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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor at the University of Oslo. The research presented here was
conducted at the University of Oslo and, under the supervision of Ingunn K. Wehus
and Hans Kristian K. Eriksen. This work was supported by the Norwegian Research
Council through grant 251328.

Most of my work has been on the COMAP data analysis pipeline, including
calibration, low level data processing, systematics, simulation, signal validation, data
selection and power spectrum methods. Much of this work is presented in Paper I (Foss
et al., in prep) which describes the data analysis pipeline all the way from raw data to
final maps.

For the last year or so I have also worked on developing power spectrum methods
that have a high sensitivity, yet are robust to instrumental systematics. This work is
presented in Paper II (Ihle et al., in prep).

Papers I and II are both meant to be part of a set of papers to be published together
making up the first release of COMAP results. As they are both in a fairly complete
state we present them here as drafts, but we note that both may receive significant
modifications before final submission.

I have also worked more abstractly on inference from line intensity maps: How
do you get as much information possible out of an observed map? Paper III (Ihle
et al., 2019) demonstrates how, for a COMAP-like experiment, using a combination
of the power spectrum and the voxel intensity distribution gives significantly stronger
constraints on the CO luminosity function than using either observable separately. Lately
my focus has been more on how to bridge the gap between forecasts like this, with a
bunch of simplifying assumptions, and real world data. As I discuss in the thesis, this
gap needs to be closed for the work we do on inference methods to be useful.

For the last two years or so I have also spent some of my time working on the
BeyondPlanck project (Paper IV, BeyondPlanck Collaboration, 2020). My main focus
starting out was on implementing the methods for sampling the correlated noise and the
corresponding noise parameters. As the work evolved we encountered some interesting
systematics which seem to involve both the noise estimation and calibration, which
makes sense since they are so closely related. This work involved using housekeeping
data from the Planck satellite to interpret and understand the results. Our main findings
and more discussion can be found in Papers V and VI (Ihle et al., 2020, Gjerløw et al.,
2020).
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Chapter 1

Cosmology

Cosmology is the study of the universe as a whole. What are the physical properties of
the universe? What is the history and future of the universe? What does the universe
consist of?

Although we have had a fairly good qualitative understanding of some parts of these
questions for about a century, it is really first in the last few decades that we have been
able answer any part of these questions with any kind of certainty or precision.

This development has mostly been led by experimental advances in the study of the
cosmic microwave background (CMB) and the large scale structure of the universe.

1.1 Standard Cosmology

Here we will discuss some of the main theoretical components underlying modern
cosmology, including general relativity (GR), dark matter (DM), dark energy (DE) and
inflation, culminating in the ΛCDM model.

1.1.1 General Relativity

GR is an incredibly successful theory of gravity describing everything from gravitational
phenomena measured in laboratories here on earth to the expansion and evolution of the
universe as a whole. The fundamental equation of GR is the Einstein equation

Gµν = 8πGTµν, (1.1)

where Gµν is the Einstein tensor and Tµν is the energy-momentum tensor. The Einstein
equation relates the curvature of the universe, represented by Gµν, to the matter and
energy content of the universe, represented by Tµν. This means that any distribution
of matter and energy will create curvature in the spacetime around it, much like any
distribution of electric charge will create an electromagnetic field.

The ΛCDM model assumes that the spatial part of the universe is homogeneous,
isotropic and flat, and that the energy content of the universe is given by radiation,
baryonic matter, cold dark matter (CDM) and DE. In this case the Einstein equation can
be reduced to

H2(t) = H2
0

(
Ωr

a4 +
Ωb + Ωc

a3 + ΩΛ

)
, (1.2)

where a(t) is the scale factor, which keeps track of the size of the universe at any given
time, H(t) ≡ ȧ(t)

a(t) is the Hubble parameter denoting the expansion rate of the universe,
ȧ(t) denotes the time derivative of a(t), H0 is the current value of the Hubble rate, often
called the Hubble constant and Ωr,b,c,Λ denotes the fractional energy density today in
radiation, baryonic matter, CDM and DE respectively.
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1. Cosmology

1.1.2 Dark Matter

Dark matter (DM) refers to a matter component additional to the visible matter we can
see and interact with. The term was first used by Fritz Zwicky (Zwicky, 1933) in 1933
when he found larger velocity dispersion in the Coma cluster than could be explained
by the visible matter, indicating another "dark" matter component.

Today DM is a cornerstone of cosmology with multiple independent lines of evidence
in its favor, including rotation curves of spinning galaxies (Borriello and Salucci, 2001),
velocity dispersion in galaxy clusters (Saro et al., 2013), weak (van Uitert et al., 2012)
and strong (Moustakas and Metcalf, 2003) gravitational lensing, the CMB and non-linear
structure formation (Planck Collaboration VI, 2020).

These lines of evidence, as well as null results in direct- and indirect detection
experiments, put strong constraints on the properties of dark matter:

• It must be dark (i.e. non-luminous): In practice this means no coupling (or
extremely weak) to the photon. In general DM can not have any large coupling to
any light standard model particle.

• It must be non-interacting: The self-interaction of dark matter is severely
constrained, especially on large scales.

• It must be cold: DM has to be non-relativistic during structure formation.

• It must be stable: It must have a lifetime significantly longer than the age of the
universe.

It is remarkable that simply positing a new heavy non-SM particle with small or
no interactions with the visible sector can explain such a breadth of independent
observations.

It is interesting to note, however, that in all the stated cases, DM is inferred from its
gravitational effects. This has led some to suggest a modification to gravity to explain
these phenomena (see e.g. Milgrom, 2010). It has, however, not been possible to devise
a modification of gravity that can explain more than a few of the above lines of evidence
for DM at a time.

1.1.3 Dark Energy

In 1998 supernova measurements suggested, for the first time, that the expansion of
the universe was accelerating (Riess et al., 1998). This acceleration cannot be achieved
by ordinary matter, but requires a cosmological component with positive energy and
negative pressure. This new component is what is called Dark Energy. Since then
multiple other lines of evidence have confirmed this accelerated expansion (Huterer
and Shafer, 2018) and we now know that DE is actually the largest contribution to the
energy budget of the universe at around 70%.

We do not know the nature of DE, but the simplest explanation is that empty
space has a certain energy associated with it, a vacuum energy. This constant energy
density has exactly the properties we need to explain the accelerated expansion we
observe. However, the big open question is: Why does the vacuum energy take this
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Standard Cosmology

specific value, and not another? Or, more specifically: Why is the energy density of the
vacuum of comparable magnitude as the energy density of matter? This is called the
Coincidence Problem, and we do not have any satisfactory answers to it. Perhaps even
more disconcertingly, if we try to estimate the contributions to the vacuum energy from
quantum field theory we naively expect contributions of the order of the Planck scale,
which is about 120 orders of magnitude off from the value we measure in cosmology.
Clearly there is a significant piece missing in our understanding of DE, and it remains
one of the major challenges for the future.

1.1.4 Inflation

Inflation is the theory that the universe went through a period of accelerated expansion
in the very early universe. During inflation, the universe expanded by at least a factor
of 1026. This accelerated expansion solves two problems (and other related problems)
with the traditional big bang model, the flatness problem and the horizon problem (Guth,
1981).

If the universe is dominated by matter or radiation, which it was during most of its
history, any initial spatial curvature would tend to increase as the universe expands. This
means that since we observe the universe to be very close to flat today, it must have been
extremely close to flat in the very early universe, which would require a large degree of
fine-tuning, unless we have some mechanism for making space flat to begin with. This
is called the flatness problem, and inflation solves it since during inflation, the universe
becomes more and more flat as the expansion goes on.

The horizon problem can be understood by observing that the CMB photons reaching
us from opposite points of the sky have the same temperature, even though these points
in space have never, in the traditional big bang model, been in causal contact and so
have no reason to be at the same temperature. This is called the horizon problem, and
inflation solves this by ensuring that regions that were in causal contact before inflation
got spread out to super-horizon scales. The effect of this is that even regions which
(if we did not know about inflation) we would think never had been in causal contact,
actually could have had time to reach thermal equilibrium.

The simplest model of inflation posits a single scalar field, φ(x, t), rolling slowly
down towards the minimum of its potential. In such a slow-roll scenario, the energy of
the scalar field is dominated by the potential term that acts almost like a vacuum energy
and leads to exponential expansion.

Another crucial effect of the accelerated expansion is that small scale quantum
fluctuations in the scalar field get blown up to large scales and then frozen in as these
scales move outside the cosmological horizon. After inflation, when these modes
eventually move into the horizon again, these initial perturbations act as seeds for the
subsequent growth of structure in the universe.

Single field slow-roll inflation makes three predictions for the generated perturba-
tions, they will be:

• Gaussian: Since the quantum state of the perturbation field is basically in the
vacuum state of an harmonic oscillator.
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1. Cosmology

• (Nearly) Scale invariant: Since the conditions under which the fluctuations were
generated changes only very slowly, the properties of the generated perturbations
will only depend very weakly on scale.

• Adiabatic: Since the perturbation in all the different cosmological components
are generated from the same scalar perturbations, they will be in phase with each
other.

Observations of the CMB confirms all these predictions, which is why inflation is
generally accepted, even though we do not have very direct evidence for it. On the other
hand, one can argue that in each of these three cases, if you had asked the question
"What is the simplest thing you would expect?" the answer would be adiabatic Gaussian
fields with a scale invariant spectrum. In this sense we can say that these are very generic
predictions, and thus less impressive. Nevertheless inflation is still the simplest theory
on the market to explain these observations (as well as solving the horizon problem
etc.).

Another important prediction of inflation is the presence of tensor perturbations in
addition to the scalar perturbations we have been discussing. Tensor perturbations are
primordial gravitational waves induced by the inflation field. Tensor modes are harder
to detect than scalar modes, but they can be observed because they induce so-called
B-modes in the polarization spectrum of the CMB.

The scalar and tensor power spectra are conventionally defined as follows (Baumann,
2018)

PR(k) =
k3

2π2 As

(
k
k∗

)ns−1

, (1.3)

Ph(k) =
k3

2π2 At

(
k
k∗

)nt

, (1.4)

where R is the scalar curvature perturbation, h is the tensor perturbation, As and At
are the scalar and tensor perturbation amplitudes, respectively. ns and nt are the scalar
and tensor spectral indices, respectively. The amplitudes are conventionally defined at
k∗ = 0.05 Mpc−1 (Planck Collaboration VI, 2020).

We then define the tensor-to-scalar ratio, r, as

r ≡ At

As
. (1.5)

Inflation does not predict the overall level of the tensor perturbations, but it predicts the
following relation nt = −r/8. We have not observed any cosmological tensor modes, and
the current observational constraints on the tensor-to-scalar ratio is given by r < 0.044
(95 % CL) (Tristram, M. et al., 2021). Therefore, since we already know that r is fairly
small, this means that in practice, since it will be very hard to measure, inflation predicts
nt ≈ 0.

Measuring the tensor-to-scalar ratio, r, is one of the main goals of future CMB
experiments. This would not only be more evidence for inflation (especially if we could
confirm that the tensor spectral index is consistent with inflation), but it would also tell
us (at least in the simplest inflation models) about the energy scale of inflation, and
about the shape of the inflationary potential.

4



Observational Cosmology

1.1.5 The ΛCDM Model

The ΛCDM model combines the theories of GR and inflation1 with DE and (Cold) Dark
Matter (CDM), as well as known particle physics and thermodynamics, into a single 6
parameter model for explaining the expansion and evolution of the universe, in addition
to the origin and growth of structures in the universe.

The model assumes that the universe is spatially flat, that the energy density of
dark energy is constant over time and that there are no primordial tensor perturbations.
Table 1.1 shows the constraints on the six parameter model from the latest Planck release.
We see that all these parameters, except for the optical depth to reionization, τ, are
constrained to more than one percent accuracy, which is quite remarkable.

Table 1.1: Constraints on the 6 ΛCDM parameters based on Planck data, in addition
to lensing and baryon acoustic oscillation data (Planck Collaboration VI, 2020). Here
h ≡ H0 / 100 km s−1 Mpc−1, θ∗ is the angular acoustic scale and τ is the optical depth
to reionization.

Parameter 68% limits
Ωbh2 0.02242 ± 0.00014
Ωch2 0.11933 ± 0.00091
100θ∗ 1.04119 ± 0.00029
τ 0.0561 ± 0.0071
ln

(
1010As

)
3.047 ± 0.014

ns 0.9665 ± 0.0038

1.2 Observational Cosmology

Observational cosmology is a wide ranging field with many different sources of data,
including galaxy surveys, observations of supernovae, gravitational lensing, Lyman-α
forest, CMB, line intensity mapping (LIM) and gravitational waves. Here we will focus
on CMB and LIM, as those are the topics of this thesis.

1.2.1 CMB observations

The cosmic microwave background (CMB) is the radiation left over from the hot big
bang. It essentially captures a snapshot of the distribution of structure in the very early
universe, only about 400 thousand years after the big bang. This radiation has been
a treasure trove of information about our universe and has brought us into the era of
precision cosmology.

Planck was the fourth satellite mission to study the CMB, following the RELIKT
(Klypin et al., 1987), COBE (Mather et al., 1994) and WMAP (Bennett et al., 2013)
satellites. Planck produced the ultimate map of the temperature anisotropies of the CMB,

1The ΛCDM does not explicitly include inflation, but assumes that the initial power spectrum is of the
form given in Eq. 1.3 and that r = 0.
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1. Cosmology

limited only by cosmic variance and fundamental physical processes. This has made
Planck one of the most important datasets for constraining cosmological parameters,
further cementing the ΛCDM model as the standard model for cosmology. With the
temperature map all but settled by Planck, the future of CMB lies in the polarization
signal.

The success of the CMB field comes from the combination of precise observations
and precise theoretical predictions. The early universe was incredibly homogeneous,
allowing the use of linear perturbation theory to study the growth of perturbations, which
means that the coupled Einstein-Boltzmann equations can be solved very precisely (see
Dodelson, 2003 for more details). Figure 1.1 shows the close agreement between
theoretical predictions and CMB observations.

1.2.2 Line intensity mapping

Line intensity mapping (Madau, Meiksin, and Rees, 1997) (LIM) aims to map out the
3D structure of the early universe in large volumes using various different spectral lines,
like 21 cm, Lyα, Cii, or CO. Compared to galaxy surveys, these surveys do not rely on
resolving and detecting individual sources of radiation, but instead collect the aggregate
emission from the full population of sources from each cross-sectional area of the sky
(see Fig. 1.2). By extracting the information present in the 3D maps LIM aims to help
us understand both galaxy evolution, reionization and fundamental cosmology.

Intensity mapping is now a growing field with multiple efforts both experimental
and theoretical. For a nice review of the motivation for LIM see (E. D. Kovetz et al.,
2017; E. Kovetz et al., 2019). The number of running and planned LIM experiments is
growing, including SKA (Koopmans et al., 2015; Square Kilometre Array Cosmology
Science Working Group et al., 2020), GBT (Masui et al., 2013), BINGO (Battye et al.,
2013), HIRAX (Newburgh et al., 2016), LOFAR (van Haarlem et al., 2013), CHIME
(Bandura et al., 2014), HERA (DeBoer et al., 2017), GMRT (Pen et al., 2009), MWA
(Tingay et al., 2013), PAPER (Parsons et al., 2014) and MeerKAT (Santos et al., 2017)
targeting 21 cm, COMAP (Cleary et al., 2016), COPSS (Keating, Bower, et al., 2015;
Keating, Marrone, Bower, Leitch, et al., 2016), mmIME (Keating, Marrone, Bower,
and Keenan, 2020) and AIM-CO (Bower et al., 2016) targeting CO, CCART-prime
(Stacey et al., 2018), TIME (Crites et al., 2014) and CONCERTO (Lagache, Cousin,
and Chatzikos, 2018) targeting Cii and CDIM Cooray et al., 2016, SPHEREx (Doré
et al., 2014), Origins (The OST mission concept study team, 2018) and HETDEX (Hill
et al., 2008) targeting other lines.

A simple analytic model for the signal power spectrum, P(k), of a line intensity map
is given by

P(k) = 〈Tline〉2b2
linePm(k) + Pshot, (1.6)

where 〈Tline〉 is the mean brightness temperature of the line, bline is the luminosity
weighted bias of the line, Pm(k) is the matter power spectrum and Pshot is the scale
invariant shot noise power spectrum. Together the three factors of the first term are
referred to as the clustering power spectrum as it follows the underlying clustering of
the matter distribution. The clustering term dominates at large scales, while the shot
noise term dominates at small scales (see Fig. 1.3).
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Figure 1.1: Comparison of CMB power spectrum measurements and theoretical
predictions from the ΛCDM model. Top panel: Temperature (TT), E-mode (EE) and
B-mode (BB) polarization auto spectra measured by several different CMB experiments.
Middle panel: Cross-spectrum between temperature and E-mode polarization maps.
Bottom panel: Lensing deflection power spectrum. Note that the B-mode spectrum
measured here is consistent with that induced by lensing, and shows no sign of
cosmological tensor modes. For more details see Planck Collaboration et al., 2020, from
where this figure was taken.
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Figure 1.2: Simulated 3D cube of CO line emission brightness temperature. This
corresponds roughly to the survey volume of one of the COMAP fields.

Figure 1.3: Illustration of the clustering and shot noise components of the intensity
mapping power spectrum. Figure taken from E. D. Kovetz et al. (2017).
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Unresolved Questions and Future Prospects

By tracing spectral lines originating in star forming regions, the interstellar medium
and the intergalactic medium, LIM can map out galaxy formation and evolution over
cosmic time, and, crucially, follow the process of reionization by tracing both the sources
of ionizing radiation, and the neutral hydrogen gas being gradually ionized. These data
will, among other things, help constrain the optical depth to reionization, τ, which is the
least constrained parameter in the ΛCDM model.

In addition to these unique insights into astrophysics, LIM also provides a great
opportunity to test fundamental cosmology. As we can see from Eq. 1.6, LIM traces
the underlying matter distribution, and as such, it gives us access to new cosmological
volumes largely inaccessible to other probes. Where CMB observations are limited to
the number of 2D angular modes from the surface of last scattering, LIM can give us
access to the full 3D modes up to high redshifts.

This could allow us, as an example, to follow the baryon acoustic oscillation
(BAO) scale through cosmic time, which would give us a robust, model independent,
measurement of the cosmic expansion history (Bernal, P. C. Breysse, and E. D. Kovetz,
2019). This would be a powerful tool to test things like modified gravity and dark
energy properties. We could also get much tighter constraints on primordial non-
Gaussianity (e.g. Furlanetto et al., 2019), which could help us distinguish different
models of inflation. Even dark matter decay or annihilation could be detected using
LIM (Creque-Sarbinowski and Kamionkowski, 2018). These are just some of the use
cases of LIM in cosmology currently being discussed. As the field develops, many more
will surely emerge.

1.3 Unresolved Questions and Future Prospects

The standard model of particle physics has been incredibly successful, explaining all
particle interactions that we have observed, with the detection of the Higgs boson at the
large hadron collider (LHC) in 2012 putting the last puzzle piece into place (Chatrchyan
et al., 2012; Aad et al., 2012).

Motivated by the WIMP miracle and the hierarchy problem (Jungman,
Kamionkowski, and Griest, 1996; Susskind, 1979), there was a significant expec-
tation that the LHC would detect supersymmetry (SUSY), or other new beyond standard
model (BSM) physics, at the weak scale. No such signs have yet been seen. While
low energy SUSY is still not ruled out, the fact that we have not seen any signs of it at
least lets us consider the possibility that we will not make much progress towards BSM
physics using particle colliders in the near future.

From cosmology, however, we know that 95 % of the energy content of the universe
(DE and DM) comes from sources that are not part of the standard model of particle
physics. Inflation is also an important process in cosmology that cannot be explained
within the standard model.

This suggests that at this point cosmology might be the most likely way to move
fundamental physics forwards. What is the nature and properties of DM and DE? Are
either of these explained by modifications of gravity? Did inflation happen? If so,
what is the source of inflation? If not, then what explains the flatness and horizon
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problem? And what gives us the spectrum of initial perturbations? How does any of this
fit together in a coherent picture with the standard model?

