manually adopted choice of rh = 6◦ is an optimal one due to the following reasons.
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Local variance estimates over smaller disks will have relatively higher contributions from

Monte Carlo noise due to lower number of pixels contained by them, which must be avoided.

Besides, very small radii such as rh . 4◦ are subject to non-negligible contributions from

the Doppler dipole [8]. However, choosing large radii weakens the assumption of a slow

variation of λ̂ · n̂ inside the disc (Section 4.2), and can cause results to concur with statistically

isotropic maps [11] for very large rh. Hence, we choose rh = 6◦ which is sufficiently small,

and reasonably free from contributions of the Doppler dipole and Monte Carlo noise.

In order to construct the NLV maps, we require a mean variance map containing 〈σ2
0d〉e

values. This mean variance map is obtained using an ensemble of 1× 105 local variance

maps at nl = 16, which were extracted from the same number of corresponding SI obeying

realisations of maps at nh = 128. Of the total mixed set of 5×104 NLV maps, 2×104 maps

are used for training the ANNs, 104 are used for validation, and the remaining 2× 104 are

used for testing the trained ANN.

We consider two cases of sky coverage, i.e, full and partial sky. In both cases of sky

coverage and for both simulated and observed foreground-cleaned CMB maps at nh = 128,

the multipole range under consideration is [2,256]. This is because the monopole (which

corresponds to the uniform temperature of the CMB) and the dipole (containing contributions

from the Doppler shift due to solar motion) must be disregarded for cosmological inferences.

For the observed foreground-cleaned full sky CMB map (mi) at resolution nh in harmonic

space, we set the spherical harmonic coefficients corresponding to the monopole and dipole

to zero. With the new set of spherical harmonic coefficients, we generate the corresponding

full sky CMB map (mf ) which is devoid of the monopole and dipole.

Further, since the simulatedmaps are devoid of any beam smoothing effects, therefore any

existing beam smoothing in all the observed foreground-cleaned CMB maps is removed as

well. In order to deconvolve beam effects from the observed foreground-cleaned CMB map,

we consider the mapmi in harmonic space. We divide all the spherical harmonic coefficients

(a(`m)i’s) of the map by the beam window function (B(`)i) of the respective observational

instrument. With these new spherical harmonic coefficients (a(`m)f ) we construct the full
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sky mapmf which is devoid of beam smoothing effects. Hence,

a(`m)f = a(`m)i×
B(`)f ×P(`)f
B(`)i×P(`)i

. (4.269)

Here, the initial beam window function B(`)i corresponds to a full-width at half-maximum

(FWHM) = 5′ for Planck maps, or = 60′ for WMAP maps. The final beam window function

B(`)f corresponds to an FWHM = 0′ for both Planck and WMAP maps. The initial pixel

window function P(`)i corresponds to an nside = 2048 for Planck maps or nside = 512 for

WMAP maps. The final pixel window function P(`)f corresponds to an nside = 128 for both

Planck and WMAP maps.

Firstly we consider the case of full sky CMB maps, for which we directly use map mf

to compute the NLVs inside the discs of radius rh and assign them to pixels of a map at

resolution nl. In this case, an ANN is modelled to be trained with 12× 162 = 3072 input

features. The observed foreground-cleaned CMBmaps tested in this case are all the available

inpainted ones from Planck 2013 [6] and 2018 [12] data releases. The application of the

ANN to NLV maps obtained from these inpainted maps makes it unlikely to attribute the

findings to any minor residual foreground contamination from the galactic region.

Secondly, we consider partial sky CMBmaps, obtained after masking with theU73 mask

from Planck 2013 release [6], which sufficiently excludes the galactic region in addition to

extragalactic point sources. The use of a mask helps minimize contributions from any minor

foreground residuals. This U73 mask at nh = 128 is obtained after downgrading the original

binary mask and setting all pixels with values ≥ 0.8 to one and the rest to zero. Thus for

the case of partial sky coverage, we take a mapmf and apply the U73 mask, for example in

Figure 4.3. We calculate the NLVs only for discs which are not masked beyond 90% of their

area, following the strategy of [11]. We then assign these NLVs to the map at resolution

nl. Thus for partial sky coverage, the ANN architecture is designed to work with 2652 input

features, which are the remaining pixels in the nl = 16 map, after obeying this criterion for

disc rejection. We test the ANN on NLV maps obtained from the observed foreground-

cleaned partial sky CMB maps from all releases of Planck (2013-2021) [6, 5, 9, 13], and

WMAP (1yr-9yr) [33, 134, 135, 113, 34].
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4.5 Training the neural networks

We have two ANNs, one for each of the full and partial sky cases. The input features used

for training the ANNs are values of the NLV map arrays. Both the ANNs are similar in

structure, save the difference in the number of input features and hyper-parameters associated

with regularizationmethods. TheANNs are trained on realisationswith the same seed values,

but with different sky coverage.

Since λ̂ is a unit vector, the degrees of freedom in ascertaining the components of λ̂ are

only two. Another degree of freedom in constructing the dipole modulated map is that of A.

Thus, there are three degrees of freedom in total. Therefore we utilise the three components

of the vector A× λ̂ as the associated training labels. For SI obeying CMB maps, these

three labels are always zero, whereas for SI violating ones, they are non-zero. We choose

the training labels in this manner since any other choices of training labels such as those of

(A,θ,φ) or (A,λ1,λ2) and the like cannot be unambiguously defined for SI obeying maps.

For the training set from simulated data, we compute the mean and standard deviation

of the input features (denoted by µin, σin) as well as those of the training labels (denoted by

µout, σout). We re-scale both the inputs and labels by subtracting their respective means from

the entire set and dividing the resultant by their respective standard deviations. For similarly

re-scaling the validation and test sets for simulated data, we use the previously computed

means (µin, µout) and standard deviations (σin, σout) from the training set. Further this

scaling is appropriately taken care of for the test set from observed foreground-cleaned CMB

data.

A schematic flowchart to describe the ANN architecture common to both full and partial

sky cases is shown in Figure 4.4. The differences between the two cases in the input layer

and regularization parameters such as the rates of dropout and strengths of penalty for kernel

regularizers are mentioned accordingly. We describe the two cases in further detail as

follows.
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Figure 4.4: A schematic diagram of the common ANN architecture for detecting the dipolar modu-
lation signal. The differences between full and partial sky cases are mentioned with ‘or’. All layers
after the input layer are densely connected to their preceding layers. The dropout implemented after
the first hidden layer has a rate of 0.01 for full sky or 0.04 for partial sky. Additionally, the kernel
regularizers used are L2 in the first hidden layer and both L1 and L2 in the second hidden layer with
strengths of 0.007 each for the full sky case and 0.005 each for the partial sky case.
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Figure 4.5: Loss curves for the ANN modelled using full sky CMB maps. The stabilisation around
80 epochs and beyond indicates that the ANN is trained.

4.5.1 Full sky ANN

In the full sky case, we consider 3072 features in the input layer, which is followed by

two hidden layers having 64 and 34 nodes each. The first hidden layer has an L2 kernel

regularizer with strength of penalty = 0.007. There is a dropout at a rate of 0.01 after this

layer. In the second hidden layer, we have both L1 and L2 kernel regularizers each with

strength of penalty values = 0.007. The output layer has three nodes corresponding to the

three components of A× λ̂. The activation function used in each of the hidden layers is

LeakyReLU whereas that in the output layer is linear.

For training the ANN, we use mse as the loss function, while we use Adam for opti-

mization purposes with a learning rate of 10−4. We see from Figure 4.5 that the training is

accomplished by the end of approximately 80 epochs, when training with a batch size of 64.

The time taken for a complete run of 100 epochs is 263.18 seconds, or ∼ 4.4 minutes on an

ordinary CPU.
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Figure 4.6: Loss curves for the ANN modelled using partial sky CMB maps. The stabilisation
occurs around 80 epochs and beyond, indicating that the ANN is trained.

4.5.2 Partial sky ANN

Similar to the full sky case, we have two hidden layers of 64 and 34 nodes each. The input

layer however takes 2652 features, which are the remnant pixels on the partial sky NLV map.

In this case, the dropout rate used after the first hidden layer is 0.04. The kernel regularizers

have strengths of penalty of 0.005 for L2 at the first hidden layer and 0.005 for both L1 and

L2 at the second hidden layer. The output layer as usual has three nodes. The activation

function is LeakyReLU for both hidden layers, while that for the output layer is linear.

Again, the mse is used as the loss function, and the optimizer is Adam with a learning rate

of 10−4. The loss curves for training and validation sets are stabilised by 80 epochs, as seen

in Figure 4.6, when the batch size is 64. For a complete training run of 100 epochs, the time

taken is 254.85 seconds or ∼ 4.25 seconds on an ordinary CPU.
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4.6 Analysis and results

First we present the analysis of test samples with the trained ANNs for the two cases of sky

coverage. We specify the goodness of fit for the same with the help of R2 scores for each of

the three outputs of Aλ1,Aλ2,Aλ3. Mathematically, R2 score can be expressed as

R2 = 1−
∑(

ytrue−ypred
)2

∑(ytrue−ytrue)2 , (4.270)

where the summations are over all the samples of the set for which the outputs are predicted.