With new probes like line intensity mapping coming online, in addition to well
established ones like CMB analysis and galaxy surveys, observational cosmology and
astrophysics is now in a position to shed light on these questions. Detecting primordial
gravitational waves, non-Gaussianities or large scale anisotropies would shed light
on inflation or any other source of primordial perturbations. Mapping out the whole
expansion history of the universe, and the growth rate of structure, could help us nail
down the properties of DE, possibly modified gravity, or even new early universe
physics. Detecting the small scale structure of galaxies can tell us about the properties
and interactions of DM. All this makes observational cosmology an exciting area to
work in.
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Chapter 2

COMAP

2.1 COMAP Experiment

The CO molecule is the second most abundant molecule in the interstellar medium,
after H2, and is a great tracer of cold molecular clouds, and thus star formation. CO
has a ladder of equally spaced rotational transitions at integer multiples 115.27 GHz,
which opens the possibility of studying different transitions of the same CO sources by
observing at different frequencies.

The CO Mapping Array Pathfinder (COMAP, Cleary et al., 2016) is a line intensity
mapping experiment targeting the rotational transitions of the CO molecule. It is
an international collaboration between California Institute of Technology, Canadian
Institute of Theoretical Astrophysics, Jet Propulsion Laboratory (NASA), University of
Manchester, Maryland University, Miami University, Stanford University, University
of California Berkeley, Princeton University and University of Oslo. The Oslo team
is responsible for the end-to-end data analysis of the main science observations from
COMAP.

Phase One of COMAP consists of a single telescope observing in the Ka-band at
26-34 GHz, which for CO 1 → 0, emitted at 115 GHz, corresponds roughly to the
redshift range 2.4 – 3.4, the Epoch of Galaxy Assembly. The Ka-band will also pick up
a, presumably weaker, signal from the CO 2→ 1 transition, emitted at 230 GHz, or the
redshift range 6 – 8, during the Epoch of Reionization. See Fig. 2.1 for a group photo of
the COMAP collaboration in front of the COMAP telescope.

COMAP Phase One is a pathfinder experiment meant to demonstrate the feasibility
of large scale line intensity mapping using CO. Future planned phases of COMAP
will involve more telescopes observing at Ka, as well as the addition of one or several
telescopes observing the Ku-band. The Ku-band, at 12-20 GHz, would pick up the
1→ 0 emission from the same redshifts as the 2→ 1 emission from the Ka-band. This
will allow us to separate out the 2 → 1 from the 1 → 0 signal in the Ka data. The
long term goal is to do CO line intensity mapping from space (Bowman et al., 2012;
M. B. Silva et al., 2019).

We started the main science observations for Phase One in June of 2019, and are
currently analyzing the data taken during the first year of observations.

2.2 COMAP Instrument

For COMAP Phase One we utilize a 10.4 m telescope located at the Owens Valley
Radio Observatory (OVRO) in California. The telescope was part of an array of dishes
previously used for the Combined Array for Research in Millimeter-wave Astronomy
(CARMA) experiment, but has now been moved back to OVRO to be used for other
experiments. The angular resolution obtained is roughly 4.5 arcmin FWHM at 30 GHz.
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Figure 2.1: The COMAP collaboration standing in front of the COMAP Phase One
telescope in August 2018.

The receiver consists of 19 independent detectors, each with a separate signal
path from the 19 individual feed horns, through polarizers and low noise amplifiers to
downconversion and eventually frequency separation and digitization which happens
in two CASPER "Roach2" FPGA-based spectrometers for each signal chain (Cleary,
2015). We usually use the term "feed" to refer to each of these 19 signal chains. For
more details on the COMAP instrument see J. Lamb et al. (in prep).

The observed signal in the frequency range 26-34 GHz gets, during the downconver-
sion, split into two different bands, band A coming from 26-30 GHz and band B from
30-34 GHz. One Roach2 module processes the signal from one band, meaning that a
total of 38 Roach2 modules are used to collect the full science data from the 19 feeds.
In the Roach2 modules the data gets further split into a lower and an upper sideband,
each with a bandwidth of 2 GHz.

For the raw science data, the Roach2 modules separate the 2 GHz bandwidth of
each sideband into 1024 separate frequency channels, leading to a native frequency
resolution of about 2 MHz. The data is also integrated over a period of about 0.02 s,
leading to a sample rate of roughly 50 Hz in time.

12
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2.3 Observations

During observations we employ two different scanning strategies, Constant Elevation
Scans (CES) and Lissajous scans.

For the CES observations we keep the telescope at a constant elevation while slewing
it back and forth in azimuth. During a Lissajous scan the telescope performs independent
sinusoidal motion in both elevation and azimuth at the same time as follows

Azimuth(t) = A sin(at + φ) (2.1)
Elevation(t) = B sin(bt). (2.2)

A Lissajous scan can thus create many different scanning patterns depending on which
values used for A, B, a, b and φ. We typically use values of B ≈ 0.6 degrees, while A
is scaled with elevation to correspond to roughly the same on-sky distance. The other
parameters are randomized in order to not repeat the same scanning pattern each time.
Typical values for a and b are in the range 0.3–0.5 Hz, leading to typical periods of
12–25 seconds.

Circular scans, which are sometimes used, are just a special case of the Lissajous
scan. In fact, even for the CES observations, we use a sinusoidal motion in the azimutal
direction in order to minimize the strain on the telescope, so the CES can also be thought
of as a special case of the Lissajous scan (with a = 0).

Lissajous scans typically give a more even coverage of the observed field, with
better cross-linking, but they have the disadvantage of getting a large signal from the
different amount of atmosphere at the different elevations, which needs to be removed.
Ground signal is also harder to remove from Lissajous scans, since the scanning pattern
is not repeating, in the same way as it is for a CES. A Lissajous scan typically covers a
larger area than a CES, so it can recover more of the large scale cosmological signal, at
the cost of a higher noise level on small scales.

For the first year of observations, we split the observation time roughly evenly
between Lissajous and CES. However, due to the problems we have found in the
Lissajous data (see Paper II, Ihle et al., in prep), the observations taken afterwards
have been exclusively CES, and unless we can figure out and solve the issues with the
Lissajous data, we will continue to rely exclusively on CES observations for the future.

The general observation strategy is to start by pointing the telescope a bit ahead
of the on-sky field that you want to observe (i.e. point to where the centre of the field
will be in a few minutes), and then performing CES or Lissajous scans centered on
this azimuth and elevation position while the field drifts through. Once the field has
drifted past the azimuth and elevation you are observing at, you repeat the sequence by
moving slightly ahead of the field again etc. Each such period where you stay centered
at at a given azimuth and elevation performing CES or Lissajous motion while the field
drifts through is called a "scan". When you move the telescope ahead of the field again
and repeat the sequence you start a new scan. Figure 2.2 shows the telescope pointing
for 27 subsequent scans. This illustrates the general observation strategy, and how the
telescope follows the field across the sky. We can also see the randomization of the
Lissajous parameters clearly.

A scan typically lasts for 3-10 minutes, and multiple scans of the same field are
combined together into an observation. An observation usually contains around an hour
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Figure 2.2: Telescope pointing during 27 subsequent Lissajous scans of the same field.
Figure courtesy of Jonas Lunde.
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CO2

CO6
CO7

0 1200KCMB

Figure 2.3: The three main CO fields, overplotted on the Planck LFI 30 GHz map.
Map downloaded from the PLA, https://pla.esac.esa.int (Planck Collaboration I, 2020).
Figure courtesy of Nils O. Stutzer.

Field Name RA (J2000) Dec (J2000)
CO2 01:41:44.4 +00:00:00.0
CO6 15:04:00.0 +55:00:00.0
CO7 11:20:00.0 +52:30:00.0

Table 2.1: COMAP main science fields

of data, and is labeled by a, monotonically increasing, integer number called the "obsid"
(we refer to the observations as e.g. obsid 7456 etc.). The raw data is collected together
into what we call "level 1" files, which contain all the data, from all 19 feeds, for a
single obsid, together with pointing information and a large set of housekeeping data.

We observe three main science fields, labeled "co2", "co6" and "co7". These are
chosen to be in low foreground regions, and to overlap with other surveys. The position
of these fields can be seen in Fig. 2.3 and in Table 2.1. The sizes of the fields are roughly
2 x 2 deg2.

2.4 Data and Systematics

The basic properties of the raw data are discussed in Paper I (Foss et al., in prep). Here
we give a short summary and focus on some of the main systematics present in the data
and what we know about them.

15
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2.4.1 Data model

The power picked up by any of the detectors is given by

Pout = kBG∆νTsys, (2.3)

where G is the instrumental gain, kB is the Boltzmann constant, ∆ν is the frequency
bandwidth, and Tsys is the total system temperature of the instrument.

The system temperature is basically a measure of the overall noise level, and it has
many different sources,

Tsys = Treceiver + Tatmosphere + Tground

+ TCMB + Tforegrounds + TCO, (2.4)

where Treceiver is the effective noise temperature of the receiver, Tatmosphere is the
temperature contribution from the atmosphere, Tground is the ground pickup from far
sidelobes, TCMB is the signal from the CMB, Tforegrounds are all continuum foregrounds
(mostly from the galaxy), and TCO is the line emission signal from extragalactic CO,
which is what we are ultimately trying to measure.

Making some simple assumptions we can make the following model for the system
temperature as a function of feed, frequency and time,

T i
sys,ν(t) = 〈T i

sys,ν〉
[
1 + Pi

cel(∆scont + ∆sνCO) + Pi
tel∆sground + ncorr + nνiw

]
. (2.5)

Here 〈〉 denotes average in time, Pi
cel and Pi

tel are the pointing matrices in celestial and
telescope coordinate systems, respectively; ∆scont denotes the mean subtracted celestial
continuum sources, like the CMB or galactic foregrounds; ∆sνCO is the mean subtracted
CO line emission; ∆sground is the mean subtracted ground signal picked up by the far
sidelobes; and ncorr is the (zero mean) correlated noise component, consisting mostly of
atmosphere fluctuations and standing waves. The superscript i is a feed index. Terms
with no feed index are assumed to be similar (or at least strongly correlated) between
different feeds, while terms with a ν label indicate parts of the model that are assumed
to have non-smooth frequency dependence.

Likewise we can make the following simple model for the gain

Gi
ν(t) = 〈Gi

ν〉
[
1 + δi

G(t)
]
, (2.6)

where δi
G(t) is a correlated noise term coming from gain fluctuations in the low noise

amplifiers. These gain fluctuations are assumed to be the same for all frequencies of a
single feed, but are independent between different feeds.

We can then combine these into a single model for the power measured by the
detectors

di
ν(t) ≈ 〈di

ν〉
[
1 + Pi

cel(∆scont + ∆sνCO) + Pi
tel∆sground + δi

G + ncorr + nνiw

]
, (2.7)

where di
ν(t) is the raw time ordered data and we have assumed that the deviations from

the mean are small, so that we can neglect second order terms.
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Figure 2.4: Normalized power measured during sky-dip observations compared to a
fitted 1/ sin(el) model. Figure courtesy of Jonas Lunde.

2.4.2 Atmosphere

The atmosphere is one of the major contributors to the system temperature as well as
to the correlated noise. The brightness temperature of the atmosphere can be roughly
modeled as that of an optically thin medium at a certain temperature. The observed
brightness temperature from the atmosphere, T b

atm, is then given by

T b
atm = Tatm(1 − e−τ) ≈ Tatmτ, (2.8)

where Tatm is the physical temperature of the atmosphere and τ is the optical thickness
of the atmosphere.

The optical thickness of the atmosphere depends on the elevation at which we are
observing. We can take this elevation dependence into account using a simple model

τ(el) =
τ0

sin(el)
, (2.9)

where "el" denotes the elevation of the telescope pointing, and τ0 is the optical thickness
at zenith (el = 90 degrees). Figure 2.4 shows data from sky-dip observations (where
the telescope quickly sweeps down in elevation and up again) taken with the COMAP
telescope and a fitted optical depth model. This is a good illustration that the model
works well.

Typical measured values of Tatmτ0 are around ∼ 12 – 15 K. Since we typically
observe at elevations between 35 and 65 degrees, the atmosphere typically contributes
around 15 – 25 K to the system temperature.

The atmosphere also has a significant contribution to the correlated noise. To a large
extent, the atmospheric column observed by the different feeds should be the same, so
the correlated noise from the atmosphere should be highly correlated in the different
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Figure 2.5: Correlation matrix of sideband averaged data from a single CES scan.

feeds, it should also be very smooth in frequency. If this is true, and there are no other
major continuum contributions to the correlated noise that are also correlated between
the different feeds, then the amount of correlation between the data of different feeds
can be used to estimate the the rough magnitude of the atmospheric contribution to the
correlated noise.

Figure 2.5 shows the correlation between the raw data averaged over all the
frequencies of each sideband. We see that the four sidebands of the same feed
are essentially completely correlated, this is because both the gain fluctuations and
the atmosphere fluctuations are common to all four sidebands. For the different
feeds, however, the gain fluctuations are independent, so the main contribution to
the correlation here is from the atmosphere. This suggests that the correlations due to
the atmospheric contribution are typically around 10 – 40 %.

2.4.3 Ground Contamination

Figure 2.6 shows a far sidelobe beam model for a single feed of the COMAP instrument.
As we can see, we have significant beam sidelobes all the way out to around 70 degrees.
This means that, as long as the telescope is pointing at an elevation lower than about
70 degrees, some of our main sidelobes will be hitting the ground. As long as the
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Figure 2.6: Simulated far sidelobe beam model for a single feed of the COMAP
instrument. Beam model courtesy of James Lamb.

contribution from the sidelobes is fairly stable in time, this small ground pickup only
has the effect of increasing our system temperature by up to a few Kelvin. However, if
one of the more sharply defined sidelobes is right at the edge of the horizon, then the
contribution from the ground can change quite abruptly, and we get a very strong signal
in our time streams.

One thing that makes ground contamination more worrisome than other systematics
is that the ground signal is correlated with where the telescope is pointing. This means
that it will not necessarily integrate down properly when we add in more data. In
general if some systematic is present in the data, this may not be ideal, but as long
as the systematic is random and independent between each time we take data, then
the contribution of the systematic will generally integrate down roughly as ∼ 1/

√
Nobs,

where Nobs is the number of independent observations.
The ground contribution, however, will be roughly the same each time we are

observing at the same point in the sky, which means that it is not so simple. Of course,
the ground is roughly constant in AZ/EL coordinates, while the cosmological signal
is mapped in RA/DEC, so the signals are not completely degenerate, however, we do
observe the same cosmological fields along the same path in AZ/EL every day, so the
ground contamination will tend to affect the same modes in RA/DEC again and again.

While the ground itself is fairly close to a blackbody spectrum, which is something
we would not be much worried about, the important thing for the ground contamination
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is the frequency dependence of the sidelobes themselves. This is because if the sidelobes
are very different at different frequencies, the ground contamination seen at different
frequencies will also be very different, even though the ground is almost a blackbody.
Fortunately, the positions of the sidelobe peaks is something that is not expected to
change with frequency, but the sidelobe structure will in general be more sharp at high
frequencies, and more diffuse at lower frequencies. The resulting ground contamination
is expected to be fairly smooth in frequency, and thus something that can be removed
quite effectively by filtering. Note that since the beam model (Fig. 2.6) is fairly expensive
to run, we do not have one at another frequency, which means that these are mostly
qualitative educated guesses about the beam properties.

While the smooth frequency structure should make it possible to remove the ground
contamination quite effectively, we should note that the ground signal is still perhaps
five orders of magnitude stronger than the cosmological signal we are trying to measure,
so we need to remove it very precisely for it not to affect our measurements. This is
what makes ground contamination one of the major challenges for COMAP.

The current version of the COMAP data analysis pipeline uses simple pointing
template fitting in time domain in order to remove as much as possible of the ground
signal. We use the simple atmosphere model from Sect. 2.4.2 together with using the
azimuth position itself as a template

dafter = dbefore − g
sin(el)

− a az −
〈

g
sin(el)

+ a az
〉
, (2.10)

here g and a, as well as an overall constant, has been fit to the data. The elevation
template is mostly there to remove the effect of the atmosphere, but it will also pick
up some ground signal. The azimuth template is basically removing the linear term
in the Taylor expansion of the ground signal about the centre of the field. These
templates are subtracted from each frequency channel independently. Figure 2.7 shows
the average values for these fitted template amplitudes along the paths followed by our
three cosmological fields. We see large amplitudes both at high and low elevations. At
low elevations (around el ∼ 30) the main sidelobe is hitting the edge of the horizon,
while at around el ∼ 70 the lower of the four far sidelobe peaks (see Fig. 2.6) is just at
the edge of the horizon.

The most extreme azimutal amplitudes observed are found in the region
az, el ∼ 315, 30 degrees. Here we believe what is happening is that one of the
60-70 degree sidelobes are just at the edge of Black Mountain (see bottom of Fig. 2.7 at
az ∼ 60). Figure 2.8 shows the feed and frequency averaged raw time stream from a
co6 observation of this area, together with the azimuth template. We here see a very
strong effect. Even though we can remove most of this effect by fitting and subtracting
templates, there is still contamination left, and this will be hard to remove completely
at a later stage. This is why we currently do not use any data from below 35 degrees
elevation.

In the next iteration of the analysis pipeline, the plan is to model the ground explicitly.
This work is led by master student Jonas Lunde, under my supervision. We are using
all the raw data to make continuum maps of the ground using the destriping mapmaker
(Delabrouille, 1998; Keihänen et al., 2010). These ground maps can then be used to
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Figure 2.7: Average pointing template amplitudes fitted to the data in the data analysis
pipeline (top). Results are binned along the path of the three cosmological fields.
Elevation profile of the horizon as seen from the telescope location at OVRO (bottom).
Elevation profile courtesy of Duncan Watts and Kieran Cleary.
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Figure 2.8: Raw time ordered data, averaged over feeds and frequencies, plotted together
with the azimuth template.
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Figure 2.9: Continuum map of ground contamination. Made using a destriper and all
the available Lissajous data taken in this region. Figure courtesy of Jonas Lunde.

make more precise templates to remove from the time streams during the regular data
analysis. Figure 2.9 shows the previously discussed region with very strong ground
contamination. In the lower right corner we see a strong gradient in both azimuth and
elevation. By using maps like these, we can produce more precise templates that can
remove the ground better than the simple templates we are currently using.

In addition to subtracting the ground contamination from the time streams, we
can also design power spectrum methods that are as robust as possible to ground
contamination, see Paper II (Ihle et al., in prep) for more details.

2.4.4 Standing Waves

Standing waves are another one of the major systematics in the raw COMAP data. They
can form at various stages of the signal chain, from the sky to the digital backend, in the
various potential electromagnetic cavities.

A given cavity length D will resonate with frequencies separated by

∆νSW =
c

2D
, (2.11)

where ∆νSW is the distance, in frequency between peak resonances and c is the speed
of light. A simple model for the standing wave structure in frequency is then given by
(D. Chung, 2020)

TSW = TsysrSW sin
(
2π

ν

∆νSW
+ φ

)
, (2.12)

where TSW is the contribution to the system temperature coming from the standing wave,
rSW is the (assumed to be frequency independent) standing wave amplitude and φ is
some overall phase.
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As we will see, a constant standing wave is not an issue for us since it will be
removed in the bandpass normalization. It is only if a standing wave changes over time
that it will show up in our data. These changes will arise whenever the cavity length
changes, due to temperature fluctuations, vibrations etc. In the data the standing waves
will then contribute to the correlated noise.

Standing waves can be distinguished from the other sources of correlated noise by
their particular structure in frequency. Gain or atmospheric fluctuations are both (in
slightly different senses) continuum sources in frequency, while standing waves will
contribute with different sign to different frequencies as it goes in and out of resonance,
as can bee seen from Eq. 2.12.

If the standing wave cavity is common to all the feeds, like the one between the
receiver and the secondary, then the standing wave will change as a single function
in time, common to all feeds, that contributes with different amplitudes to different
frequencies. As we will see in Sect. 2.6.7, this is a perfect signal to pick up using
Principal Component Analysis (PCA). Standing waves that only show up in individual
feeds are much harder to measure and remove, but they will also affect a smaller part of
the data, so they will integrate down significantly as we combine the different feeds.