It ranges between 0 and 1, whereR2 = 1 indicates a perfect fit or the notion that all variations

in the predicted data can be explained by the intrinsic dispersion of the actual values.

Of the total 2× 104 test samples, half are SI obeying (unmodulated) and the rest are

SI violating (modulated) maps. So we can separate them and calculate their respective

modulation amplitudes from the predicted outputs asA=
√

(Aλ1)2 + (Aλ2)2 + (Aλ3)2. We

expect the spread of values in amplitude for the unmodulated maps to be very close to

zero, and that of modulated maps to closely follow the range [0.03,0.15] in which we have

randomly chosen the amplitude.

In the following subsections, we present the respective probability densities of amplitude

for unmodulated and modulated maps. Despite our expectation that A from unmodulated

maps must be equal to zero, there is a very small non-zero spread in the values of A. This

is attributable to the fact that the goodness of fit can not be achieved to be exactly equal to

one, and is due to the underlying aleatoric uncertainty [289] of the realisations in question.

Hence when we compute A for the observed foreground-cleaned CMB maps, we can say

within the confidence defined by this uncertainty, as to whether the predicted value of A

from an observed foreground-cleaned CMBmap corresponds to a signal of modulation. The

significance of detection of the signal is thus quantified with p-values of predicted A for

observed foreground-cleaned maps versus the null hypothesis prediction for test samples of

unmodulated maps.
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Figure 4.7: Predicted Aλ̂ components for the test set versus their true values, obtained using the full
sky ANN. The predicted values present a good fit to their actual counterparts, as given byR2 > 0.97.

Figure 4.8: Predicted A for the test set versus their true values, obtained using the full sky ANN.
The predicted values present a good fit to their actual counterparts, as given by R2 > 0.97. The
amplitude from unmodulated case are isolated on the left of the figure with a dispersion intrinsic to
the reconstruction power of the ANN.

Figure 4.9: Predicted λ̂ components for the modulated maps of the test set versus their true values,
obtained using the full sky ANN. The predicted values present a good fit to their actual counterparts,
as given by R2 > 0.97. The λ̂ components for unmodulated maps are not shown since they are
undefined.

169



90
70

50

30

10

10

30

50

70
90

20406080100120140160 180200220240260280300320340360

Figure 4.10: The preferred directions causing a dipolar modulation in the 5 inpainted observed CMB
maps we have investigated with full sky coverage. For the Planck 2013 release inpainted NILC map,
the direction is indicated with a red ×, while the same for each of the Planck 2018 inpainted CMB
maps are shown with a green ?. Directions of dipolar modulation in these maps are fairly consistent
with each other.

Map Aλ1, Aλ2, Aλ3 A Direction (l, b) p-value
COMM 2018 −0.009961 , −0.012024 , −0.007281 0.0172 230.3609◦ , −25.0006◦ 1.19%
NILC 2013 −0.009646 , −0.011421 , −0.007509 0.0167 229.8179◦ , −26.6688◦ 1.35%
NILC 2018 −0.012476 , −0.011948 , −0.008014 0.019 223.7628◦ , −24.8865◦ 0.62%
SMICA 2018 −0.011885 , −0.01196 , −0.007744 0.0186 225.1796◦ , −24.6688◦ 0.74%
SEVEM 2018 −0.007996 , −0.011014 , −0.006827 0.0152 234.0216◦ , −26.6376◦ 2.79%

Table 4.1: Predictions for observed foreground-cleaned CMB maps using the full sky ANN. Both
amplitudes and directions for all the maps are similarly valued, and the detection of the dipolar
modulation signal is statistically significant.

Figure 4.11: Probability densities of predicted amplitudes p(A) for unmodulated and modulated
maps from the test set using the full sky ANN. The histograms closely follow expected ranges of
values for unmodulated and modulated maps.
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4.6.1 Full sky

We test the trained full sky ANN on the 2× 104 test samples and note the predictions of

the ANN for the three components of Aλ̂. These results for the test set are shown along

with their goodness of fit scores in Figure 4.7. The R2 scores are > 0.97 indicating that

the predicted components of Aλ̂ fit the expected true values quite well. In addition we

present the scatter graphs of predicted versus true values of the amplitude (A) for the mixed

set of unmodulated and modulated maps in Figure 4.8. We show amplitudes for both the

unmodulated and modulated maps, and the former can be seen on the left corner of the graph

with some dispersion. The scatter graphs of the direction given by the three components of λ̂

are shown in Figure 4.9, only for modulated maps, since they are undefined for unmodulated

maps.

The observed foreground-cleaned CMB maps considered in the full sky case are all

the available inpainted maps, namely, NILC from Planck 2013 release, and Commander

(COMM), NILC, SMICA and SEVEM from Planck 2018 release. We have evaluated the

directions for each observed foreground-cleaned CMB map in the following manner. Firstly

we normalise the predicted Aλ̂ vector by its respective A to get λ̂. We then compute

θ = cos−1 (λ3) and the galactic coordinate b = 90◦− θ. A general procedure to obtain

Galactic l can be outlined as follows:

1. We must find φ= tan−1
( |λ2|
|λ1|

)
.

2. If λ1 > 0,λ2 > 0, then l = φ .

3. If λ1 < 0,λ2 > 0, then l = 180◦−φ .

4. If λ1 < 0,λ2 < 0, then l = 180◦+φ .

5. If λ1 > 0,λ2 < 0, then l = 360◦−φ .

The consistency of the preferred directions given by λ̂ or (l, b) for these five inpainted observed

foreground-cleaned CMB maps can be illustrated by plotting the same in a Mollweide map,

as shown in Figure 4.10.
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Figure 4.12: Predicted Aλ̂ components for the test set versus their true values, obtained using the
partial sky ANN. The predicted values present a good fit to their actual counterparts, as given by
R2 > 0.96.

Additionally, we present the probability densities of the amplitudes computed from the

predicted vector components for the 104 unmodulated and modulated maps of the test set

in Figure 4.11, which show that the spread in predicted values closely obeys expectations.

However, the ANN does not predict a perfect zero for the amplitude in the case of all the

104 unmodulated maps in the test set. Hence, we must gauge the possibility that the ANN

predicts a non-zero value for these modulation amplitudes, even if there was no modulation

in the observed foreground-cleaned CMB. This is given by a p-value which is computed as

the percentage of predicted amplitudes from 104 unmodulated maps of the test set that lie

above the predicted amplitude for an observed foreground-cleaned CMB map.

In Table 4.1, we present the results obtained for these inpainted maps, which lists the

direct outputs (Aλ̂ components) from the ANN, the derived values of the amplitude and

direction which are consistent across maps, and the p-values which indicate a significant

detection of the dipolar modulation signal for all the maps.

4.6.2 Partial sky

For the case of partial sky coverage, we apply the corresponding trained ANN on the test

set and then on available foreground cleaned CMB maps from all the releases of Planck and

WMAP satellites.

In Figure 4.12, we present the scatter graph of predicted values of the components of the

Aλ̂ vector with respect to the true values, along with their respective R2 scores. Despite the

fact that the goodness of fit scores are > 0.96, we notice that they are lower than those in the
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Figure 4.13: PredictedA for the test set versus their true values, obtained using the partial sky ANN.
The predicted values present a good fit to their actual counterparts, as given by R2 > 0.97. The
amplitude from unmodulated case are isolated on the left of the figure with a dispersion intrinsic to
the reconstruction power of the ANN.

Figure 4.14: Predicted λ̂ components for the modulated maps of the test set versus their true
values, obtained using the partial sky ANN. The predicted values present a good fit to their actual
counterparts, as given by R2 > 0.96. The λ̂ components for unmodulated maps are not shown since
they are undefined.
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Map Aλ1, Aλ2, Aλ3 A Direction (l, b) p-value
C-R 2013 −0.022411 , −0.012969 , −0.008142 0.0271 210.0573◦ , −17.4566◦ 0.04%