Figure 2.10 shows the leading PCA mode from a CES scan of co6. We see that as a
function of time, the mode looks like some sort of correlated noise. The amplitudes as
a function of frequency show signs of the sinusoidal behavior expected from Eq. 2.12.
Largest PCA amplitudes are found in feeds 3 and 5, this is because these feeds have a
single stage polarizer, which makes them more susceptible to the standing waves than
the other feeds which have two stage polarizers. If we try to estimate the frequency
gap between the resonances, we see that we get a bit different results depending on
which feeds we use, but the results are in the range ∆νSW ∼ 0.3 GHz, which corresponds
to a cavity length of about 0.5 m. This fits fairly well with the cavity between the
polypropylene weather shield that covers the receiver and the receiver itself (J. W. Lamb,
2020).

This reciever-weather shield standing wave is the one we see most clearly in our time
ordered data, and the one we have studied the most. We find it in all the data, but the
stability of the standing wave changes significantly, including a clear correlation with
the windspeed. In June 2020, we augmented the the weather shield with a polystyrene
backing support in order to make the weather shield more stable. This change was
successful at suppressing this standing wave, although it is still there at a lower level.
The other standing waves we have observed are typically more unstable and sporadic.
For an example of another standing wave, with a frequency gap of ∆νSW ∼ 0.07GHz,
suggestive of the ∼ 2 m distance between the receiver and the secondary, see Fig. 2.11.
We are still in the early phase of understanding and classifying these standing waves,
but we are making progress in this area, especially in understanding which standing
waves affect our measured cosmological power spectrum.

2.4.5 Correlated noise

There are three main sources of correlated noise. Atmospheric fluctuations contributes to
the correlated noise at timescales longer than one or a few seconds, and these fluctuations
are common to all frequencies and feeds. Gain fluctuations are typically the main source
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Figure 2.10: Leading PCA mode as a function of time (top panel). The rest of the panels
show the corresponding PCA amplitudes as a function of frequency for each of the 19
feeds (left) and power spectral density, in frequency, of these amplitudes (right). Data is
from a CES scan of co6.

of correlated noise, but they are also common to all the frequencies within a single feed.
Some standing waves contribute significantly to the correlated noise, however, the same
frequency structure is typically preserved over time, so these can be removed using a
PCA filter.

Since all these sources of correlated noise are also highly correlated between
frequencies, they can usually be removed very precisely in the filtering steps of the data
analysis pipeline, as can be seen in Fig. 2.12. For this reason, correlated noise is not a
systematic that we are very worried about at this stage in COMAP.
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Figure 2.11: Third PCA mode as a function of time (top panel). The rest of the panels
show the corresponding PCA amplitudes as a function of frequency for each of the 19
feeds (left) and power spectral density, in frequency, of these amplitudes (right). Data is
from a CES scan of co6.

2.4.6 Continuum Foregrounds

Our cosmological fields are selected to be in regions with low galactic foregrounds, for
this reason we have not been too worried about these up until now, as they will be fairly
effectively removed in the frequency filter. However, the foregrounds are still up to
two orders of magnitude stronger than our CO signal, so we do need to suppress them
significantly, if we want to measure our signal.

This will be a more and more significant issue the more sensitivity we get, so it is
something that we will probably have to focus more on in the future.
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Figure 2.12: Power spectral density of the COMAP time ordered data at various different
stages of the analysis pipeline. Figure courtesy of Jonas Lunde.

Figure 2.13: Example of time ordered data taken with the sun in the far sidelobe. Here
we see data from the four sidebands of feed 15.
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Figure 2.14: Example of data taken during bad weather.

2.4.7 Sun/moon in sidelobes

Another systematic that we did not anticipate the significance of in advance were the
times when the sun, or even the moon, is exactly at one of the four peaks in the far
sidelobes (see Fig. 2.6 at about 65 degrees). If this happens, we get a very large signal
in the time streams, as can be seen in Fig. 2.13 after about 30 minutes. When this effect
was first observed, we did not know what was the cause, but after looking at the data
in the right way we could see the effect very clearly (see Fig. 2.23). We now track
the relative position of the sun carefully and this allows us to remove the affected data
during data selection (see Sect.2.7.1).

2.4.8 Weather

If there is significant cloud coverage, or other bad weather, then the data taken is
typically not usable. Figure 2.14 shows an extreme example of data taken during bad
weather. As we will discuss in Sect. 2.7.1 bad weather actually affects a significant part
of the data, and is dealt with during data selection.

2.4.9 Spikes

We occasionally see spikes in the raw data, especially during the summer. We do not
know for sure what the cause of the spikes are. Some of them seem to come from
insects flying in front of the receiver, but we do not know if all of them are caused by
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Figure 2.15: Example of an observation with a very large number of spikes.

this. Sometimes the spikes show up sporadically, one or two in an entire obsid, and
sometimes the data is flooded by spikes (see Fig. 2.15).

The spikes are continuous in frequency, so we expect most of the signal to be
removed in the frequency filters. We have not seen any clear signs that the spikes make
a significant impact on the final maps or power spectra, but we are tracking the spikes to
look for any such affect.

2.5 Calibration

Calibration is one of the major challenges we need to solve in order to make use of the
data. We need to translate the raw power readings of the detectors (given in arbitrary
digital units) into brightness temperatures. COMAP uses a main calibration strategy
based on a calibration vane at ambient temperature that is periodically moved in front of
the receiver. This acts as a hot load reading that is compared to the cold load of the sky
measurement.

We can verify the calibration by looking at a source with a known temperature,
like Jupiter. Although this will not give a very precise calibration, it is still a useful
test to perform, if nothing else than as a sanity check that we are not doing something
completely wrong. It will also show if the calibration is consistent over time.
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2.5.1 Ambient load calibration

The main method of calibration used for COMAP involves comparing an observation
of the cold sky with observations of a calibration vane at ambient temperature. This
ambient load is automatically moved in front of the receiver and back during calibration.

The power measured by the telescope at any given time is given by

P = GTsys, (2.13)

where P is the total power, G is the gain1 and Tsys is the system temperature combining
the contribution from the receiver with the external signal coming into the feed horns.

The idea of the calibration method is simple. We observe two different signals at
known temperatures, and use these two measurements to determine Tsys assuming the
gain is constant.

The complication with this is that we want to calibrate to the cosmological signal,
and some of this signal gets absorbed by the atmosphere, meaning that only part of
the signal makes it down to our receiver. So for a given signal contribution the system
temperature changes by

∆Tsys = e−τ∆Tsignal, (2.14)

where ∆Tsys is the contribution to the physical system temperature of the signal, τ is
the optical depth of the atmosphere and ∆Tsignal is the temperature of the cosmological
signal. To account for this effect we define an effective system temperature (Penzias and
Burrus, 1973)

T ′sys ≡ eτTsys, (2.15)

where T ′sys is the effective system temperature and Tsys, as before, is the physical system
temperature measured by the instrument. This new definition ensures that

∆T ′sys = ∆Tsignal, (2.16)

making the interpretation of our measurements much easier. Another way to think about
this is to note that losing some of the cosmological signal in the atmosphere is equivalent
to just having a higher noise level in the first place, and the effective temperature, T ′sys,
is just this higher noise level. In the same way we define the effective gain

G′ ≡ e−τG, (2.17)

where G′ is the effective gain and G is the physical gain. We can now rewrite Eq. 2.13
using our new definitions

P = GTsys = G′T ′sys. (2.18)

When the instrument is looking at the cold sky, the power is given by

Pc = G
(
Trcv + T b

atm + e−τTCMB

)
= GTsys, (2.19)

where Pc is measured power when looking at the cold sky (the cold load), Trcv is
the receiver temperature contribution to the physical system temperature, T b

atm =

1Note that, for convenience, we have absorbed the conventional constant factors kB∆ν into G for this
derivation.
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(1 − e−τ)Tatm is the brightness temperature of the atmosphere, Tatm is the physical
temperature of the atmosphere, which we assume to be in thermal equilibrium at a
constant temperature, and TCMB is the CMB monopole, which we assume dominates
any other cosmological signal. Rewriting this in the effective coordinates we get

Pc = G′
(
T ′rcv + T ′batm + TCMB

)
= G′T ′sys, (2.20)

where we have defined the effective receiver temperature T ′rcv ≡ eτTrcv and atmosphere
brightness temperature T ′batm ≡ eτT b

atm.
If the instrument is looking at the calibration vane (the hot load) the measured power

is given by
Ph = G (Trcv + Th) , (2.21)

where Th is the physical temperature of the calibration vane. If we assume that the
physical temperature of the calibration vane is the same as the physical temperature of
the atmosphere, we can rewrite Th in the following convenient way

Th = e−τTh + (1 − e−τ)Th = e−τTh + T b
atm. (2.22)

If we now write Eq. 2.21 in the effective units we get

Ph = G′
(
T ′rcv + Th + T ′batm

)
= G′

(
Th + T ′sys − TCMB

)
. (2.23)

Using the measurements of the cold and the hot load, assuming the gain is constant and
that we know the temperature of the calibration vane, we can solve for the effective
system temperature

T ′sys =
Th − TCMB

Ph/Pc − 1
. (2.24)

During this derivation we have neglected the effect of ground spillover. However,
a very similar argument can be made to take this into account as well, and if we also
assume that the ground has the same physical temperature as the calibration vane and
the atmosphere, the result is exactly the same as in Eq. 2.24 with the effective system
temperature, T ′sys, now taking into account both the effect of the atmosphere and the
ground spill. Note that whenever the temperature of the system, atmosphere etc. is
mentioned elsewhere in this thesis, we are referring to the effective temperatures, not
the physical ones.

2.5.2 Jupiter calibration

We do periodic Jupiter observations for calibration and pointing correction. By fitting a
Gaussian beam to these observations we can measure the antenna temperature of Jupiter.
These measurements can be compared to model expectations depending on the current
distance to Jupiter. This work is led by Stuart Harper in the Manchester group.

Figure 2.16 shows antenna temperature measurements of Jupiter from October 2019
to August 2020, for a single feed, compared to the model. We see that apart from an
overall constant factor offset, the measurements fit the model very well. The overall
offset factor, which we can see is given roughly by 0.7-0.8, is the effect of the aperture
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2

Figure 2.16: Antenna temperatures measured by feed 1, based on calibration
observations of Jupiter, compared to model expectations. Figure courtesy of Stuart
Harper.

efficiency2, which is expected. These results show that the calibration is consistent over
time, and at a reasonable value.

2.6 Data Analysis Pipeline

The COMAP analysis pipeline takes the raw data, from what we call level 1 files, does
calibration, filtering, performing data selection, making maps and calculating power
spectra.

Figure 2.17 shows an overview of the various steps and modules that are part of
the COMAP analysis pipeline. The first modules are scan_detect, which identifies,
classifies and divides our data, and l2gen, which performs the low-level calibration,
filtering and frequency masking of the data and producing level 2 files. Level 2
files contain calibrated and filtered time ordered data, as well as a set of diagnostic
data. Before the level 2 files are combined into maps, there is a second level of data
selection, performed by the module accept_mod, which produces an accept_list
denoting which observations to accept or reject when making the maps. The mapmaker,
tod2comap, converts the time ordered data from the level 2 files into 3D maps of
brightness temperature. The preceding steps are described in Paper I (Foss et al., in

2It is slightly different from the aperture efficiency since Jupiter is not a point source.
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Figure 2.17: Overview of the COMAP CO analysis pipeline. Figure courtesy of Jowita
Borowska.

prep). Here we will give a summary overview, while going into more details in some
areas.

The last part of the current data analysis pipeline is comap2ps. This module takes
in the 3D maps in brightness temperatures and calculates various power spectra. These
procedures are described in Paper II (Ihle et al., in prep). We will not repeat much of the
methods presented there, but will, in later sections, discuss more abstractly the problem
of inference from line intensity maps. We will also go into some details on using the
voxel intensity distribution (VID) that have not been published.

2.6.1 Scan Detect

The main goal of scan detect is to go through all the raw data files to classify and divide
the data into individual scans. This information is then provided in terms of a runlist,
which is used when running l2gen or tod2comap.

A runlist is a list of obsids that is divided according to the field or source observed
during each obsid. For each obsid, we list all the scans within that obsid. For each scan
the modified Julian date (MJD) of the start and end of the scan is provided as well as the
scanning strategy (e.g. Lissajous or constant elevation) and some pointing information.

2.6.2 Level 2 File Generator: l2gen

The main goal of l2gen is to take the raw data files, called level 1 files, and turn them
into masked and filtered data files, called level 2 files, that are ready for mapmaking.
An additional function of l2gen is to keep track of various diagnostics for tracking data
quality and for data selection.

The main steps in l2gen are (in chronological order):

• Bandpass normalization

• Removal of pointing templates

• Masking

• Polynomial filter in frequency
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Figure 2.18: Time ordered data plotted along the various steps of the data analysis
pipeline. Each row shows the data before (left column) and after (right column) applying
the indicated filter. From top to bottom, the filters shown are 1) normalization; 2)
pointing template subtraction; 3) polynomial filter in frequency; and 4) PCA filter. Data
used is from scan 1445603, feed 5, in a 31.25 MHz band around 27.673 GHz. Figure
courtesy of Jonas Lunde.

• PCA-filter

• Calibration

• Decimation

2.6.3 Bandpass normalization

Our model for the total power seen in the detectors is given by

Pout = kBG∆νTsys, (2.25)

33



2. COMAP

where kB is Boltzmanns constant, G is the gain and ∆ν is the bandwidth of the frequency
channel.

The first of the actions that is performed on the data is bandpass normalization.
The normalization is performed on each frequency channel separately and is done by
dividing the time ordered data (TOD), d, by its running mean, d̄, and subtracting one.
As we see from Eq. 2.25, this normalization will cancel out both the average gain G
and the average system temperature Tsys leaving us with a time stream with small-scale
fluctuations with a variance of 1/∆ντ as dictated by the radiometer equation, where τ is
the duration in time of each sample.

The running mean is calculated by passing the TOD through a lowpass filter. See
Fig. 2.18 (top row) for an example of this normalization step. The lowpass filter is
implemented in Fourier space by multiplying with the following weight function:

W =

[
1 +

(
f

fknee

)α]−1

, (2.26)

where f is the temporal frequency, fknee = 0.02 Hz (corresponding roughly to a 50 s
timescale) and α = 4. So we have

d̄ = F −1 {F {d}W} , (2.27)

where F denotes the Fourier transform. The normalized data then becomes

dnorm = d/d̄ − 1. (2.28)

2.6.4 Removal of Pointing Templates

As the telescope changes elevation we are looking through different amounts of
atmosphere, leading to changes in the power received by the detectors. As we have
discussed, this effect can be modeled by a simple expression for the optical depth of the
atmosphere, τ

τ(el) = τ0/ sin(el), (2.29)

where τ0 is the optical depth of the atmosphere at zenith, and el is the elevation.
We also know that sometimes there is significant ground contamination, and we

therefore want to subtract an azimuth template, as well as the elevation template.
Specifically we assume that

d = g/ sin(el(t)) + a az(t) + c + n, (2.30)

where g, a and c are constants and n is some Gaussian noise with constant variance. We
then find the best fit values (i.e. least squares) of g, a and c, and use the values of g and
a to remove the pointing templates from the time stream:

dafter = dbefore − g/ sin(el(t)) − a az(t) − 〈g/ sin(el(t)) + a az(t)〉, (2.31)

where 〈 〉 denotes the mean value. See Fig. 2.18, second row.
We fit these templates independently for each frequency in order to try to remove

any frequency structure of the ground and atmosphere. For longer scans we divide the
data into different segments of roughly 4 minutes each, and perform this template fit
and removal separately on each of the segments of data.
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2.6.5 Masking

We want to mask out frequency channels that are bad in the sense that they are not
performing as expected. We do this mostly by using the correlation matrix between
different frequency channels.

In order for the data to be as clean as possible before identifying bad channels, we
make a copy of the original (level 2) dataset and perform the poly- and PCA filters,
described below, on this copied data, before calculating the correlation matrices within
each band. We use two main approaches to identifying individual or groups of channels
to be masked. The first approach uses the fact that the expected correlation between two
independent Gaussian variables (for large nsamp) is given by 1/√nsamp, where nsamp is
the number of samples the correlation is calculated on.

This means that, after subtracting the expected correlation induced by the polynomial
frequency filter, we know the statistics describing good data, and can identify bad data
as deviations from these statistics. We look at entries within squares of different sizes
as well as sets of columns within the correlation matrix and see if the average of the
absolute value of the correlations within this region deviates from the values expected,
and mask out the corresponding channels if the deviations are outside the acceptable
limits.

The second approach is to calculate a set of diagnostics for individual frequency
channels (like the average correlation of the channel to all the others in that band or the
average of the absolute value of the same). We can then compare the values of these
diagnostics for the different channels and look for large outliers. The disadvantage of
the first approach is that it is much harder to detect these deviations in a short scan than
it is in a long scan, so it is hard to choose the parameters for the acceptable deviations in
a way that will mask out enough of a short scan without masking too much of a long
scan. The disadvantage of the second approach is that if the overall data quality is bad,
then a bad channel will not necessarily be an outlier, and will not be masked out.

In addition to these approaches we look specifically for edge correlations, that
is, correlations between individual frequencies at the edge of each sideband with the
corresponding frequencies at the edge of another sideband. This is to look for and mask
out frequencies affected by a known aliasing effect. We also have some overall hard cuts
on large individual correlations and on large individual variances (compared to what is
expected from the radiometer equation). After this mask has been found we perform all
the analysis on the original dataset, but now only using the frequency channels that are
not masked.

2.6.6 Polynomial filter in frequency

The goal of the polynomial filter in frequency is to remove the 1/ f -noise specific to
each feed, as well as to remove any continuous foregrounds from the data. This filter
greatly reduces the correlated noise, and often leaves the TOD close to white noise.

The poly filter is performed separately on each time step, by fitting and removing a
polynomial (usually linear) in frequency across each sideband. Specifically, we assume

dν = a + bν + cν2.. + n, (2.32)
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Figure 2.19: Example of time ordered data before and after PCA filter. This is a very
extreme case with a very strong standing wave. Figure courtesy of Jonas Lunde.

where dν is the data across one sideband at a specific time step, a, b and c etc. are
constants and n is some Gaussian noise with constant variance. We then find the best fit
values (i.e. least squares) for the constants and subtract the polynomial (see Fig. 2.18,
third row)

dafter
ν = dbefore

ν −
(
a + bν + cν2...

)
. (2.33)

Our current version of the pipeline uses a linear polynomial for the polyfilter, which
appears to be sufficient for our purposes.

One possible issue with the current version of the polyfilter is that, depending on
what the origin of the effects we want to remove with this filter, we may want to divide
the polynomial in Eq. 2.32 by the Tsys corresponding to the frequency channel, since
a channel with high Tsys is expected to have a relatively lower effect of any signal
compared to the noise. This is certainly what we would expect from a continuous
foreground.

We are working on improved ways to do this frequency filtering in a way to remove
both the gain fluctuations as well as continuum foregrounds in a consistent manner.

2.6.7 PCA-filter

Let us consider all the data corresponding to a single scan as a data matrix, Di j, with the
TOD (time stream) corresponding to a single frequency as a row of the matrix. This
will be a matrix with dimensions nfreq × nsamp, where nfreq = 19 · 4 · 1024, i.e. the total
number of frequencies added up over all the sidebands and feeds, and where nsamp is the
number of samples in time (typically of the order of ∼ 20000 for a single scan).

D =



D11 . . . D1nsamp

...
. . .

...
Dnfreq1 . . . Dnfreqnsamp


. (2.34)

If we treat the columns (all the different time steps) of the data matrix D as
representing a set of nsamp random variables, then each frequency of each feed is a
new sample of each of these random variables. The covariance matrix for these random
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variables is then given by

Csamp ∝ DTD =



C11 . . . C1nsamp

...
. . .

...
Cnsamp1 . . . Cnsampnsamp


(2.35)

The PCA components are the eigenvectors of this matrix with the highest eigenvalues.
These eigenvectors are basically just functions of time (one value for each time step).
Specifically, the leading PCA-components are the functions of time that explain most of
the variance between the different frequencies.

After finding the properly normalized eigenvectors, vk, corresponding to the four
largest eigenvalues of Csamp we calculate the PCA amplitude corresponding to each of
these eigenvectors for each frequency channel, and subtract it from the data:

ak = d · vk =

nsamp∑

i=1

divi
k

dafter = dbefore −
4∑

k=1

akvk,

where d is the time stream of a single frequency channel, ak is the PCA amplitude of
that same channel corresponding to the eigenvector vk.

The PCA filter is perfect for removing standing waves that are common to all (or at
least many) feeds. This is because, as we discussed in Sect. 2.4.4 the standing waves
typically change as a single function of time, but affect different frequencies differently
depending on if they are in or out of resonance. The resonance structure of the standing
waves will then show up in the PCA amplitudes of the different frequencies, as we see
in Figs. 2.10 and 2.11.

The PCA filter also picks up other systematics that do not have the features one
would expect from standing waves. These effects are mostly of unknown origin at this
point, but the PCA filter can still usually remove them quite effectively.

2.6.8 Calibration

For each frequency we interpolate the measured power and temperature of the hot load
(calibration vane), Phot and Thot to the time, tscan, of our current scan, i.e.:

Phot(tscan) =
P1

hot(t2 − tscan) + P2
hot(tscan − t1)

t2 − t1
,

Thot(tscan) =
T 1

hot(t2 − tscan) + T 2
hot(tscan − t1)

t2 − t1
,

where 1 and 2 denote the hot load measurement at the start and the end of the current
obsid, respectively. We can then calculate Tsys for our current frequency

Tsys =
Thot(tscan) − TCMB

Phot(tscan)/〈Pcold〉 − 1
, (2.36)

where 〈Pcold〉 is the mean power of the scan in this frequency channel.
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2.6.9 Decimation

All the analysis up until now have been performed on the full frequency grid (1024
channels per sideband). For mapmaking purposes, however, we typically don’t need
this kind of resolution, so we want to co-add several frequency channels together to a
single low resolution channel.

dlowres
i =

1∑
m wm

indec∑

m=(i−1)ndec+1

wmdhighres
m , (2.37)

where dlowres
i is the time stream of frequency channel i in the low resolution frequency

grid, dhighres
m is the time stream of frequency channel m in the high resolution frequency

grid, ndec is the number (usually 16) of high resolution frequencies to be combined in
each low resolution frequency channel and wm = 1/σ2

m is the inverse variance of the
time stream in frequency channel m of the high resolution data (wm is zero for masked
frequencies).

2.6.10 Mapmaker, tod2comap

The mapmaker takes a set of level 2 files with calibrated and filtered time ordered data,
and makes 3D maps of brightness temperature.

The mapmaker we use is very simple. It basically assumes that the input data is
dominated by white noise, so that every sample is independent. The value in each pixel
of the map is then just the noise weighted sum of all the samples that hit this pixel

mp =

∑
d∈p σ

−2
i di∑

d∈p σ
−2
i

, (2.38)

where di is sample number i of the time ordered data, σi is the white noise level of
sample i and where mp is the value of the map in pixel p. This is typically referred
to as a binned mapmaker. Figure 2.20 shows single frequency maps based on all the
(accepted) data for each of the three main science fields. The maps look white noise
dominated and smooth.

A large advantage with using this simple mapmaker is that we do not need to load
in all the time-ordered data into memory at once, but can add more data incrementally.
The disadvantage is that we lose a lot of the information that is in the TOD. This results
in lower sensitivity to the signal on large scales (see Paper I, Foss et al., in prep for more
details).

We are working on an improved mapmaker, using a destriper, and this has shown
some promising results. This work is lead by master student Nils-Ole Stutzer, under my
supervision. Figure 2.21 compares the pipeline transfer function3 for the binned map
and a map created by the destriper. We see that the destriper recovers a lot more of the
large scale structure in the angular direction, it is however, much more costly process to
run. Note that this destriper still treats each frequency channel independently, so it is
still far from an optimal mapmaker.

3See Paper I (Foss et al., in prep) for details on how the transfer function is defined and estimated.
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Figure 2.20: Feed averaged maps from of the co2 (top), co6 (bottom left) and co7
(bottom right) fields. These are single frequency maps at 32 GHz with a bandwidth of
31.25 MHz, including all the accepted data. Figure courtesy of Nils O. Stutzer.
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Figure 2.21: Comparison of the transfer function using the current (binned) mapmaker
(a), the destriper (b), difference between the two (c). Figure courtesy of Nils O. Stutzer.
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2.7 Data selection

There are two main stages of data selection in the COMAP pipeline. First, as discussed
in the previous section, we mask out badly performing or outlier frequencies as part
of the l2gen process. The second stage happens after we have created level 2 files, but
before we run them through the mapmaker. This selection step is performed in the
accept_mod module, and is based on gathering a large number of statistics for each
chunk of data, and then deciding based on these statistics if we should accept or reject
that data.

2.7.1 Statistics database

The first and most extensive part of the accept_mod module is the generation of
the statistics database. This is a database where a number of statistics, or diagnostic
variables, are calculated or gathered for each sideband of each feed for each scan. So the
entire scan database is an array of dimensions (nscans, nfeeds, nsidebands, nstats), where nstats
is the number of different diagnostic variables gathered for each chunk of data. Each
statistic is represented by a floating point number.

Some of the statistics are calculated from the data itself, like various χ2-values or
the average kurtosis of the data, while others, like air temperature or windspeed are
collected from the housekeeping data. In Tab. 2.2 we list all the different statistics
currently used for the database, together with a short description of each one.

As the statistics database is a fairly small dataset (in total about 1 GB), it is very
useful to look for patterns in this dataset, in order to understand the raw data, and the
effect of the data analysis pipeline, better. Perhaps the most basic analysis we can do on
a dataset like this is to do a basic correlation analysis. Fig. 2.22 shows the correlation
between the different statistics from all the co2 data. Note that we do an automatic
removal of extreme outliers, to avoid spurious correlations. Here we see a number of
interesting correlations. While the mere correlation between two variables is often not
in itself actionable information, the full correlation plot is still very useful to see which
variables are related and which distributions to look closer at.

A particularly useful set of statistics are the ps_chi2-type statistics. These are
measures of the excess power spectrum of the data as compared to what is expected
from white noise. These are calculated by making one 3D map for each of the chunks
of data, taking the power spectrum of this map, and comparing that to power spectra of
simulated white noise maps with the same noise levels, using a normalized χ2 statistic.
The different types of ps_chi2 statistics corresponds to using chunks of data of different
dimensions for this analysis.

The ps_chi2 statistics measure something that is fairly close to what we are actually
interested in measuring, so it serves as a great diagnostic for identifying bad data. If
another statistics is correlated with ps_chi2, this can help us identify what is the source
of the excess power.

An excellent example of this is shown in Fig. 2.23. Here we see the far sidelobe
model for the instrumental beam compared to the ps_chi2 values projected onto a map
of the sun position relative to the pointing when that data was taken. We see that if
the sun is in one of the 4 main far sidelobe peaks there is a large excess in the average
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Table 2.2: List of statistics in the statistics database and a short description of each.

Statistic label Description Statistic label Description
mjd mean MJD of scan night distance in h from 2 AM (UTC - 7)
sidereal sidereal time in degrees (up to a phase) az mean azimuth of scan
el mean elevation of scan chi2 χ2 statistic for all timestreams of whole sb
acceptrate acceptance rate of sideband az_chi2 χ2 of azimuth binned timestreams
max_az_chi2 max χ2 of az binned single freq TODs med_az_chi2 median χ2 of az binned single freq TODs
fbit feature-bit of scan (indicates scanning mode) az_amp average amplitude of fitted az-template
el_amp average amplitude of fitted el-template n_spikes number of spikes
n_jumps number of jumps n_anomalies number of anomalies
n_nan number of nan-samples tsys average Tsys value of scan
pca1 average variance of removed PCA mode 1 pca2 average variance of removed PCA mode 2
pca3 average variance of removed PCA mode 3 pca4 average variance of removed PCA mode 4
weather estimated probability of bad weather kurtosis kurtosis of timestreams
skewness skewness of timestreams scan_length length of scan in minutes
saddlebag saddlebag number (1-4) sigma_poly0 σ of mean in poly filter
fknee_poly0 fknee of mean in poly filter alpha_poly0 α of mean in poly filter
sigma_poly1 σ of slope in poly filter fknee_poly1 fknee of slope in poly filter
alpha_poly1 α of slope in poly filter power_mean mean power of sideband mean
sigma_mean σ of sideband mean fknee_mean fknee of sideband mean
alpha_mean α of sideband mean airtemp hk: air temp, C
dewtemp hk: dewpoint temp, C humidity hk: relative humidity, (0-1)
pressure hk: pressure, millibars rain hk: rain today, mm
winddir hk: az from where wind is blowing, deg windspeed hk: windspeed m/s
moon_dist distance to moon in deg moon_angle az of moon relative to pointing
moon_cent_sl moon close to central sidelobe moon_outer_sl moon close to outer (feedleg) sidelobes
sun_dist distance to sun in deg sun_angle az of sun relative to pointing
sun_cent_sl sun close to central sidelobe sun_outer_sl sun close to outer (feedleg) sidelobes
sun_el elevation of sun ps_chi2 χ2 excess in power spectrum (old)
ps_s_sb_chi2 ps_chi2 for single sb single scan ps_s_feed_chi2 ps_chi2 for single feed single scan
ps_s_chi2 ps_chi2 for all feeds for single scan ps_o_sb_chi2 ps_chi2 for single sb full obsid
ps_o_feed_chi2 ps_chi2 for single feed full obsid ps_o_chi2 ps_chi2 for all feeds for full obsid
ps_z_s_sb_chi2 ps_chi2 for avg of z-direction 1D ps ps_xy_s_sb_chi2 ps_chi2 for avg of xy-direction 2D ps
sw_01 standing wave magnitude k ≈ 0.012 Mpc−1 sw_02 standing wave magnitude k ≈ 0.017 Mpc−1

sw_03 standing wave magnitude k ≈ 0.025 Mpc−1 sw_04 standing wave magnitude k ≈ 0.036 Mpc−1

sw_05 standing wave magnitude k ≈ 0.051 Mpc−1 sw_06 standing wave magnitude k ≈ 0.073 Mpc−1

sw_07 standing wave magnitude k ≈ 0.10 Mpc−1 sw_08 standing wave magnitude k ≈ 0.15 Mpc−1

sw_09 standing wave magnitude k ≈ 0.21 Mpc−1 sw_10 standing wave magnitude k ≈ 0.30 Mpc−1

sw_11 standing wave magnitude k ≈ 0.44 Mpc−1 sw_12 standing wave magnitude k ≈ 0.62 Mpc−1

sw_13 standing wave magnitude k ≈ 0.89 Mpc−1 sw_14 standing wave magnitude k ≈ 1.3 Mpc−1

ps_chi2, indicating clear excess power during these observations. Although we had
not anticipated the severity of this effect in advance, the statistics database lets us see
this effect very clearly, and it also makes it much easier to reject the relevant part of
the data once it has been noticed. The bottom part of the figure shows the sun-sidelobe
mask used to reject data that is close to these far sidelobes, as well as the azimutally
symmetric main sidelobes.

Another important effect that we have worked a lot on dealing with is weather.
As we discussed in Sect. 2.4.8 weather can affect the data significantly. We have
therefore implemented a weather classifier using a deep neural network, to detect
weather contamination. This work was lead by master student Maren Rasmussen, under
my supervision. Her results classified about 38% of the data as affected by bad weather,
and this data is thus rejected. For more details and results regarding the weather classifier
see Rasmussen, 2020.

2.7.2 Acceptance rates

With the help of the statistics database we set various thresholds for the different
statistics, and decide what data to accept or reject based on the values of these statistics.
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Figure 2.22: Correlation between the different diagnostic variables in the statistic
database.

Figure 2.24 shows the fraction of data left over after each cut is applied for the co7 field.
For the first year, we lost all the data from feeds 4, 6 and 7, due to very strong systematics,
so we lose 3 out of 19 parts of the data right out of the box. After the frequency cuts in
l2gen we are down to a bit more than 60 % of the data. After observing for close to a
year, we understood that data taken at higher than 65 degrees or lower than 35 degrees
in elevation was contaminated by ground signal, so we lost a significant fraction of our
data from the co6 and co7 fields. After the elevation cut, we see that we are down to a
bit more than 40 % of the original data volume. After this, a bunch of smaller cuts due
to e.g. weather, large Tsys values or the Sun in the sidelobe, we are down to a bit more
than 20 %. Now we do the cuts on the ps_chi2 which gets us down to the roughly
14 % of data. This is the fraction of data that goes into the maps. The corresponding
acceptance rates for co2 and co6 is given by about 22 % and 14 %, respectively.

As we see, with the current cuts, only a fraction of the original data volume is
retained. We have been deliberately conservative in these cuts, in order to make sure
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Figure 2.23: Simulated beam model for a single feed (top left), the derived statistic
ps_chi2 binned according to the position of the sun relative to the pointing when the
data was taken (top right) and far sidelobe sun mask used for data selection (bottom).
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Figure 2.24: Acceptance rate of the data after each individual cut is applied for all the
co7 data.

that only the best data makes it through. Once we understand the data better, and have
experimented more with different cuts, we will hopefully be able to use more of the data.
We now only observe between 35 and 65 degrees in elevation, so we will not lose more
data to the elevation cuts in the future, and the lost feeds from the first year have been
fixed, so we will be in a significantly better situation for our second year of data. With
new improvements in the pipeline, we also hope to clean the data better during l2gen,
allowing us to use more of the data still. With all this in mind we hope that we can at
least increase the fraction of the data used by a factor of 2 or 3 from our current level.

2.7.3 Accept list

All the different data cuts result, in the end, in the accept list, which tells the mapmaker
which parts of the data to include or not include when making the maps. The accept list
is a boolean array of dimension (nscan, nfeed, nsideband), which stores the value "True" if
the data from a given sideband on a given feed of a given scan is to be included in the
map. This allows us to play around with more or less strict data cuts when we make the
maps, without having to run the very expensive low level time ordered data filtering.

accept_mod can also split the data in any way you specify. This essentially runs
the mapmaker independently for the two (or more) different sets of data and produces
two (or more) different maps. This is very useful for the cross-spectrum methods we
are using (see Paper II (Ihle et al., in prep) for details), and when doing null-tests,
jack-knifes etc.
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2.8 Inference from line intensity maps

The ultimate goal of observational astronomy and cosmology is to learn about the
universe, so the final question we need to ask is how can we infer anything about
astrophysics and cosmology from a line intensity map.

This problem is in general very hard. The physics involved in producing the CO
signal we are looking for involves many different processes spanning so many different
length scales, from large-scale clustering of dark matter, to the physics, chemistry and
radiative transfer of cold molecular clouds. On the other hand, this means that there is
potentially a lot of information, about all these different processes, in the map, if we can
only figure out how to extract it.

2.8.1 Modeling CO line emission

Cosmological simulations of dark matter (DM) only are vastly cheaper to run than
simulations including baryonic physics as well. This is because dark matter is only
affected by gravity, while baryons have much more complicated interactions. Baryons
form structure all the way down to stellar scales, and things like stellar feedback means
that what happens at small scales affects what happens at every other scale, especially
during reionization. This coupling between scales means that cosmological scale
simulations including baryons cannot be run at the resolution required to include all
relevant physics.

To include baryonic effects in a cosmological simulations you therefore typically
need to employ a model to take into account the physics that happens at smaller scales
than you can resolve. Such sub-grid models can then be calibrated using smaller scale
simulations and observations, so that it captures as much as possible of the features of
the small scale physics that are relevant for the large scale physics.

2.8.1.1 Dark matter halo based models

A simple approach to sub-grid modeling for CO line intensity, is to model the connection
between each dark matter halo and the CO line luminosity of the galaxy (or multiple
galaxies) within that halo. This way you can run DM only simulations and then replace
each DM halo in the simulation with a point source of a given luminosity, which can
then be turned into a 3D intensity map, by slicing the DM simulation along a lightcone.

Perhaps the simplest possible such DM halo-LCO model would be to assume a linear
relation between the DM halo mass, Mhalo, and the CO luminosity, LCO. This would
be a one-parameter model with the amplitude of the linear relation being the only free
parameter.

A generalization of this model would be a general parameterized relation between
Mhalo and LCO

LCO(Mhalo, θi), (2.39)

where θi is a set of free variables parametrizing the relation between Mhalo and LCO. A
more advanced model could also take into account other properties of the DM halos,
like the virial velocity, the formation time or the merger history of the halo. It could
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also predict not only the CO luminosity, but also for example the line width of the CO
emission from each halo.

2.8.1.2 The Li et al., 2016 model

One of the most used models for CO line emission at intermediate redshifts (z ∼ 2−3) the
last years is the model developed in Li et al. (2016). This is a parametric model relating
DM halo masses, Mhalo, star formation rates (SFR), infrared (IR) luminosities, LIR,
and CO luminosities, LCO, using five free parameters. The model utilizes the relations
between average SFR from DM halo masses derived in Behroozi, Wechsler, and Conroy
(2013a) and Behroozi, Wechsler, and Conroy (2013b), and adds an additional log-normal
scatter to the resulting SFR, determined by the parameter, σSFR.

Given a SFR, the IR luminosity is then found using the linear relation

SFR = δMF × 10−10LIR. (2.40)

Further, CO-luminosities are approximated by the following relation

log LIR = αL′CO + β, (2.41)

before a final step of log-normal scatter is added determined by the parameter, σLCO .
We then get a total of five parameters θ = {log δMF, α, β, σSFR, σLCO }, determining the
function LCO(Mhalo). See Li et al. (2016) for a detailed discussion of the physical and
observational motivation for this model.

2.8.1.3 Simulations

Another approach to modeling CO line intensity is to use smaller hydrodynamical
simulations (Hopkins et al., 2014; Schaye et al., 2014; Vogelsberger et al., 2014). These
resolve more of the physics related to molecular clouds, star-formation, feedback etc,
but they typically cover a much smaller volume than what is observed with COMAP. In
order to do forecasts, or use these simulations to interpret the results from a CO intensity
map, we would need to somehow extrapolate these results to the full volume, which is
hard to do in a statistically rigorous way. For some work along these lines, see Lakhlani
(2019) or M. Silva et al. (in prep).

2.8.2 Observables

When doing inference from a line intensity map, the general approach is to have some
kind of astrophysical and cosmological model which predicts how we would expect the
cosmological signal to look like, and then compare this to the observed map. Of course,
we don’t expect the model to predict the specific spatial distribution of the CO signal,
since that depends on the random initial conditions. Rather, we expect the model to
predict the statistical properties of the ensemble that any observed CO intensity map is
a specific realization of. This means that instead of directly comparing the map itself to
some model prediction, we typically calculate some summary statistics, or observables,
from the map, which hopefully captures the statistical information in the map. We can
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then try to derive predictions for these different observables from the model, and then
compare these predictions to the values derived from the observed map.

In CMB analysis, and (to some degree) analysis of large scale structure, where
the signal is extremely close to a Gaussian field, the power spectrum contains all the
statistical information in the map. A line intensity map, however, is often significantly
non-Gaussian, which means that new statistics need to be developed to extract all the
information present in the map.

2.8.2.1 Power spectrum

The power spectrum, P(k), sets the variance of the Fourier components of a map

P(k) =
Vvox

Nvox
〈| fk|2〉, (2.42)

where k is the wave vector of a given Fourier component, Vvox is the volume of each
voxel of the map and Nvox is the total number of voxels in the map. A voxel is the 3D
equivalent of a pixel, it is the small volume element defined by the resolution used for
the 3D map.

If the Fourier components have a Gaussian distribution, then the map is called a
Gaussian map, in which case the power spectrum fully describes the statistical ensemble
that a given map is a single realization from. In the more general case, where the map is
not Gaussian, the power spectrum still carries a lot of important information about the
map, even if it does not describe all the information.