COMM 2015 −0.022461 , −0.013471 , −0.006697 0.027 210.9529◦ , −14.342◦ 0.04%
COMM 2018 −0.022416 , −0.013744 , −0.007312 0.0273 211.5149◦ , −15.5412◦ 0.04%
NILC 2013 −0.022881 , −0.014141 , −0.006798 0.0277 211.7163◦ , −14.1835◦ 0.02%
NILC 2015 −0.021521 , −0.013196 , −0.007197 0.0263 211.5149◦ , −15.9114◦ 0.1%
NILC 2018 −0.022742 , −0.013616 , −0.00725 0.0275 210.9099◦ , −15.2974◦ 0.02%
SMICA 2013 −0.023005 , −0.014293 , −0.006445 0.0278 211.8531◦ , −13.3859◦ 0.02%
SMICA 2015 −0.022912 , −0.013846 , −0.006701 0.0276 211.1449◦ , −14.0539◦ 0.02%
SMICA 2018 −0.022649 , −0.013983 , −0.006931 0.0275 211.6895◦ , −14.5946◦ 0.02%
SEVEM 2013 −0.022908 , −0.014313 , −0.00661 0.0278 211.9983◦ , −13.7514◦ 0.02%
SEVEM 2015 −0.021601 , −0.013769 , −0.007109 0.0266 212.5148◦ , −15.5113◦ 0.07%
SEVEM 2018 −0.021764 , −0.013886 , −0.007099 0.0268 212.54◦ , −15.376◦ 0.06%
SEVEM 2021 −0.02145 , −0.013833 , −0.007017 0.0265 212.8182◦ , −15.371◦ 0.07%
WMAP 1yr −0.039227 , −0.019561 , −0.00865 0.0447 206.5035◦ , −11.1626◦ 0.0%
WMAP 3yr −0.027934 , −0.015285 , −0.009217 0.0331 208.6861◦ , −16.1434◦ 0.0%
WMAP 5yr −0.022598 , −0.012087 , −0.00881 0.0271 208.1404◦ , −18.971◦ 0.04%
WMAP 7yr −0.020355 , −0.012319 , −0.008 0.0251 211.1818◦ , −18.5848◦ 0.17%
WMAP 9yr −0.014497 , −0.00986 , −0.007313 0.019 214.2221◦ , −22.6406◦ 1.66%

Table 4.2: Predictions for observed foreground-cleaned CMB maps using the partial sky ANN.
Overall, both amplitudes and directions across all maps are consistent. Additionally, the detection of
the signal of dipolar modulation in all the maps is statistically significant.
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Figure 4.15: The preferred directions causing a dipolar modulation in the 18 observed foreground-
cleaned CMB maps we have investigated with partial sky coverage. Preferred dipole direction in
observed foreground-cleaned partial sky CMB maps from Planck releases of 2013, 2015, 2018, and
2021 are indicated with red ×’s, green ×’s, green ?’s and a red •, respectively. Those for each of
WMAP 1yr, 3yr, 5yr maps are shown with a green, blue and yellow •, and directions for WMAP 7yr
and 9yr are shown with a red and a blue ?. The figure shows that the directions are mostly consistent
over all these variously procured maps.
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Figure 4.16: Probability densities of predicted amplitudes p(A) for unmodulated and modulated
maps from the test set for the partial sky ANN. The range of predicted amplitudes appropriately
follow zero and non-zero values for unmodulated and modulated maps.

full sky case. This is due to the increased variations that cannot be explained by a similar

dispersion in the true values, obviously caused by the use of a mask in this case. Further,

since the U73 mask primarily conceals galactic sources, it is somewhat symmetric about the

z-axis, and hence the R2 score for Aλ3 is not as compromised as those of Aλ1 and Aλ2.

This is in contrast with the full sky case, for which the goodness of fit values of all the three

components were similar (about 0.975).

Further we show the scatter graphs of the amplitude (A) for the test set in Figure 4.13.

We present amplitudes for both the unmodulated and modulated maps, and the former shows

some dispersion for the unmodulated case on the left corner of the figure. Similar to the case

of full sky coverage, the three components of λ̂ are undefined for unmodulated maps. Hence,

the scatter graphs for the direction are shown in Figure 4.14 only for modulated maps.

When the partial skyANN is applied toNLVmaps of the partial sky observed foreground-

cleaned CMB, we see a very consistent amplitude and direction of dipolar modulation across

all the maps from Planck and WMAP releases ranging from Planck 2013-2021 data and

WMAP 1yr-9yr data. The consistency of the preferred directions given by λ̂ or (l, b) for the

18 observed foreground-cleaned CMB maps can be inferred from a plot of the same in a

Mollweide map, as presented in Figure 4.15.

Following our approach in the full sky case, we estimate the amplitudes from predicted

Aλ̂’s and present their probability densities for the 104 unmodulated and modulated maps

from the test set in Figure 4.16. On finding the minimum and maximum values of predicted

amplitudes for these two types of maps, we see that there is a very subtle increase in
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their spreads (of the orders of 10−4 for unmodulated maps, and 10−3 for modulated maps),

compared to the full sky case. Nonetheless, these histograms are qualitatively similar to those

obtained for the case of full sky coverage, and the predicted amplitudes for unmodulated

maps are again not exactly zero. Thus we can quantify the significance of detection for

the dipolar modulation signal in the observed foreground-cleaned partial sky CMB maps.

We represent this significance with the p-value which is computed as the percentage of

104 unmodulated maps for which the predicted amplitudes are larger than those from the

observed foreground-cleaned CMB maps.

We finally present all the findings from the partial sky analysis in Table 4.2, which

shows the partial sky ANN outputs for the three Aλ̂ components, the computed values of

the amplitudes and directions which are consistent across maps, and the p-values which

correspond to a significant detection of the signal of dipolar modulation for all the maps.

4.7 Summary and conclusion

The CMB temperature fluctuations are expected to obey statistical isotropy (SI) according to

the Standard (ΛCDM ) model of Cosmology. This entails that there must be no preference

of a direction in the CMB. However, the hemispherical power asymmetry as seen by many

authors in existing literature indicates a departure from the Standard Model. This departure

is significant given the reported magnitudes of the p-values, and the sheer volume of such

findings obtained with independent methods. An underlying dipolar modulation is suggested

as a possible cause of this power asymmetry, the strength of which is known to vary with the

scale at which it is estimated.

For the first time, we use deep learning with Artificial Neural Networks (ANNs) to probe

the existence of a possible dipolar modulation signal. This provides a novel approach towards

validating or rejecting evidence for such a signal in previous literature. Employing ANNs

for studying features in the CMB may introduce a paradigm shift in interpretation of signals

of SI violation, relative to traditional methods of regression or fitting associated with the

frequentist approach. This is because ANN architectures can ‘learn’ how to detect a signal

when presented with a set of samples for training. Upon adequate training the ANN develops
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the artificial intelligence to act on observed foreground-cleaned CMB data and consequently

estimate a possible signal in such data.

We consider normalised local variance (NLV) maps which are very useful as input

features to train ANNs. We build two ANN architectures namely, for the full and partial sky

cases. To obtain partial sky maps, we use the Planck U73 mask released in 2013. The key

findings of this work are as follows.

1. With full sky coverage,

(a) generally consistent values of amplitude and direction of the modulation are seen

across all available observed foreground-cleaned full sky inpainted maps from

all releases of Planck (COMM 2018, NILC 2013, NILC 2018, SMICA 2018,

SEVEM 2018).

(b) The detected signal is significant (at 97.21%−99.38% C.L.) for all these 5 maps.

2. With partial sky coverage,

(a) we find reasonably consistent values of amplitude and direction of themodulation

across all observed foreground-cleaned partial sky maps from all releases of

Planck (2013-2021) and WMAP (1yr-9yr).

(b) The detected signal is significant at 99.9%− 99.98% C.L. for all the 13 Planck

maps, and at 98.34%−100.0% C.L. for all the 5 WMAP maps.

3. These results are therefore robust against sky coverage, observational instruments,

periods of observation, and foreground cleaning and inpainting methods.

In the following paragraphs, we discuss two criticisms that have been posited against the

manner in which any possibly anisotropic signals in the CMB are probed, and address how

our method is able to mitigate those effects further.

Firstly the look-elsewhere effect occurs when a signal is detected purely by chance

and is attributable to the large sample size for which it becomes more favourable to see

some random fluctuations that are statistically significant. It is additionally the result of a
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constant approach of ‘looking elsewhere’ to find a significant signal, while disregarding any

previously insignificant findings. In this work, we are able to weaken the look-elsewhere

effect (a) with the robustness of the detection, and (b) by adding to existing literature an

independent method like the one in this work, which also detects a significant signal, thus

strengthening the repeatability of the initial findings.

Secondly, the concept of a posteriori statistical inference is based on devising estimators to

shift our focus to visually anomalous features. However, (a) since themethod of deep learning

to distinguish unmodulated maps frommodulated ones (quantified with the magnitude of the

modulation) is distinct from the process of devising an estimator which focuses on a search

for such a signal after looking at the data, and (b) as we use a wide range of amplitudes and

directions to train the ANN so that it is not focused at detection of amplitude and directions

specific to the observed foreground-cleaned data and can be used to probe unseen data, we

are able to alleviate the criticism of an a posteriori choice of statistics.

In conclusion, we can say that our findings agree quite closely with those in existing

literature. Further, assuming that no unknown residual systematics are commonly present

in all the observed foreground-cleaned CMB maps considered here, this entails that either

our universe is a rare realisation of the Standard Model, or that we live in a statistically

anisotropic universe which could be a rather common realisation of a different model.
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CHAPTER 5

DISCUSSION AND CONCLUSION

The evolution of the universe is expected to have arisen from a period of cosmic inflation,

based on a homogeneous and isotropic background metric for expansion, with some pertur-

bations to act as seeds for structure formation in due course of time. Such an assumption

of large scale homogeneity and isotropy coupled with the notion that inflation uniformly

expands the space fabric, leads to the expectation that there must be no directional preference

in the placement of perturbations on the largest scales which correspond approximately to the

size of the causal horizon. This is known as Statistical Isotropy (SI), which mathematically

asserts that the two-point correlation function of the primordial perturbations is rotationally

invariant.