The cross spectrum, C(k), sets the covariance between the Fourier components of
two different maps, m1 and m2

C(k) =
Vvox

Nvox

〈
Re{ f ∗1k f2k}

〉
(2.43)

where f1 and f2 are the Fourier components of the two maps and where Re{} denotes
the real part of a complex number or function.

For more details on different power spectrum methods and how to robustly estimate
the signal power spectrum from an observed line intensity map see Paper II (Ihle et al.,
in prep). For other recent examples of the use power spectrum analysis on intensity
mapping data see e.g. (Keating, Marrone, Bower, and Keenan, 2020; Mertens et al.,
2020; Uzgil et al., 2019).

2.8.2.2 Voxel Intensity Distribution (VID)

A useful statistic that is complementary to the power spectrum is the Voxel Intensity
distribution (VID) (P. Breysse et al., 2017). The VID,P(T ), is the probability distribution
of voxel brightness temperatures. This observable does not use any of the spatial
information in the map, but is more sensitive to the bright end of the underlying CO
luminosity function and small-scale clustering.

A natural observable related to the VID is the histogram of voxel temperatures, Bi.
The expectation value of these are given by the VID

〈Bi〉 = Nvox

∫ Ti+1

Ti

P(T )dT, (2.44)

47



2. COMAP

where Bi is the number of voxels with a brightness temperature between Ti and Ti+1 and
Nvox is the total number of voxels.

2.8.2.3 Pseudo-VID

In the same way as for the auto-spectrum, when a line intensity map has an uneven
distribution of noise, then the VID statistic will be dominated by the highest noise parts
of the map, so unless you have a large signal to noise, this will affect the usefulness
of the statistic significantly. We therefore want to think of a statistic that preserves the
nice properties of the VID, but that is less susceptible to uneven noise distribution in the
map.

In order to investigate this let us use the following simplified data model

d = n + s, (2.45)

where d is a vector of the measured temperature in each voxel, n is a vector of the noise
in each voxel and s is the signal in each voxel. For simplicity we assume that the noise
level, σvox, in each voxel is known and that the signal is independent between different
voxels.

Let us then define the pseudo-VID as the VID of the following data

d̃ =
d

σαvox
, (2.46)

where α is some positive power that we will try to find an optimal value for.
If the signal was just an overall constant number, then α = 2 is gives us the maximum

likelihood estimate of s, so this is perhaps not a bad initial guess for what value of α to
choose. However, this is not a very realistic model of the signal. Another simple model
for the signal, which is more realistic as a toy model, is to assume that the signal is an
independent Gaussian with a constant standard deviation4, σsignal. We can then try to
find what is a good value for α to get the best signal to noise estimate of the signal in
this model.

We can make a mock observation by generating noise and signal for 106 voxels and
dividing the data by σαvox and then binning it to obtain the pseudo bin counts, Bi(d̃).
The pseudo bin counts follow (under our assumptions) a binomial distribution, and we
can thus map out the likelihood of the data, P(d̃|σsignal), by using many simulations
to determine the expectation, 〈Bi(d̃)〉, for each value of σsignal. We can then examine
the width of this likelihood as a function of σsignal and use this as an estimate of the
sensitivity of the pseudo-VID statistic for a given value of α.

Figure 2.25 shows the sensitivity of the pseudo-VID statistics for different values
of the exponent, α. These results are obtained in the noise dominated limit (with the
signal component of the mock data set to zero), and we show results for different noise
level distributions to investigate the effect of the distribution of the noise levels has on
the optimal value for α. We find that values in the range α = 1 − 2 give consistent
good results. Figure 2.26 shows the results from the same analysis using noise level

4My work on this toy model is building on some previous work by Patrick Breysse on these issues.
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Figure 2.25: Sensitivity of the pseudo-VID statistic for different exponents, α, (left) and
the three different noise level distributions used (right).
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Figure 2.26: Sensitivity of the pseudo-VID statistic for different exponents, α, (left) and
the three different noise level distributions used (right).

distributions with significantly more variance, as can be seen in the right panel. The
optimal values for α found here are fairly consistent in all cases, suggesting that values
between α = 1 − 2 are good values for the pseudo-VID in a large range of different
noise level distributions.

2.8.3 Likelihood

We can combine all observables into a data vector, di. For the case of using the PS and
the VID we get

di = (Pki , Bi). (2.47)

If all the components of di were independent, they would (under some simplifying
assumptions) have the following variance, which we will denote as the independent
variance

Varind(Pki ) = 〈Pki〉2/Nmodes, (2.48)
Varind(Bi) = 〈Bi〉. (2.49)
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2.8.3.1 Gaussian likelihood

Because of spatial clustering, there typically are correlations between the different
elements of the data vector. We can take this into account using a full covariance matrix

ξi j = Cov(di, d j). (2.50)

We can then build a Gaussian likelihood of the form (up to a constant)

− 2lnP(d|θ) =
Ns

Ns + 1

∑

i j

[di − 〈di〉](ξ−1)i j[d j − 〈d j〉] + ln|ξ|, (2.51)

where 〈d〉(θ) and ξ(θ) are the mean values and covariance matrix of the observables di

for specific parameters θ. Ns is the number of simulations used to estimate 〈d〉, and the
factor Ns/Ns + 1 takes into account the effect of the uncertainty in the estimate of 〈d〉.

2.8.3.2 Binomial VID likelihood

In the previous section, we implicitly assumed that all the bin counts, Bi, are Gaussian
random variables, with some covariance matrix. However, as we already know, even
if the samples are completely independent, the bin counts will follow a binomial
distribution. When the expected bin counts are high (Bi � 5), the binomial distribution
can be very well modeled by a Gaussian. When we only expect a few voxels in each
bin, however, the Gaussian approximation breaks down.

If we know that the samples are independent, there is no problem, since the likelihood
is just given by the joint distribution of nbins independent binomial variables

P(B|θl) =

nbins∏

i=1

(
Nsamples

Bi

)
pBi

i (1 − pi)Nsamples−Bi , (2.52)

where pi ≡ pi(θl) = 〈Bi〉(θl)/Nsamples is the probability of a voxel being placed in bin i.
As we have argued, however, when we are not completely noise dominated, the samples
will not be independent, and we have no general way to calculate the likelihood. On the
other hand, we expect the clustering effect to be dominated by the shot noise when we
get to bins with very few samples.

This suggests a possible approximation we can make. We can try to separate the bins
according to the expected number of samples. For bins where we expect many samples,
Bi > 5, we can assume that they are approximately Gaussian, and use simulations to
estimate the covariance matrix between these bins. For the bins with few expected
samples Bi ≤ 5 we can assume that they follow independent binomial distributions,
because the variance will presumably be dominated by shot noise, and clustering effects
are (hopefully) negligible. The full likelihood, in this approximation, is then given by

P(B|θl) = PBinomial(B|θl)PGaussian(B|θl), (2.53)

where

PBinomial(B|θl) =

nbins∏

{i|Bi≤5}

(
Nsamples

Bi

)
pBi

i (1 − pi)Nsamples−Bi , (2.54)
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and

PGaussian(B|θl) =
1

(2π)
nbins

2 |ξ>5| 12
exp

(
−1

2
χ2
>5

)
, (2.55)

and where
χ2
>5 ≡

∑

{i, j|Bi,B j>5}
[Bi − 〈Bi〉(θl)](ξ−1)i j[B j − 〈B j〉(θl)] (2.56)

and
ξ>5 ≡ ξ{i, j|Bi,B j>5}. (2.57)

One issue associated with bins with very few expected samples is that if you are
estimating pi from some limited number of simulations, you will sometimes have no
samples in the bin from either simulation. In that case it is not clear how to evaluate the
likelihood. This problem can occur quite frequently when there is not that much signal
to noise in the data, and you are exploring a large region in parameter space. We can
deal with this problem by imposing some prior on the expectation value of the binomial
distribution, and then update this prior with the values from the simulation. The details
for how to do this are discussed in App. A.1.

2.8.4 Exploring the posterior distribution

Using the methods we have sketched in the previous sections we can now try to put
them all together. To summarize what we need to do this, here is a list:

• A set of observables, di, that can be estimated from a line intensity map.

• A model with parameters θ, which can generate simulated intensity maps, or
at least in some way calculate the mean observables, 〈di〉(θ), covariance matrix,
ξi j(θ) (or any other quantity needed in the likelihood) for any given values of θ.
Any prior on θ is also assumed to be part of the model.

• A likelihood P(di|θ), that can be evaluated using the model output.

• Some observed (or simulated) line intensity mapping data, summarized in the
observables data, dobserved

i .

We can then use a sampling procedure, like a Markov-Chain Monte Carlo (MCMC)
method, or other methods to explore the posterior distribution P(θ|dobserved

i ).
At this abstract level this looks fairly simple, however, the details matter a lot here,

and can make things much more complicated. There are several important questions
about the model and the parameter space θ. How degenerate are the parameters θ?
And how easy are the parameters to interpret? A given set of observed data dobserved

i is
often good at constraining one combination of parameters, but is completely insensitive
to other combinations of parameters, so if you make bad choices of parameters, or
simply just use too many parameters, you will not be able to use the data to constrain
much. If you make a model that is fairly closely related to the physics, and where
each parameter has a simple interpretation, then you typically get a complicated model,
with lots of parameters, and also lots of degeneracy between the parameters. A simple
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model, however, can avoid any unnecessary degeneracies, but it will in turn often be
much harder to connect these parameters back to cosmology and astrophysics. A good
model will be one that finds a good compromise between these considerations, for the
particular dataset you are considering. For a detailed discussion of these issues and
more see D. Chung et al., in prep.

Another set of issues relate to the observables, di, and the likelihood. In Ihle et
al. (2019) we show that using a combination of the power spectrum and the voxel
intensity distribution is better at constraining the CO luminosity function than using
either observable individually, for a COMAP-like experiment. While this was a very
useful finding, there are many simplifying assumptions made in these (and similar types
of) forecasts. If we want to do a similar analysis on actual data from an experiment,
we will have to address many issues first. How do you model or estimate the noise
in the data? How do you deal with an uneven noise distribution in the map? How
do you build a good likelihood function? How do you take into account systematic
effects and propagate systematic uncertainties into the likelihood? Some of these issues
are discussed in detail for the power spectrum in Paper II (Ihle et al., in prep), and
we have made some preliminary investigation into some issues with the VID here, in
Sects. 2.8.2.3 and 2.8.3.2. However, we still have quite a way yet to go in order to use
the VID on real data.

2.8.5 Future Prospects

CO intensity mapping is in a somewhat special position in that there is a fairly low level
of foregrounds, and no significant interloper lines (D. Chung et al., 2017). This makes
the analysis and inference from these maps much simpler.

Cii intensity mapping, for example, has several interloper CO-lines from lower
redshifts. This makes the inference much more complicated (Cheng, Chang, and Bock,
2020), but significantly increases the amount of information in the maps.

As the field matures, more areas of the sky, and more ranges in redshift, will be
covered by different experiments, meaning that we will have access to the same galaxy
population and large scale structure from multiple tracers. This will allow us to get
more robust results, break degeneracies and give unique insights into the astrophysics
of galaxies and their chemistry and gas dynamics.

Cross-correlation (D. T. Chung et al., 2019) as well as new tools being developed
(Bernal, P. C. Breysse, Gil-Marin, et al., 2019; P. C. Breysse, Anderson, and Berger,
2019; Cheng, Chang, and Bock, 2020; D. T. Chung, 2019; Gong, Chen, and Cooray,
2020; Yang et al., 2020), will be needed to deal with these combined datasets. As we get
more different datasets that we want to analyze together the more important it becomes
to use a consistent statistical framework for inference, like we use in Paper III (Ihle
et al., 2019) and like we have discussed here.

The prospects for doing fundamental cosmology with LIM is very interesting.
Getting access to the largely unmeasured large scale modes from the early universe will
fill in many gaps in our knowledge of the expansion and evolution of the universe (Bull
et al., 2015; Creque-Sarbinowski and Kamionkowski, 2018; Dinda, Sen, and Choudhury,
2018; Bernal, P. C. Breysse, and E. D. Kovetz, 2019; Furlanetto et al., 2019; Liu and
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P. C. Breysse, 2020). The ultimate dream, of course, is going to space (M. B. Silva et al.,
2019).
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Chapter 3

BeyondPlanck

BeyondPlanck (BeyondPlanck Collaboration, 2020) is an ambitious project to develop an
end-to-end Bayesian data analysis pipeline for CMB experiments, combining everything
from low-level instrumental parameters like gains and bandpasses to foreground
components and CMB power spectra into one consistent statistical model. As a
demonstration, we apply this framework to the Planck Low Frequency Instrument
(LFI) time ordered data. Here I will give a short summary of the general BeyondPlanck
approach, and of the two papers that I have been most involved in, on noise modeling
(Paper V, Ihle et al., 2020) and calibration (Paper VI, Gjerløw et al., 2020).

3.1 The BeyondPlanck approach

The first part of the BeyondPlanck approach is to define an explicit statistical model of
the data, including all the components and effect that we want to take into account. In
BeyondPlanck, for each of the three LFI bands, at frequencies of 30, 44, and 70 GHz,
we model the raw time-domain data, d, as follows,

d j,t = g j,tPtp, j

B
symm
pp′, j

∑

c

Mc j(βp′ ,∆
j
bp)ac

p′ + Basymm
pp′, j

(
sorb

j,t + sfsl
j,t

) + ncorr
j,t + nw

j,t. (3.1)

The subscript t is the index in time domain; j is the radiometer index; p is the pixel
index; c is the signal component index; g is the gain; P is the pointing matrix; Bsymm and
Basymm is the symmetric beam matrix and the asymmetric beam matrix, respectively; a
are the astrophysical signal amplitudes; β are the corresponding spectral parameters; ∆bp
are the bandpass corrections; Mc j is the bandpass-dependent component mixing matrix;
sorb is the orbital dipole; sfsl are the far sidelobe corrections; ncorr is the correlated noise;
and nw is the white noise. For more details and discussion of each of these parameters,
and how they are modeled, see BeyondPlanck Collaboration (2020) and companion
papers.

Given this model, the goal of the Bayesian approach is to explore the full posterior
distribution of all the free parameters in the model, given the observed data, d,

P(g, ncorr, ξn,∆bp, a, β,C` | d). (3.2)

This is a really complicated distribution, with a very large number of parameters that
depend on each other in complicated ways. The way we deal with this distribution is
to use Gibbs sampling. The idea of Gibbs sampling is simple. Instead of sampling
directly from the full distribution, we sample iteratively from each of the conditional
distributions. In this way we can divide the complex problem of sampling from the
whole distribution into a set of smaller manageable steps. We can summarize this
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process as follows,

g ← P(g | d, ξn,∆bp, a, β,C`) (3.3)
ncorr ← P(ncorr | d, g, ξn,∆bp, a, β,C`) (3.4)
ξn ← P(ξn | d, g, ncorr, ∆bp, a, β,C`) (3.5)

∆bp ← P(∆bp | d, g, ncorr, ξn, a, β,C`) (3.6)
β ← P(β | d, g, ncorr, ξn,∆bp, C`) (3.7)
a ← P(a | d, g, ncorr, ξn,∆bp, β,C`) (3.8)

C` ← P(C` | d, g, ncorr, ξn,∆bp, a, β ). (3.9)

Here,← indicates sampling from the distribution on the right-hand side. The challenge
then is to implement methods to sample from each of the conditional distributions, and
to put everything together into a computational framework.

Perhaps the simplest way to illustrate the appeal of the full end-to-end Bayesian
approach of BeyondPlanck is shown in Fig. 3.1. Here we see constraints on the optical
depth to reionization, τ, derived in four different cases. The blue curve, labeled "WN",
corresponds to fixing all the other parameters in the model, and only taking into account
the uncertainty coming from the white noise. The red curve, labeled "TOD + WN",
corresponds to fixing the foreground model, but marginalizing over all the instrumental
parameters and the correlated noise in addition to the white noise. The green curve,
labeled "FG + WN", marginalizes over the foreground parameters and the white noise,
but fixes the instrumental parameters and the correlated noise, while the black curve
marginalizes over all the parameters, in addition to the white noise. This figure illustrates
how important it is to propagate the uncertainties from all the instrumental parameters
and the foregrounds simultaneously, and in a statistically rigorous way, which is exactly
what the BeyondPlanck pipeline was designed for.

3.2 Noise Modelling and Characterization

Here we will discuss two of the sampling steps, 3.4 and 3.5, from the full BeyondPlanck
Gibbs chain in more detail.

The starting point for both conditional distributions is the following parametric data
model,

d′ ≡ d − gstot = ncorr + nwn. (3.10)

where we have defined the signal subtracted data, d′, and where d is the raw time
ordered data (TOD); g is the gain; stot describes the total sky signal, comprising both
CMB and foregrounds, projected into time-domain; ncorr represents the correlated noise
in time domain; and nwn is white noise.

We assume that both the two noise terms are distributed as a Gaussian, with the
following covariance matrices Ncorr ≡ 〈ncorrnT

corr〉 and Nwn ≡ 〈nwnnT
wn〉, respectively.

The complete noise power spectral density (PSD) is then given by

P( f ) = Nwn + Ncorr = σ2
0 + σ2

0

(
f

fknee

)α
, (3.11)
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Figure 3.1: Posterior distribution derived for the optical depth to reionization, τ,
marginalizing over different combinations of variables. Figure taken from (Paradiso et
al., 2020).

where f denotes temporal frequency; σ0 is the white noise level of the time-ordered
data; α is the slope (typically negative) of the correlated noise PSD; and the knee
frequency, fknee, denotes the (temporal) frequency at which the variance of the correlated
noise is equal to the white noise variance. The three PSD parameters are collectively
denoted ξn = {σ0, fknee, α}. This noise model is usually referred to as 1/ f -noise (Planck
Collaboration II, 2014; Planck Collaboration II, 2020; Tauber et al., 2019).

We can sample the correlated noise, ncorr, by solving the following equation,
(
N−1

corr + N−1
wn

)
ncorr = N−1

wnd′ + N−1/2
wn η1 + N−1/2

corr η2, (3.12)

where η1 and η2 are two independent vectors of random variates drawn from a standard
Gaussian distribution, η1,2 ∼ N(µ = 0, σ2 = 1). Since we typically use a time-domain
mask, this equation cannot be solved by simply going to Fourier space, but needs to be
solved by a more general method. For a nice method to solve the problem in this case,
see Keihänen et al. (2020). Figure 3.2 shows some examples of how the correlated noise
solutions look like. We see that the 1/ f model seems to be working quite well.

Once we have found the correlated noise, the noise PSD parameters, fknee and α, are
sampled from their exact conditional distributions

− ln P( fknee, α | σ0, ncorr) =

fmax∑

f = fmin


|ncorr

f |2
Ncorr( f )

+ ln Ncorr( f )

 − ln P( fknee, α), (3.13)

where Ncorr( f ) = σ2
0

(
f

fknee

)α
and P( fknee, α) is an optional prior.

The LFI data are divided into roughly 45 000 pointing periods, denoted PIDs
(pointing ID), each with a duration of 30–60 minutes. The official Planck LFI Data
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Figure 3.2: Example correlated noise samples in time domain (left) and as PSD (right).

Processing Center (DPC) (DPC, Planck Collaboration II, 2020) assumed that the noise
parameters were constant throughout the entire mission. In our analysis, we sample the
correlated noise, and the noise parameters independently for each PID, but we use the
DPC results as priors for fknee and α. In this way we use some information from the
entire mission, but we also allow enough freedom to account for actual changes in noise
properties over time.

The results we have found are very interesting. In addition to giving us a whole new
insight into the noise properties of the LFI instrument, this detailed work on the noise
modeling also highlights some important systematic effects. We demonstrate, for the first
time, that the noise properties of most radiometers do indeed change significantly over
time, mostly due to changes in the thermal environment of the instrument. Figure 3.3
shows very clearly the intimate relationship between the noise properties of the 70 GHz
radiometers and the temperatures measured at the 20K cooling stage.

Although the noise properties of the 70 GHz radiometers change significantly over
time, we are still able to fit the noise well using the 1/ f model. At 30 and 44 GHz,
however, some radiometers show signs of a significant power excess at intermediate
timescales (0.1–10 Hz), which do not fit well with the 1/ f model, as is seen in Fig 3.4.
This is quite worrisome, since these timescales correspond roughly to 1–60 degrees on
the sky, which is in the prime science range, where we don’t want an unfitted systematic
sloshing around in the model. This is something that will need more work, perhaps with
a modified model for the noise PSD.

3.3 Calibration

The calibration step, Eq. 3.3, is a crucial step in any pipeline. We will now describe the
approach we use for calibration in BeyondPlanck. We start with the data model,

d = gstot + ncorr + nwn. (3.14)

The goal is to convert the raw time ordered data, d, from voltages to Kelvin, effectively
determining g. If we had a signal of known magnitude, then we could estimate g directly.
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Figure 3.3: Average correlated noise properties of the 70 GHz radiometers (bottom two
panels) compared with 4 K (top two panels) and 20 K (middle two panels) temperature
sensor read-outs for the full mission.

Thankfully we have a very strong dipole signal which each detector measures, typically
with a large signal-to-noise ratio, every minute, as the Planck scanning strategy orbits a
great circle on the sky every sixty seconds. The problem, however, is that the overall
magnitude of the dipole is not something we know, but one of the things we are trying
to measure. On the other hand, there is one signal that we do know very precisely, and
that is the component of the overall dipole coming from the movement of the Planck
satellite relative to the sun, called the orbital dipole. The, much stronger, but unknown,
dipole signal from the movement of the sun relative to the CMB rest frame, we denote
as the solar dipole (see Fig. 3.5).

The idea then is to use the orbital dipole for the overall calibration of the entire
system, but to use the solar dipole to measure the relative calibration of the different
detectors and the change over time of single detectors. We therefore decompose the
gain, g, into the following parts,

gt,i = g0 + ∆gi + δgt,i, (3.15)

where t is a time index and i is an index labeling the different detectors of a given
frequency band. g0 is then the absolute calibration, ∆gi, is the detector specific offset
and δgt,i tracks the time evolution of the gain for each specific detector. The two last
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Figure 3.4: PSD of signal-subtracted data from radiometer 28M, averaged over 18 PIDs
(black). Compared to the BeyondPlanck (dashed blue) and LFI DPC (dashed gray)
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terms are subject to the constraints
∑

i ∆gi = 0 and
∑

t δgt,i = 0. We can then use all the
data, from all of the detectors, to determine g0 using the known orbital dipole, and use
the full signal (dominated by the solar dipole) to determine ∆gi and δgt,i subject to the
constraints. See Paper VI (Gjerløw et al., 2020) for the detailed sampling steps, which
we will not repeat here.

There are several challenges we need to deal with during calibration. First of
all, there is typically not enough signal to noise in a single PID to measure the time
dependent gain, δgt,i, precisely enough. To solve this we apply a smoothing window,
essentially using data from a few hundred consecutive PIDs to measure the time
dependent gain. Another complication comes from the fact that for some periods
the Planck scanning is almost completely orthogonal to the dipole, meaning that it is
very hard to use the dipole for calibration. To deal with this we need to periodically
employ very wide smoothing windows, making us less sensitive to changes in the gain
for these periods. There are also abrupt jumps in the gain, causing the smoothing window
approach to break down. If we know when these jumps happen, we can explicitly include
them in the model, and fit the gain independently on each side of the jump. Although
we know the origin of some of the gain jumps, we do not know the origin of all of them.
This leaves us vulnerable to the presence of gain-jumps that we have not included in our
model. Any such missing gain-jumps could lead to significant gain errors effecting the
entire model (Eq. 3.1).

Figure 3.6 shows the correlated noise in map domain for the Stokes Q 44 GHz
channel. We see some very clear stripes along an orbit from the middle of the map
and up to the right. While we do not know the origin of these stripes, we suspect they
are related to the gain, and quite possibly unmodeled gain-jumps in particular. This
is an area we are still working to understand better using the large library of Planck
housekeeping data. The stripes we see in the southern hemisphere of the 44 GHz band
may be related to the problems we have had using the CMB polarization data from
the southern hemisphere (Colombo et al., 2020; Paradiso et al., 2020), which means
that this is one of the most important things we are working to figure out (see Paper VI
(Gjerløw et al., 2020) for more discussion).

3.4 Future prospects

The future of the CMB is in polarization, particularly in B-mode polarization from
primordial gravitational waves. These signals are very weak, which means that we will
need to dig deep into both foregrounds and instrumental systematic effects in order
to detect it. This is the challenge that BeyondPlanck has set out to tackle, to build a
consistent statistical framework to deal with the complex interactions and degeneracies
between instrumental effects, foregrounds and the cosmological signal.

The BeyondPlanck results presented here, analysing the Planck LFI data, is a
proof of concept, demonstrating that end-to-end analysis from time ordered data
to cosmological parameters is actually possible, and that this approach has several
advantages over the more traditional, modular, approach. In the future, under the
umbrella of Cosmoglobe1, we want to combine as many datasets as possible into the

1http://cosmoglobe.uio.no
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Figure 3.6: Stokes Q-map of the correlated noise, ncorr, 44 GHz band, smoothed at an
angular resolution of 5 degrees FWHM. Figure courtesy of Eirik Gjerløw.

analysis, to get the most complete and robust sky model, and to be in the best position
as possible to analyze data from future experiments like LiteBIRD, PICO and CMB-S4
(Abazajian et al., 2019; Hanany et al., 2019; Sugai et al., 2020; Suzuki et al., 2018).
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Summary and Outlook

In this thesis I have given an introduction to the COMAP experiment and summarized
some of mine and others work on the data analysis for COMAP. Papers I and II expand
on this and go into more details on the various steps in the data analysis pipeline, and the
power spectrum methods used. I also give a short summary of the BeyondPlanck project
and the work I have done on noise estimation, systematics and calibration. In addition
to discussing the experiments, the data analysis and the results, I have tried to connect
the individual experiments with their significance to astrophysics and cosmology more
generally.

The COMAP experiment is in a very exciting period right now, where we are working
to finalize our analysis of the first year of data and publishing our first results, including
an upper limit on the CO clustering power spectrum at around z ∼ 3. On a longer time
horizon we are already working on the next iterations of improvements in the COMAP
pipeline, which involves better modeling and mitigation of ground contamination,
better characterization of standing waves and their effects and an improvement in the
mapmaking techniques, some of which have already been mentioned. The future plans
for the COMAP experiments involve an expansion to multiple new telescopes, including
instruments observing at lower frequencies, which would give us a whole new window
into the epoch of reinonization (z ∼ 6–8).

A bright future for intensity mapping in general lies in combining the data from
multiple different experiments studying different spectral lines of the same galaxies
giving us a more complete picture all the way from small scale chemistry and
astrophysics to the large scale structure and expansion history of the universe as a
whole. Combining together multiple complicated datasets increased the need for robust
and statistically rigorous data analysis methods.

Our results in BeyondPlanck is a good demonstration of the unique advantages of the
end-to-end approach. By including all the parts of the data analysis into a single model,
not only does it help us deal with degeneracies and error propagation consistently, it also
highlights problems in the data and where the model does not fit. With BeyondPlanck
and Cosmoglobe we are laying the groundwork for the CMB community to face its
greatest challenge, detecting B-modes from primordial gravitational waves. We believe
that the best way to do this is to build an international community focused on global
joint end-to-end analysis of cosmological datasets using open source, community built,
software. By combining many datasets in this way we can not only get the most accurate
sky model possible, but we can also break the degeneracies present in any one dataset,
making us less susceptible to the systematic effects in either dataset.
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Appendix A

Appendix

A.1 Binomial likelihood and mean estimation

Say you have some model for a statistic with a binomial distribution. The binomial
mean, µ(θ) = N p, is then a function of the model parameters θ. Say you don’t know the
function µ(θ), but you can simulate samples from the distribution at fixed θ. After one
sample x1, the posterior distribution of µ(θ) is given by

P1(µ) ≡ P(µ|x1) =
P(x1|µ)P0(µ)∫

µ′ P(x1|µ′)P0(µ′)dµ′
, (A.1)

where

P0(µ) =

∫

θ

P(µ|θ)P(θ)dθ, (A.2)

where P(θ) is the prior on the model parameters. In general, after n, samples we get

Pn(µ) = P(µ|xn, · · · , x1) =
P(xn|µ)Pn−1(µ)∫

µ′ P(xn|µ′)Pn−1(µ′)dµ′
. (A.3)

The estimated likelihood of some data d given by the model at parameters θ is then
given by

P(θ|d) =
P(θ)
P(d)

∫

µ(θ)
P(d|µ(θ))Pn(µ(θ))dµ. (A.4)

In practice P0(µ) could perhaps be set to some weak prior, although the details will
matter. Choosing an exponential prior we get

P0(µ) =
exp

(
− µ
µ0

)

∫ ∞
0 dµ′ exp

(
− µ′
µ0

) =
exp

(
− µ
µ0

)

µ0
, (A.5)

where µ0 is the scale parameter of the prior, if needed, this parameter could be tuned to
approximate Eq. A.2, or simply chosen at a value we think is reasonable. We can now
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A. Appendix

perform the integral in equation A.1

I1 =
1
µ0

∫
P(x1|µ′) exp

(
− µ
′

µ0

)
dµ′, (A.6)

=
1
µ0

∫ (
x1

N

) (
µ′

N

)x1
(
1 − µ

′

N

)N−x1

exp
(
− µ
′

µ0

)
dµ′, (A.7)

≈
∫ (

x1
N

)

N

(
µ′

N

)x1

e−µ
′
exp

(
− µ
′

µ0

)
dµ′, (A.8)

=
N
µ0

(
x1

N

) (
µ0

N(µ0 + 1)

)x1+1 ∫
ux1 eu du, (A.9)

=
N
µ0

(
x1

N

) (
µ0

N(µ0 + 1)

)x1+1

Γ(x1 + 1), (A.10)

where we have assumed N � µ, d, and used the substitution u = µ′
(

µ0
µ0+1

)
.

Inserting this we can now find the analytic expression for Eq. A.1,

P1(µ) ≈
1
µ0

(
x1
N

) (
µ′

N

)x1
e−µ exp

(
− µ′

µ0

)

N
µ0

(
x1
N

) (
µ0

N(µ0+1)

)x1+1
Γ(x1 + 1)

(A.11)

=
µx1 e−µ exp

(
− µ′

µ0

)

(
µ0

(µ0+1)

)x1+1
Γ(x1 + 1)

. (A.12)

In general, we get

Pn(µ) =
µx1+x2+···+xn e−nµ exp

(
− µ′

µ0

)

(
µ0

(nµ0+1)

)x1+x2+···+xn+1
Γ(x1 + x2 + · · · + xn + 1)

. (A.13)

The posterior distribution then becomes

P(θ|d) =
P(θ)
P(d)

∫
P(d|µ)Pn(µ)dµ, (A.14)

=
P(θ)
P(d)

(
d
N

)
1

Nd

1
(

µ0
(nµ0+1)

)x+1
Γ(x + 1)

∫
µx+de−(n+1)µ exp

(
− µ
′

µ0

)
, (A.15)

=
P(θ)
P(d)

(
d
N

) (
µ0

N(n + 1)µ0 + 1

)d (
nµ0 + 1

(n + 1)µ0 + 1

)x
Γ(x + d + 1)

Γ(x + 1)
, (A.16)

where we have defined x ≡ x1 + x2 + · · · + xn.
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ABSTRACT

We describe the data processing pipeline used to analyze the first season of COMAP observations,

converting raw detector readouts to calibrated sky maps. This pipeline implements five main steps:

gain calibration, filtering, noise characterization, data selection, and mapmaking. Absolute gain cali-

bration relies on a combination of instrumental and astrophysical sources, while relative gain calibra-

tion exploits real-time total-power variations. High efficiency filtering is achieved through spectroscopic

common-mode rejection within and across receivers, resulting in nearly uncorrelated white noise within

single-frequency channels. Consequently, near-optimal but biased maps are produced by binning the

filtered time stream into a pixelized map structure; a corresponding signal bias transfer function is

estimated through simulations. Data selection is performed automatically through a series of goodness-

of-fit statistics, including χ2 and multi-scale correlation tests. Applying this pipeline to the first-season

COMAP data, we find that night-time observations using a constant elevation scanning strategy are

sufficiently stable for science extraction, whereas both day-time and Lissajous scanning observations

fail critical null-tests. In total, only 10 % of the full data volume is currently retained for scientific

analysis, which is substantially lower than the original goal of 35 %. However, explicit sidelobe and

ground modelling are likely to increase this significantly in future analyses. All second-season COMAP

observations will employ the constant elevation scanning strategy, and this alone will immediately dou-

ble the effective mapping speed. Power spectrum results derived from the first-season COMAP maps

are presented in a companion paper by Ihle et al. (2021).

Keywords: stars: formation, galaxies: star formation,radio lines: galaxies, methods: data analysis

1. INTRODUCTION

Understanding the evolution of galaxies and the in-

tergalactic medium (IGM) over the largest spatial and

temporal scales is one of the principle goals of cosmology.

Galaxy surveys address this challenge by resolving and

detecting individual galaxies, a technique that necessar-

ily favors brighter galaxies and smaller cosmic volumes.

Spectral line intensity mapping (LIM) is a complemen-

tary technique (see Kovetz et al. 2017 or Kovetz et al.

2019 for a review) that holds the potential to character-

ize the global properties of galaxies and their evolution

Corresponding author: Marie K. Foss

m.k.foss@astro.uio.no

by surveying the aggregate emission from all galaxies

over large volumes.

This technique uses redshifted line emission (e.g., Lyα,

CO, or C ii) as a tracer for the underlying density field.

Large volumes along a given line-of-sight may be sur-

veyed simultaneously with a single spectrometer at rela-

tively low spatial resolution, and by scanning this spec-

trometer across the sky a full 3D density map may be

derived. Despite multiple different modeling efforts (Li

et al. 2016; Padmanabhan 2018; Chung et al. 2021) and

significant progress on the observational front (Pavesi et

al. 2018; Keating et al. 2016, 2020), the overall level of

the CO signal, especially in the clustering regime, is still

unknown.
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2 the COMAP collaboration

The CO Mapping Array Pathfinder (COMAP; Cleary

et al. 2021) is an intensity mapping experiment that

targets carbon monoxide (CO) in the frequency range

between 26 and 34 GHz, using a 19-element receiver

mounted on a 10.4 m single-dish telescope, with each el-

ement coupled to a 8096-channel ROACH2-based spec-

trometer. In this frequency range, the receiver is sen-

sitive to CO(1–0) at z = 2.4–3.4, with a fainter con-

tribution from CO(2–1) at z = 6–8. Phase I of the

experiment aims to detect the CO(1–0) signal and use

it to constrain the properties of galaxies at the Epoch

of Galaxy Assembly. A future phase will add a second

receiver at Ku-band in order to detect CO(1–0) from

around z = 6–8, cross-correlating with the CO(2–1) sig-

nal from the 26–34 GHz receiver and constraining the

properties of galaxies towards the end of the Epoch of

Reionization.

The receiver’s detector chain is based on cryogenically

cooled HEMT low-noise amplifiers (LNA) which con-

tribute to a mean system temperature of 35–45 K across

the full frequency range. The predicted signal from

high-redshift CO emission is expected to be no more

than a few microkelvins per COMAP spatial/spectral

resolution element (or “voxel”). Thus, the raw instru-

mental noise must be reduced by many orders of mag-

nitude before a statistically significant detection may

be achieved. In practice, this is done by repeatedly

observing the same part of the sky using multiple de-

tectors, and thereby gradually increasing the sensitivity

per voxel. For this to succeed, however, it is necessary

to suppress systematic contributions from atmospheric

temperature variations, sidelobe contamination, ground

pickup, standing waves, Galactic foregrounds etc. by a

corresponding amount.

This paper describes the first-season COMAP data

analysis pipeline, which aims to produce clean maps

from raw time-ordered COMAP observations. This in-

cludes calibration, data selection, filtering, and map-

making. The rest of this paper is organized as follows:

First, in order to establish useful notation and conven-

tions, we give a brief introduction to the COMAP instru-

ment in Sect. 2, while referring the interested reader to

for full details. Next, we provide a high-level overview

of the analysis pipeline in Sect. 3.1, before specifying

each step in Sects. 3.3–3.8. Consistency tests are con-

sidered in Sects. 4–4.3, and we summarize and conclude

in Sect. 5.

2. INSTRUMENT AND DATA MODEL

Before describing the COMAP analysis pipeline, we

provide a brief overview of the instrument itself, and

define an explicit data model. A more detailed descrip-

Table 1: Frequency range of each COMAP sideband

(SB).

Band SB Freq. (GHz)

A
LSB 26–28

USB 28–30

B
LSB 30–32

USB 32–34

tion of the instrument can be found in a separate paper

(Lamb et al. 2021).

2.1. Instrument overview

The COMAP Phase I instrument observes in the Ka

band, at 26–34 GHz and is located at the Owens Val-

ley Radio Observatory (OVRO) in California, USA. It

is mounted on a 10.4 m telescope that was originally

built for the Millimeter Array at OVRO, then used as a

part of the Combined Array for Research in Millimeter-

wave Astronomy (CARMA) experiment, and has now

been repurposed for COMAP. The telescope’s primary

and secondary reflectors have diameters of 10.4 m and

1.1 m, respectively, and the beam FWHM is 4.5 arcmin

at 30 GHz.

The receiver comprises 19 independent detector

chains, called “pixels” or “feeds”. Each feed consists

of the following elements, ordered according to their

position in the signal path:

1. A feedhorn that collects incoming photons.

2. A polarizer that separates the radiation into two

orthogonal circular polarization states. For the

observations described in this paper, 15 feeds have

a two-stage polarizer, two feeds have a single-stage

polarizer, and two feeds have no polarizer.

3. A low-noise amplifier (LNA) module based on high

electron-mobility transistors (HEMT) integrated

in the form of a monolithic microwave integrated

circuit (MMIC). Each LNA module contains two

MMIC LNAs and is cooled to 15–18 K.

4. Two down-converter modules (DCMs). DCM1

shifts the 26–34 GHz frequency band down to 2–

10 GHz. DCM2 splits this 8 GHz bandwidth into

two bands: A (2–6 GHz) and B (6–10 GHz), each

of which is quadrature downconverted to produce

an “in-phase” (I) and “quadrature” (Q) signal.

5. Two CASPER “Roach2” FPGA-based spectrom-

eters, each of which takes the I and Q signals
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Field Name RA (J2000) Dec (J2000) Notes

CO2 01:41:44.4 +00:00:00.0 CO science field - lies within the HETDEX fall field

CO6 15:04:00.0 +55:00:00.0 CO science field - lies outside the main HETDEX survey

CO7 11:20:00.0 +52:30:00.0 CO science field - lies within the HETDEX spring field

FG4 00:42:44.4 +41:16:08.6 M31, the Andromeda Galaxy

FG6 18:44:56.4 −01:59:52.0 W43, star forming region

FG7 03:40:49.0 +31:54:38.0 AME-emitting region of Perseus molecular cloud

Galactic Plane survey Survey covering Galactic longitudes 22.5◦ < l < 50◦

TauA 05:34:31.9 +22:00:52.2 Pointing calibrator - supernova remnant (Crab Nebula)

CasA 23:23:24.0 +58:48:54.0 Pointing calibrator - supernova remnant

CygA 19:59:28.4 +40:44:02.1 Pointing calibrator - radio galaxy

Jupiter Pointing calibrator

Table 2: COMAP fields and calibrators.

as input and performs digital sideband separa-

tion. The output of the two spectrometers is four

2 GHz-wide sidebands (SB), each of which has

1024 frequency channels, resulting in a native fre-

quency resolution of approximately 2 MHz. The

sidebands are labelled “lower” (LSB) or “upper”

(USB), as shown in Table 1. These data are then

written to computer disk with a sample frequency

of 50 Hz, resulting in a total data production rate

of 43 GB/hour or 377 TB/year. Before being pro-

cessed by the pipeline, each full 8 GHz-wide spec-

trum is averaged in software into 1024 ∼2 MHz-

wide frequency channels.