Several violations of SI have been found and studied by authors in existing literature,

such as the hemispherical power asymmetry, the quadrupole-octupole alignment, the parity

asymmetry, large angle correlation deficit, and so on. The signals observed in each of these

works is significant and robust against various sky coverages, instruments and periods of

observation, frequency bands, foreground reduction or cleaning algorithms and the like.

Hence, we have two possible conclusions: either the CMB and hence the universe we live in

is an unusual realisation of the concordance (ΛCDM) model of Cosmology, or that possible

corrections need to be made to accommodate our universe as a more common realisation

of a different model. The latter case therefore warrants the need for more exotic physics

of evolution of the early universe. Possibilities for such exotic physics include non-trivial

cosmic topology or anisotropic spacetimes, modulation of the primordial power spectrum of

perturbations to incorporate rotational variance, to mention a few.

Hence it becomes imperative to study the large scale temperature fluctuations in the
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CMB, firstly because the CMB happens to be one of the earliest sources of radiation from the

primordial universe, and secondly because the large-scale fluctuations carry pristine infor-

mation from the conditions prevalent at the time of inflation. The gravitational perturbations

transform into imprints on the temperature of the CMB causing these fluctuations called

temperature anisotropies. Therefore, in this thesis, we scrutinised the largest scale CMB

temperature anisotropies for a holistic understanding of the isotropy of the universe we live

in, and hence our assumptions regarding the inflationary era in the evolution of the uni-

verse. We analysed foreground-minimized CMB temperature fluctuation data from Planck

and WMAP to ascertain the presence of departures from its theoretically expected SI with

traditional frequentist methods and Machine Learning (ML). For both frequentist and ML

approaches we additionally used simulated CMB maps for comparison or training purposes,

respectively. The three works that we explored are as follows.

Firstly, since the temperature anisotropy field of the CMB can be expressed as a sum of a

symmetric and an antisymmetric function, they equivalently carry with them the information

of an even parity and odd parity respectively. Further, SI of the universe dictates that there

must be no such symmetry or antisymmetry which reflects in the CMB. We established

a connection between the correlations of the angular power spectrum (APS) of the CMB

temperature anisotropy field and the parity associated with it, by studying the correlations

between APS measures at different multipoles. We devised a novel average level spacing

estimator inspired from the respective concepts of level clustering and level repulsion for

uncorrelated and correlated eigenvalues of random matrices. Our estimator is able to dis-

tinguish correlations between APS measures with or without parity distinction. Thus we

considered three cases, namely, with all, even and odd multipole spacings of the APS. We

found using traditional frequentist methodology, that there exists an even parity biased corre-

lation deficit in the observed foreground-cleaned CMB, which manifests as an unusually low

value of the even multipole mean spacing. To understand if any known galactic foregrounds,

or the non-Gaussian cold spot (NGCS) could be contributing to the signal, we used galactic

masks in union with a mask for the NGCS. Since we worked in multipole space, partial sky

coverage cannot be dealt with sans introduction of some correlations due to the pseudo-C`
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method. Thus, we eschewed this problem and demonstrated the robustness of the results by

inpainting over several masked observational CMB data, using the technique of constrained

Gaussian realisations. Existing literature contains works describing (a) an anomalous odd

parity preference of the CMBAPS [156], and (b) an unusual deficit of large angle correlation

in the CMB [67] which is equivalent to (a) [158]. Our work augments these works with

the finding that on an average over large angular scales, consecutive even multipole APS

measures tend to stay unusually close together, suggesting that the manner in which they are

correlated does not agree with theoretical predictions. Further, since the large scale angular

correlation deficit has already been associated with the odd-parity preference of power, a

future study may help shed light on whether the possibly peculiar correlations in even parity

APS measures primarily contribute to the lack of large angular scale correlations.