Different feeds have different polarizer solutions for de-

velopment and testing purposes. As discussed later, one

of the main systematic effects observed in the COMAP

system are standing waves, i.e., electromagnetic waves

reflected between the boundaries of various components

in the receiver chain. The magnitude and impact of this

effect depends sensitively on the polarization properties

of the signal, and different solutions were therefore ex-

plored in the early phases of the experiment. An impor-

tant finding from these tests was that feeds without a

polarizer are significantly more susceptible to the stand-

ing wave between the focal plane and the secondary than

the rest of the feeds, and the two pixels in question are

therefore excluded from the analysis. Similarly, a 20th

pixel was added as a blind feed, to help distinguish in-

ternally and externally generated signals, and is also ex-

cluded from the science analysis.

The receiver cryostat containing the cooled LNAs is

situated between the primary and secondary reflector.

To protect the instrument from the environment, a

metal shroud with a polypropylene foam window cov-

ers the cryostat. This window was augmented by a

polystyrene backing support in June 2020 in order to

minimize the variation of standing waves between the

window and the receiver caused by movement of the

window.

To support frequent and accurate gain estimation,

COMAP employs an ambient temperature load that

is directly attached to the environmental shroud hous-

ing. This “calibration vane” is automatically moved in

front of the feedhorn array at the beginning and end of

each observation (each lasting for about one hour; see

Sect. 2.2), fully filling the field of view of each pixel. The

temperature of the calibration vane is monitored with

sensors, allowing the system temperature to be calcu-

lated and applied to calibrate the gain.

2.2. Observation Strategy and Field Selection

COMAP observes three areas of the sky, selected to

maximize the observing efficiency, avoid bright 30 GHz

point sources, and overlap with coverage of a galaxy sur-

vey targeting Lyα emission from galaxies in the same

redshift range, the Hobby-Eberly Telescope Dark En-

ergy eXperiment (HETDEX; Hill et al. 2008). Table 2

lists the details of these fields.1 Although COMAP’s

observing strategy has been designed to permit the

direct detection of CO fluctuations from galaxies at

z = 2.4 − 3.4, cross-correlation with a galaxy survey

such as HETDEX can increase the detection significance

by at least a factor of two (Chung et al. 2019; Silva et

al. 2021) as well as provide validation for the origin of

detected signal in galaxies at the target redshift.

In addition to the main science fields, we observe

several other fields for ancillary science applications,

in particular to constrain the spectrum of anomalous

microwave emission (AME), or spinning dust emission,

1 Since COMAP began observing, the boundaries of the HET-
DEX spring field coverage changed, with the result that one
COMAP field no longer overlaps with the main HETDEX survey
although we hope to also fill in this field with additional HETDEX
observations.
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Figure 1: Elevation of CO (pink/purple), Galactic (or-

ange) and calibration (blue) fields as a function of Local

Sidereal Time.

around 30 GHz. These include M31, the star forming

region W43, and a region within the Perseus molecular

cloud. We are also conducting a survey of the Galactic

plane covering longitudes 22.5◦ < l < 50◦, the results of

which can be found in Harper et al. (2021).

To facilitate calibration with astrophysical sources,

we also observe a handful of radio sources, including

Jupiter, the supernova remnants Taurus A (TauA) and

Cassiopeia A (CasA), and the radio galaxy Cygnus A

(CygA), all of which are somewhat extended compared

to the beam except for Jupiter. Analysis of these obser-

vations is discussed in Sect. 3.4.

Table 2 lists all science fields and calibrators. In Fig. 1

we plot the elevation of each field as a function of Local

Sidereal Time, indicating when the fields are available

for observation.

Telescope scans of the science fields follow a harmonic

motion described by

az = A sin(at+ φ); el = B sin(bt), (1)

where A,B are amplitude parameters that define the

size of the field, the ratio a/b determines the shape of

the curve, and φ is a phase parameter. Three differ-

ent scan types were used: “circular” (A = B, a = b,

φ = π/2), “constant elevation scans (CES)” (b = 0)

and “Lissajous” (varying parameters). After some early

observations with circular scans, we adopted CES and

Lissajous as the preferred patterns, alternating between

each on a daily basis. At the start of a scan, the tele-

scope is positioned at the leading edge of the field. The

telescope then executes the scan while the field drifts

through the pattern. This typically takes 5–10 minutes,

after which the telescope is repointed to the leading edge

of the field again in preparation for the next scan. An

example of the scanning path for 3 hours of continuous

observations with a Lissajous scan is shown in Figure 4.

Testing the relative performance of the CES and Lis-

sajous scanning strategies in terms of final data quality

is an important goal of the first-season COMAP survey.

2.3. Data model

As described by Lamb et al. (2021), the COMAP de-

tector readout for a single frequency channel may be

modelled as

Pout = kBG∆νTsys, (2)

where G is the gain, ∆ν is the bandwidth, and Tsys is

the system temperature of the instrument. The system

temperature may be further modeled as

Tsys = Treciever + Tatmosphere + Tground

+ TCMB + Tforegrounds + TCO, (3)

where Treciever is the effective noise temperature of the

receiver, Tatmosphere is the noise contribution from the

atmosphere, Tground is ground pickup from far sidelobes,

TCMB is the contribution from the CMB, Tforegrounds are

continuum foregrounds (typically from the galaxy), and

TCO is the line emission signal from extragalactic CO,

which is the main scientific target of the COMAP in-

strument.

To understand the challenge involved in measuring the

cosmological CO signal, it is instructive to consider the

order of magnitude and stability of each term in Eq. (3).

By far the largest single contribution is that of the re-

ceiver temperature, which is usually about 10–30 K for

COMAP. For the COMAP receiver, with HEMT LNA

technology, this is very stable.

The second-largest contribution is from the atmo-

sphere, which typically adds 15–25 K. This term varies

significantly on all time scales longer than a few sec-

onds, and depends on external conditions including ele-

vation, humidity, cloud coverage, ambient temperature

and wind speed. It is also strongly correlated between

detectors and frequencies, since all feeds observe through

essentially the same atmospheric column at any given

time; fortunately, the phase structure of the atmospheric

fluctuations are uncorrelated on long time scales.

Next, ground pickup typically accounts for 1.5–2 K,

and this term can be particularly problematic because

it depends sensitively on the instrument pointing: If a

sidelobe happens to straddle a strong signal gradient,

such as the horizon or the Sun, several mK variations

may be measured on very short timescales and with a

time-dependency that appears nearly sky synchronous.
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Figure 2: The three main CO fields observed by the telescope overplotted as circles of radius 2◦ on top of the Planck

LFI 30 GHz full-mission map (downloaded from the Planck Legacy Archive Planck Collaboration et al. 2020).
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Figure 3: The three main CO fields observed. The circles, illustrating the rough coverage of each field, have radii

of 2◦ and are centered at the field centers (in Galactic coordinates) (lon, lat) = (149.0◦,−60.3◦), (91.35◦, 53.22◦) and

(150.64◦, 59.53◦), for the CO2, CO6 and CO7 fields respectively. Each of the three plots represents a 10◦×10◦ sky area

around each field with the Planck LFI 30 GHz full-mission map (downloaded from the PLA, Planck Collaboration et

al. 2020) in the background showing the foreground levels at each field.
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Figure 4: Movement of the telescope in azimuth and el-

evation for three consecutive observations (27 individual

scans, 194 minutes) of the same field, with the Lissajous

scanning strategy.

The fourth term represents the CMB temperature

of 2.7 K, which is both isotropic and stationary, while

the fifth term represents astrophysical foregrounds, ex-

pected to contribute at most 1 mK, for instance syn-

chrotron, free-free, and dust emission from the Galaxy.

Although these are sky synchronous, and in principle

could confuse potential CO measurements, they also

have very smooth frequency spectra, and are therefore

relatively easy to distinguish from the cosmological CO

signal, which varies rapidly with frequency. An im-

portant potential exception is line emission from other

molecules redshifted to our band from galaxies at other

epochs. The hydrogen cyanide (HCN) line is expected to

be one of the brightest such lines. Emission from HCN

in galaxies towards our CO fields at redshift z = 1.6–2.4

will appear in our frequency range. However, this con-

tribution is expected to be an order of magnitude lower

than that from CO (Chung et al. 2017)

Finally, the cosmological CO line emission signal is

expected to account for O(1µK). Whether it is possible

to detect such a weak signal depends directly on the sta-

bility and sensitivity of the instrument. In this respect,

the fundamental quantity of interest is the overall noise

level of the experiment, which is dominated by random

thermal Johnson noise caused by thermal motions of

electrons within the electronics.

The magnitude of these random thermal fluctuations

is proportional to Tsys, with a standard deviation that

is given by the so-called radiometer equation,

σN =
Tsys√
∆ν τ

, (4)

where τ is the integration time. Thus, since both the

system temperature and the bandwidth are essentially

fixed experimental parameters, the only way of reduc-

ing the total uncertainty is by increasing the integration

time. As a concrete and relevant example, we note that

an integration time of 45 hours is required to achieve a

standard deviation of 20µK with a system temperature

of 45 K and a bandwidth of 31.25 MHz.

In addition to the thermal and uncorrelated noise de-

scribed by the radiometer equation, there are three main

sources of correlated noise, namely gain fluctuations in

the low-noise amplifiers, atmospheric temperature fluc-

tuations, and time-dependent standing waves. All of

these are expected to have a roughly 1/f -type spectrum,

although with different particular properties2. The fact

that these sources of correlated noise are also strongly

correlated between frequencies is very useful in order to

filter out this noise in the analysis.

Equation (2) describes the detector output at any

given time. To connect this to the actual measurements

recorded by the detector, we adopt the following data

2 There are several different sources of standing waves, some of
the main ones give rise to 1/f -like spectra, but others do not.
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Figure 5: Raw data from the COMAP instrument (in arbitrary digital units of power Here we see data averaged over

a single 2 GHz-wide sideband (top) and examples of data from four individual frequency channels in that sideband

(bottom). These data were taken using two different scan patterns: CES (left) and Lissajous (right).
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Figure 6: Raw data from an individual frequency channel of the COMAP instrument. Power is shown as a function

of time (top), and the corresponding power spectral density (PSD) is also shown (bottom). We show data from a CES

scan (left) and a Lissajous scan (right).

model,

diν(t) = 〈diν〉(1 + δiG)
[
1 + P icel(scont + sνCO)

+ P itelsground + ncorr + nνiw
]
. (5)

Here diν(t) denotes the raw data recorded at time t for

frequency channel ν in feed i; 〈diν〉 represents the corre-

sponding time average; δiG denotes feed dependent gain

fluctuations; P icel and P itel are pointing matrices in celes-

tial and telescope coordinate systems, respectively; scont

denotes the celestial continuum sources, mainly from the

CMB and Galactic foregrounds; sνCO is the CO line emis-

sion; sground is the ground signal picked up by the far

sidelobes; and ncorr is the correlated noise component,

mostly consisting of atmosphere fluctuations and stand-

ing waves. Factors with no feed or frequency index are

assumed to be similar (or at least strongly correlated)

at different frequencies and feeds, while factors with a

ν label indicate parts of the model that are assumed to
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Figure 7: Time-averaged raw data from each frequency channel on single feed of the COMAP instrument. The colors

represent the four 2 GHz-wide sidebands. Note that a few of the frequency channels at at the edges and middle of

sidebands tend to be unstable and are masked out in the analysis.
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Figure 8: Correlation between the sideband-averaged

data from the 20 feeds of the COMAP instrument for

a single constant elevation scan. For this observation,

as for much of the observing campaign, the LNAs for

feeds 4 and 7 were turned off because those feeds, as a

test, did not have a polarizer and so had large standing

waves due to reflections between the receiver and the

secondary reflector.

have non-smooth frequency dependence. The main pur-

pose of the COMAP analysis pipeline is to characterize

sνCO given diν(t).

2.4. Data overview

Before presenting the analysis pipeline, we provide

a preview of the raw time-ordered data (TOD) gener-

ated by the COMAP instrument, with the goal of build-

ing intuition that will be useful for understanding the

purpose of each component of the analysis pipeline de-

scribed in this paper. Figures 5 and 6 show examples

of such raw time-ordered data (TOD) from the instru-

ment using the CES (left column) and Lissajous (right

column) scanning strategies. Perhaps the most obvious

features in these plots are step-wise changes in power

as the telescope changes elevation during repointings

between scans; see Sect. 2.2. The Lissajous scans ad-

ditionally show oscillations in power as the telescope

changes elevation during the scan, since the telescope

looks through a thicker slab of atmosphere at lower ele-

vations, and this increases the atmospheric contribution

to the system temperature.

The top panels in Fig. 6 show an individual frequency

channel for a single scan (i.e., stationary observation pe-

riod), while the bottom panel shows the corresponding

power spectral density (PSD). For the CES case, the

PSD is relatively featureless, with an overall shape that

looks consistent with a typical 1/f noise spectrum. For

the Lissajous case, an additional strong peak is seen

around 0.007 Hz, which matches the scanning period of

14 sec, and this corresponds to the periodic atmospheric

variations seen in the panels above.

Figure 7 shows the time averaged data for all fre-

quency channels of a single feed. The spectral shape

is mostly determined by the average gain as a function

of frequency, due to the combined effect of the various

components of the receiver chain. This average gain

is a purely instrumental effect, not associated with the

true sky signal, and therefore simply corresponds to a

normalization factor that should be calibrated out be-

fore higher-level analysis. However, some of the spectral

shape is also determined by the fact that the system tem-

perature also changes with frequency, and in some cases
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Figure 9: Feed averaged COMAP TOD recorded under

various observing conditions. The top panel shows data

observed under normal conditions, and is dominated by

instrumental noise. The middle panel shows data ob-

served under poor weather conditions with a thick cloud

coverage, resulting in large coherent power fluctuations

observed by all feeds. This third panel shows data with

strong spikes, which may for instance happen during pe-

riods with high insect activity.

results in large spikes within specific frequency ranges.

Separating these two effects is a main goal of the cali-

bration procedures described below.

In Fig. 8 we plot the correlation,

Cij =

〈
d̂id̂j

〉

√〈
d̂id̂i

〉〈
d̂j d̂j

〉 , (6)

between the power, d̂i recorded by any two feeds, i and j,

after averaging over all frequencies within each sideband

for each radiometer. Here we first note that the data

from different sidebands of the same feed are strongly
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Figure 10: The calibration vane is inserted in front of

the receiver at the beginning and end of one observation

of a CO science field. The time between calibration vane

insertions is typically about an hour, a period set by the

preferred data file size for the CO field observations.

correlated. This is because both main sources of corre-

lated noise in the COMAP data, namely gain fluctua-

tions and atmospheric fluctuations, are common for side-

bands within a given pixel. In contrast, sidebands for

different feeds share the atmospheric fluctuations (and

also some standing waves), but have mostly indepen-

dent gain fluctuations, and this results in lower overall

correlations, but still typically in the 10-40% range. Ac-

counting for and mitigating such correlations will clearly

be essential in order to extract robust science from these

observations.

The quality of the COMAP data depends strongly on

the observing conditions, as illustrated in Fig. 9. The

top panel shows an observation made under normal con-

ditions, while the middle panel shows an observation

made during poor weather, with thick cloud coverage.

The bottom panel shows a data segment with strong

“spikes”, a feature of some data taken in summer, pos-

sibly associated with insects flying in front of the focal

plane. Automatic identification and removal of prob-

lematic data is clearly an important and necessary com-

ponent of the pipeline.

Finally, Fig. 10 shows the calibration vane observa-

tions that are made at the beginning and end of each

observation period. Since the ambient temperature is

about one order of magnitude higher than Tsys, the mea-

sured power is also correspondingly about one order of

magnitude higher, and this bright and known signal al-

lows for a precise estimate of Tsys. Note that, unless

specified otherwise, these data segments are always re-

moved prior to data analysis, as they would otherwise

compromise any filtering that may be applied to the

data.

3. COMAP ANALYSIS PIPELINE

3.1. Pipeline Overview

We are now ready to present the COMAP analysis

pipeline, which is designed to process the raw data dis-
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cussed in Sect. 3.1 into calibrated and cleaned CO maps.

The main steps of this pipeline are schematically illus-

trated in Fig. 11.

The processing starts with raw “Level-1” files, which

contain raw data as recorded by the instrument, to-

gether with pointing information and house-keeping

data. These files typically each contain about one hour

of observations, including calibration vane observations

at the beginning and end, as well as a corresponding

estimate of the system temperature, Tsys, based on

the same calibration measurements. We denote each

one hour of data as one observation, and assign it an

individual observation ID (abbreviated obsID). Each

observation consists of several scans, where one scan is

the period between two re-pointings of the telescope,

during which the telescope performs the same motions

around a fixed point in azimuth and elevation while the

target field drifts through. The instrumental properties

are consequently assumed to be stationary within each

scan. The module denoted scan detect in Fig. 11 indi-

cates a dedicated code that partitions each observation

into individual scans, based on pointing information,

and records information on each scan in a database.

The main processing takes part in the l2gen mod-

ule, which generates calibrated and cleaned TOD

and stores them in so-called “Level-2” files. This is

achieved through the application of a series of filters (see

Sect. 3.3) and a time-varying gain normalization (see

Sect. 3.4). This stage also evaluates basic goodness-of-

fit statistics and defines a frequency channel mask that

excludes missing or broken data for the current scan,

before reducing the spectral resolution of the data to

a spectral resolution suitable for mapmaking. In most

analyses, we typically reduce the resolution from 2 MHz

to 32 MHz, resulting in the computational speed-up of

subsequent steps and a memory saving for storing final

maps by a factor of 16.

Next, the accept mod module reads in the statis-

tics (including goodness-of-fit) and basic frequency mask

produced by l2gen and produces a list of accepted ob-

servations as defined by user-specified thresholds for

each statistic. Examples of relevant statistics used for

this purpose are χ2 per observation, fknee, and Solar

elongation. The output from this process is called an

accept list, which is used to define data splits.

Converting time-ordered data into pixel-ordered data

is done by a mapmaker called tod2comap (see Sect. 3.8).

As shown in the following, the adopted filters result in

very nearly uncorrelated white noise, and the current

implementation of tod2comap accordingly adopts sim-

ple binning into voxels. Finally, from these maps we

can extract an estimate of the CO power spectrum, or

Level 1

Observation db

Level 2

Maps

Parameters

scan_detect

l2gen

tod2comap

comap2ps

accept_mod

Accept list

Figure 11: Flow diagram of the analysis pipeline. The

purple boxes are products of this pipeline, whereas the

green is the input data (raw data from the telescope and

some housekeeping data). The white ellipses represents

different modules of the code.

the voxel intensity distribution, or perform general as-

trophysics and cosmology inference, all of which happens

in comap2ps.

3.2. Data Segmentation

As described above, we define a scan to be the observ-

ing period between re-pointings of the telescope, during

which the telescope executes a scan pattern around a

fixed azimuth and elevation for 3–10 minutes while the

observed source or field drifts through. In the subse-

quent analysis each scan is analyzed independently, and

is converted into an individual Level-2 file.

The purpose of the scan detect code is to identify all

scans within all observation periods, and sort these ac-
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cording to astrophysical target. This selection is based

on telescope house-keeping information, and in partic-

ular on an observation flag that records the state of

the telescope at any given time. However, recognizing

that human errors do happen, automatic simple sanity

tests are also performed, for instance to validate that the

specified field name agrees with the recorded pointing.

The basic result from this selection process is an obser-

vation database, which is a list of obsIDs sorted accord-

ing to source. For each obsID, we list all scans within

that obsID, including basic information such as the mod-

ified Julian date (MJD) of the start and end of the scan,

as well as the scanning mode (e.g. Lissajous or CES)

and mean pointing information. The calibration vane

observations are defined to be the first and last scans

within each obsID, but flagged as calibration measure-

ments.

3.3. Filtering

As described in Sect. 3.1, the COMAP TOD exhibit

a wide range of non-CO-related contributions, both of

instrumental and external origin. These must be sup-

pressed by orders of magnitude prior to map-making

in order to extract the astrophysically valuable signal.

With this goal in mind, we introduce four specific filters,

each targeting one class of artefacts.

Figure 12 shows the evolution of the data as it passes

through each of the filters.