Secondly, we studied the local extrema (hot and cold spots) of the CMB since they reflect

the local extrema of matter density perturbations at last scattering. Besides, SI entails that the

CMB spotsmust be isotropically distributed. Thus, it is important to investigate if there is any

significant non-uniformity in the placement of spots of the observed CMB, since the presence

or absence of the same dictates how LSS forms. We utilised the orientation matrix which is

defined for a study of data points on the surface of a 2-sphere andmodified it by incorporating

weights of the temperature extrema values to encapsulate the randomness attributable to both

themagnitudes of the temperature intensities as well as their directions. From the eigenvalues

of the weighted orientation matrix we could construct two parameters: (a) to quantify the

strength of the non-uniformity, and (b) to denote the shape of the clumping of spots in terms

of clustering or girdling. We found a significant and robust signal of an anomalously weak

non-uniformity in the placement of hot and cold spots of various foreground-cleaned CMB

maps and foreground-reduced CMB maps at different frequency bands, with full and partial

sky coverage, which is independent of the NGCS. Further, we found that intriguingly the

signal vanishes without the anomalous contributions of the quadrupole and octupole and

hence it must be related with the low CMB temperature variance anomaly.

In our third work, we investigate the notion that due to SI, there should exist no large scale

anisotropy or preferred direction to have a direct bearing on the smaller scale fluctuations,
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as the former must have been washed out of the cosmological horizon, thus having no

causal influence on sub-horizon evolution of fluctuations. However, the hemispherical

power asymmetry [92] as noted in the observed CMB indicates a violation of SI. A dipole

modulation of theCMB temperature anisotropy fieldwas posited [94, 116, 260] to explain this

power asymmetry. Such a dipolar modulation introduces off-diagonal correlations between

spherical harmonic coefficients corresponding to adjacent multipoles, thus breaking SI.

Hence, we employed Artificial Neural Networks (ANNs) as a representative example of

Artificial Intelligence (AI) to detect the presence of a dipolar modulation in the CMB

temperature field. Since we utilised modulated and unmodulated simulations of CMB maps

for training theANNs, themachine could equip itself with the capability tomake a self guided

detection of the signal, while also providing us the magnitude of the dipole and its direction

in terms of the three vector components. We used normalised local variance maps [11] at a

lower resolution obtained from a corresponding higher resolution modulated or unmodulated

CMBmap to train the ANNs. Since a large variety of amplitudes and directions were used to

train the ANNs to learn how to detect the signals, we were able to mitigate the criticism of a

posteriori inference. With this novel and independent approach we obtained robust signals of

the modulation at high confidence, consistent with existing literature. We found the signal to

persist with values of the amplitude and direction consistent over foreground-cleaned and/or

inpainted CMB temperature maps from all releases of Planck and WMAP satellites, over

both full and partial sky coverages. The robustness of this independent method of detection

of the signal additionally alleviates look-elsewhere effects.

In conclusion, we explored and found the following. (I)Measures of theCMB temperature

APS of adjacent even multipoles stay unusually close to each other on an average over large

scales, suggesting that these have a peculiar nature of correlations. (II) A strikingly weak

non-uniformity in placement of hot and cold spots which shares a common origin with

the low temperature variance anomaly and anomalous contributions of the quadrupole and

octupole. (III) A significant detection of the dipolar modulation signal with consistent values

of amplitude and direction across observed CMB maps using ANNs, thus weakening the

criticism of look-elsewhere effects and a posteriori inferences. In all of these works, we found
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significant signals of anomalous features, which are robust against different sky coverages,

various observation instruments, frequency bands, foreground reduction and/or cleaning

algorithms, periods of observation, inpainting methods, and the like, as the case may be.

Hence, it becomes difficult to attribute these signals to systematics or known foreground

residual sources. So we either happen to live in an unlikely realisation of the universe, or

some exotic physics unaccounted for in the concordance model is at play, unless these effects

are completely free from some unknown residuals common to all the foreground-minimized

CMB maps considered.

In the future, given that observations of the CMB polarisation will be characterised by a

considerably higher signal-to-noise ratio, we shall be able to thus suitably modify the tools

and techniques developed for CMB temperature anisotropy data, for an application of those

on CMB polarisation data. This will essentially help corroborate the findings of yesteryears

with regard to violations of SI. Additionally, we will assess LSS data along with CMB

data in cross-correlation studies for a better understanding of violations of SI which must

evolve according to the Einstein-Boltzmann equations and leave imprints in the formation

of structure. A notable aspect of the results we have obtained, especially from our works

on the level correlations, and on isotropy of local extrema, is that these are independent

of the NGCS, while the excess isotropy of spots as seen by us is characterised by the

anomalous contributions of the quadrupole and octupole components. Such investigations

to find common origins and to unify statistically anisotropic features in the CMB will help

expedite efforts in finding a common solution. Thus, with these aims in the future, we shall

be able to exploit the full potential of upcoming cosmological observations at our disposal.
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