3.3.1. Normalization

The first filtering operation we introduce is data nor-

malization. This is done simply by dividing the raw

TOD, Pout, by its own running mean, and then sub-

tracting the overall average,

d(ν, t) =
Pout(ν, t)

〈Pout(ν, t)〉
− 1. (7)

Here t is a time sample index and ν denotes frequency

channel. This operation is performed separately on each

frequency channel.

The main purpose of this step is to equalize (i.e., “flat-

ten”) the instrumental bandpass, as illustrated in Fig. 7,

and effectively establish data with appropriate relative

calibration. The main practical advantage of doing so is

that the amplitude of common-mode contaminants, such

as gain-induced correlated noise or atmospheric fluctua-

tions, become comparable across all frequencies within a

single sideband, and therefore much easier to filter out.

The same also holds true for broadband astrophysical

contributions, such as the CMB or foregrounds, which

also must be removed prior to signal extraction. See

top panel of Fig. 12 to see the effect of the normaliza-

tion step. We can see that long timescale fluctuations

are removed, and that the data now fluctuates around

zero.

Note also that with the definition in Eq. (7), the noise

level of d(ν, t) is given by the sample rate and band-

width alone in the ideal case, and should equal 1/
√
τ∆ν.

Calibration into physical units is performed simply by

multiplying d(ν, t) with Tsys. We find that d(ν, t) is a

particularly convenient function for goodness-of-fit tests

and it will serve as our main object of interest in the

following.

3.3.2. Removal of Pointing Templates

The second filter we apply is designed to suppress sig-

nals that are correlated with local pointing (azimuth and

elevation), as opposed to sky-correlated signals. The two

main effects of this type are elevation-correlated atmo-

spheric contributions and azimuth-correlated sidelobe

contributions. The first of these effects may be mod-

elled by a simple expression for the optical depth of the

atmosphere of the form

τ(el) =
τ0

sin(el)
, (8)

where τ0 is the optical depth of the atmosphere at zenith,

and el is the elevation, while the second effect may be ap-

proximated through a low-order polynomial in azimuth.

We therefore filter the data by fitting and subtracting

the following simple model to each normalized frequency

channel separately,

d =
g

sin(el(t))
+ a az(t) + c+ n. (9)

Here g, a and c are fitting constants, and n denotes

Gaussian noise with an assumed constant variance. We

find the best-fit values for the free parameters by mini-

mizing a χ2 statistic, and use g and a to clean the TOD

with respect to the pointing templates,

dafter = dbefore−
g

sin(el)
−a az−

〈
g

sin(el)
+ a az

〉
. (10)

In this expression, 〈 〉 denotes the mean value in time for

a specific frequency channel, and this term ensures that

the TOD has vanishing mean also after subtraction of

pointing templates. For long-duration scans we divide

the TOD into disjoint segments of roughly 4 minutes

each, and perform the template fit and removal sepa-

rately on each data segment, in order to improve the

tracking of temporal variations.

The effect of the pointing template removal can be

seen in the second row of Fig. 12.

3.3.3. Common-mode polynomial filter
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Figure 12: Effect of each filter in time-domain. Each row shows the data before (left column) and after (right

column) applying the indicated filter. From top to bottom, the filters shown are 1) normalization; 2) elevation gain

subtraction; 3) poly-filtering; and 4) PCA filtering. Data used is from scan 14456.03, feed 5, in a 31.25 MHz band

around 27.673 GHz.

Our third filter is designed to remove all common-

mode signals observed simultaneously by all frequency

channels within a given sideband. Specifically, for each

timestep we fit and subtract a low-order (and typi-

cally linear) polynomial to the normalized and pointing-

subtracted TOD in frequency space for each sideband.

Specifically, we assume

dν = c0 + c1ν + c2ν
2 + ... , (11)

where dν are the data across one sideband at a specific

timestep, c0, c1 and c2, etc., are constants that are fitted

independently for each sideband. We then remove the

fitted polynomial from the data. In the third row of

Fig. 12, we can see an example of how this filter removes

the majority of the correlated noise from the data.

The main target of this filter is 1/f noise from gain

variations in the receiver electronics and atmospheric
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temperature fluctuations, and is strongly correlated be-

tween frequency channels within each sideband. Indeed,

the fact that this noise is so tightly correlated between

channels is one of the key instrumental features of the

COMAP instrument that makes CO measurements fea-

sible in the first place, effectively reducing the final noise

level by more than one order of magnitude.

As a bonus, this polynomial filter also removes any

slowly varying astrophysical signal, and in particular

broadband signals such as CMB, synchrotron, free-free

or anomalous microwave emission. In contrast, the cos-

mological CO signal is expected to vary on the scale of

adjacent frequency channels, and is therefore only mildly

affected by this filter. However, some CO signal is in-

deed lost on the largest longitudinal scales due to this

filter, and this effect will later be quantified in terms

of an effective transfer function. Fortunately, the modes

that are suppressed correspond mostly to physical scales

of around 50–100 Mpc/h and larger, and are therefore

mostly modes that we do not expect to be able to mea-

sure with COMAP.

3.3.4. Principal Component Analysis (PCA) filter

While the previous filter removes common-mode sig-

nals within each sideband, our fourth and final filter

targets common-mode signals seen simultaneously by

the entire focal plane. The two most prominent ex-

amples of such contaminants are atmospheric variations

and standing waves, both of which have strongly cor-

related time variations across all feeds and frequencies.

To suppress these signals, we perform a so-called Princi-

pal Component Analysis (PCA) on the whole data set,

and subtract the leading modes. Intuitively speaking,

this amounts to identifying some functions of time that

explain the largest amount of the variance between the

different frequencies across all the different feeds. These

functions are often called the leading PCA components.

To formulate this idea in a mathematical language,

let us organize all data in given scan into a data matrix

D, where each row contains the TOD corresponding to

a single frequency channel on a single feed. Thus D is

a matrix with dimensions nfreq × nsamp, where nfreq =

nfeeds · nsidebands · nfreq per sideband = 19 · 4 · 1024 is the

total number of frequencies added up from all sidebands

and feeds, and nsamp is the number of samples in time,

such that

D =




D11 . . . D1nsamp

...
. . .

...

Dnfreq1 . . . Dnfreqnsamp


 . (12)

The empirical data covariance matrix, C, may then be

written as

C = DTD, (13)

and the eigenvectors, vk, of this matrix that correspond

to the highest eigenvalues are precisely the PCA compo-

nents we are looking for. In practice, we identify the few

leading PCA components through a standard iterative

method.

For each frequency (in each feed) we compute the rel-

ative PCA amplitudes by projecting the observed data

vector, d, onto the PCA eigenvector,

ak = d · vk =

nsamp∑

i=1

div
i
k, (14)

where d is now the normalized, pointing-corrected, and

polynomial-filtered data described above. The leading

PCA components are then subtracted from the data,

dafter = dbefore −
ncomp∑

i=1

akvk, (15)

where ncomp is the number of leading components re-

moved (typically four).

Figure 13 shows the three leading PCA components

for a typical scan. For each component, its variation

with time is shown for the duration of the scan, as well

as its contribution to the overall variance for each feed.

A more extreme example is shown in Fig. 14.

3.3.5. Masking

Sometimes individual frequency channels or groups

of nearby frequency channels show artefacts, even af-

ter applying all the filters described above. This could

manifest in a significant excess noise that is correlated

in time, or in correlations between different frequency

channels. We wish to mask these frequency channels so

that their contribution does not contaminate the final

results.

To determine which frequencies should be masked we

first perform the poly- and PCA filters on a copy of the

original dataset. We then use two main approaches to

identifying individual or groups of frequency channels

to be masked. The first approach uses the fact that the

expected correlation between two independent Gaussian

variables (for large nsamp) is given by 1/
√
nsamp, where

nsamp is the number of samples used to calculate the

correlation. Thus, after accounting for the expected cor-

relation induced by the polyfilter, we know the statistics

describing good data, and can identify bad data as de-

viations from these statistics. Specifically, we consider

groups of elements within the frequency-frequency cor-

relation matrix (either squares of different sizes or sets of
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Figure 13: The three leading PCA components of a

typical scan, and which feeds are affected.

columns), and compare the average absolute correlation

within this group with the scatter expected from white

noise alone. Any channel with an absolute correlation

larger that 5σ is removed from further analysis.

Our second approach is to calculate a set of diagnos-

tics for individual frequency channels, for instance the

average correlation of the channel in question to all the

others in the same sideband, or the average absolute

value of the same. We then compare the values of these

diagnostics for the different channels and remove signif-

icant outliers.

In addition to these approaches we look specifically for

edge correlations, that is, correlations between individ-

ual frequencies at the edge of each sideband with the cor-

responding frequencies at the edge of another sideband.

This is motivated by a known aliasing effect (Lamb et

al. 2021), and we want to remove frequencies where this

aliasing is large.

After the full mask has been determined, we apply

this to the original dataset, and repeat the filtering de-

scribed above, but now only using the unmasked data.

This prevents bad data from contaminating good data

through the various non-local filters.

3.4. Calibration

With cleaned and co-added TOD in hand, the final

basic step before mapmaking is calibration; that is, as-

signing a noise temperature scale to the detector read-

out. From Eq. (3), the overall noise level is proportional

to Tsys.

3.4.1. Calibration using a reference load

Ideally we would put a load of a known temperature

in front of the telescope and above the atmosphere and

compare the measured output power with the output

power measured with no load. A good approximation

is to use an ambient temperature load that covers the

receiver feedhorn. Assuming that the telescope, ground

spillover, and the atmosphere have the same tempera-

ture as the ambient load, the output power will be the

same as if the load was above the atmosphere (Penzias

& Burrus 1973). Taking into account the vertical tem-

perature profile and the distribution of the absorbing

components in the atmosphere, the corrections are only

a few percent for the relevant wavelengths. To measure

the system temperature we compare the readout when

we have a vane Pamb and when we look at the cold sky

Pcold. From Eq. (2) we can estimate Tsys as

Tsys =
Tamb − TCMB

Pamb/Pcold − 1
, (16)

where Tamb is the ambient temperature and TCMB is the

cold sky temperature. We then multiply the data d(ν, t)

with the Tsys measurement to go from (normalized) de-

tector units to temperature

d(ν, t)

∣∣∣∣
K

= d(ν, t)〈Tsys(ν, t)〉. (17)

As both the atmosphere and the receiver gain varies over

time, the measurements of Tsys vary over time. To get

the most accurate estimation, we make use of the vane

at the beginning and end of each observation. Figure

16 shows a typical example of how the estimated Tsys
looks for a single obsID, as function of frequency. The

temperature usually behaves as a relatively smooth func-

tion, with large spikes at specific frequencies. Many of
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Figure 14: Effect of PCA filter on a “bad” scan, with especially heavy weather or standing wave contributions.
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Figure 15: Comparison between channel–channel correlation matrices before (left panel) and after (right panel)

filtering

these spikes are at frequency channels known to be bad,

such at those close to the edges of the sidebands, but

the cause of the others are largely unknown.

3.5. Downsampling

Until now, all steps have been performed at full fre-

quency resolution, i.e., 1024 channels per sideband or

2 MHz channel bandwidth. For mapmaking purposes,

however, we typically do not require such high resolu-

tion, since the signal-to-noise ratio of each channel is

very low. To save both memory and computing time,

we therefore co-add several neighboring frequency chan-

nels into a single low resolution channel as follows,

dlowres
i =

1∑
m wm

indec∑

m=(i−1)ndec+1

wmd
highres
m , (18)

where dlowres
i is the clean TOD of frequency channel i in

the low resolution frequency grid, dhighresm is the cleaned

26 27 28 29 30 31 32 33 34
Frequency [GHz]

40

60

80

100

120

140

160

Te
m

pe
ra

tu
re

 [K
]

Figure 16: Tsys measurement from feed 1 of obsID

15117 across the 4096 frequency channels.

TOD of frequency channel m in the high resolution fre-

quency grid, ndec is the number (usually 16, correspond-

ing to a final bandwidth of 31.25 MHz) of high resolu-
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Figure 17: Power spectral distribution of a single scan

from a 31.25 MHz band around 26.329 GHz at different

stages in the pipeline, with 1/f noise curves fitted. The

power spectral distribution is binned with logarithmic

bin-sizes towards higher frequencies for clarity. Lower

frequencies have been excluded from the fit, as these

scales are greatly suppressed at the normalization stage.

tion frequencies to be combined in each low resolution

frequency channel, and wm = 1/σ2
m is the inverse vari-

ance of frequency channel m of the high resolution data

(wm is zero for masked frequencies).

3.6. Noise characterization

One of the most important functions of the COMAP

data pipeline is the removal of correlated noise. As the

CO brightness temperature is many orders of magni-

tudes below the telescope system temperature, any sig-

nificant deviations from a white noise spectrum can be

attributed to some systematic. The actual CO signal

is also not expected to be correlated across feeds or

frequencies in a significant fashion, giving us powerful

leverage to separate signal from correlated noise in our

data. In this section we describe our noise characteriza-

tion model, and demonstrate how effectively the pipeline

removes correlated noise from the data.

We can often approximate the correlated noise using

a spectral density on the form

N(f) = σ2
0

(
1 +

(
f

fknee

)α)
, (19)

where σ0 is the white noise level.
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Figure 18: Distribution of noise parameters σ0, fknee
and α for the c0 coefficient of the polyfilter. All available

scans of feed 1, sideband A:LSB was used.

The second term in Eq. (19) is known as 1/f noise,3

which is characterized by a knee-frequency fknee, repre-

senting the transition frequency between the flat white

noise and the sloped 1/f noise, and the exponent α,

giving the slope of the spectral density in the 1/f dom-

inated regime. The white noise level is estimated by

calculating the variance between neighboring samples in

the TOD, as

σ0 =

√
Var(di − di−1)

2
. (20)

Figure 17 shows the 1/f behavior of the TOD

throughout different steps in the pipeline, and clearly

demonstrates the effect of each filter. The normaliza-

tion filter heavily suppresses the low-frequency end of

the specturm. The pointing template knocks out the

strong ∼0.7 Hz correlation caused by the Lissajous scan-

ning strategy. The polyfilter significantly reduces the

noise power across the entire power spectrum, even low-

ering the white noise limit. This is possible because

even though the white noise is uncorrelated in time,

parts of it is still correlated in frequency. Finally, the

PCA filter further reduces the noise left over by the

polyfilter. By the end of the pipeline, the TOD is al-

3 Keep in mind that f refers to the temporal frequency of the
time ordered signal, not the observed photon frequencies, to which
we consistently refer to as ν.

94



COMAP: CO Data Processing 17

2 1 0 1 2 3 4 5
2 [ ]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ilit

y 
de

ns
ity

( = 0, = 1)
co2
co6
co7

Figure 19: χ2 distributions of filtered data for the

three main fields, with a standard normal distribution

for comparison.

most completely dominated by white noise. It should

be noted that while the polyfilter typically suppresses

much more noise power than the PCA filter in an av-

erage scan, this is not always the case. In scans with

significant noise contamination (like bad weather), the

PCA filter may suppress even more noise power than

the polyfilter. Such a scan is shown in Fig. 14.

3.6.1. Polyfilter noise properties

As discussed in Sect. 3.3.3, the polyfilter involves fit-

ting and subtracting a low order polynomial in frequency

space from each sideband at each individual timestep.

The polyfilter is the first filter targeting correlated noise

except on the very larges timescales, and the resulting

coefficients are therefore highly informative regarding

the noise properties of the data. In the current analysis

setup, we only use a first order polynomial filter, such

that each timestep of each sideband are associated with

two coefficients, c0 and c1. These coefficients, treated

as functions of time, turn out to have 1/f -like power

spectra. Figure 18 shows the distribution of noise pa-

rameters of 1/f fits performed on c0 for all available

scans of the A:LSB sideband of feed 1. As dicussed in

Sect. 2.3 the correlated noise common to each sideband

is mostly dominated by gain fluctiations of the individ-

ual low noise amplifiers at each feed. We therefore ex-

pect, and find, that each feed has its own characteristic

noise properties. Since we can use the polyfilter to re-

move this correlated noise, the individual noise proper-

ties of the different feeds are less important when mea-

suring the CO line emission than if we were measuring

continuum sources, in which case these properties would

become crucial.

3.6.2. Goodness-of-fit, χ2-test

The main goal of our pipeline is to remove both corre-

lated noise and continuum foregrounds, while leaving as

much as possible of the CO line intensity signal intact.

In the ideal case, and assuming that the cosmological

CO signal is so weak that it can not be measured in a

single scan, our cleaned TOD should therefore be de-

scribed by white noise alone. We therefore need statis-

tics to measure potential deviations from white noise.

We use a standard χ2 statistic per scan for this pur-

pose, defined as follows,

χ2 =

N∑
i=0

(
di
σ0

)2

−N
√

2N
. (21)

Here di are the N samples of the scan, and σ0 is the

white noise level defined in Eq. (20). For a perfect white

noise TOD, we expect χ2 ∼ N (µ = 0, σ = 1).

Figure 19 shows the χ2 distribution for the set of scans

available at the time of writing of this paper, compris-

ing about 5 000 hours of observations, divided by ob-

servational field. Here we have combined all the data-

points for each sideband, such that the N = nsamp ·nfreq,

where nsamp is the number of samples in time (typically

nsamp = 10–20 000) and nfreq = 64 is the number of fre-

quencies per sideband. As seen in Fig. 19, the data are

indeed very close to white noise, with only a small shift

and a positive tail. We also note that the CO2 field out-

performs the two other fields by a small margin. Given

that N ∼ O(105), a mean bias of only 1σ per scan sug-

gests that the typical residual variance from correlated

noise is very low.

3.7. Data Selection and splits

While typical cleaned COMAP data appears to be well

described by white noise per scan, this does not neces-

sarily imply that they are free from systematics to a level

required for scientific analysis. On the contrary, many

effects may only be discovered when co-adding both over

time and frequency. For this reason, we apply several

data cuts based on criteria that have been established

through joint analysis of full-season observations, using

null-tests as an important tool.

The main data selection step happens after we have

already generated Level-2 files. In accept mod we first

scan the full data set to make a database of various

statistics and housekeeping data for each sideband of

each feed and each scan. This database allow us to find

patterns and correlations at levels far below the noise

level of an individual scan. For example we can exclude

all data with an elevation lower than 35 degrees, or any

sideband in which the raw data exhibits many spikes in a
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particular scan. This procedure produces an accept list

that simply lists all acceptable scans. We note that these

cuts are made after the main filtering steps, which by

far are the most computationally expensive part of the

pipeline, and this allows efficient exploration of different

data cuts with minimal computational costs.

In addition to data cuts, we use the statistics database

also to define data splits, which later are used for null-

tests and cross-spectrum evaluation. Examples include

a half-mission split, where the full-season data are sim-

ply divided chronologically into the first and self half of

the observation period; a sidereal time split; or various

instrumental statistics splits. The mapmaker uses the

accept list and split list (if such are requested) provided

by accept mod, and outputs two maps for each splits

and one co-added all-data map, each of which only in-

cludes accepted data within its own split definition.

3.8. Mapmaking

The last step in the pipeline is mapmaking, which is

implemented in a code called tod2comap. This reads in

cleaned TOD and pointing information, applies a high-

pass filter, and produces temperature sky maps for each

frequency channel. The highpass filter removes the noise

caused by the lower frequencies. This is done by Fourier

transforming the TOD, and removing the part with fre-

quency below a set value, typically 0.02 Hz, before trans-

forming back to TOD.

Ideally, the TOD can be written as a sum of the signal

s and the noise n,

d = Ps + n, (22)

where P is the pointing matrix, which connects each

time sample to a pixel on the sky. Our goal is to esti-

mate s given d. Assuming that the noise is Gaussian dis-

tributed with a time-domain covariance matrix N, the

log-likelihood function corresponding to Eq. (22) may

be written as

logL ∝ (d−Ps)
T
N−1 (d−Ps) . (23)

Setting the derivative of this log-likelihood to 0, we ob-

tain the standard mapmaker equation,

ŝ =
(
PTN−1P

)−1
PTN−1d. (24)

As discussed above, the COMAP noise after filtering is

very close to white, and this implies that N may be

approximated as diagonal.4 In that case, Eq. (24) may

4 This is not strictly correct for long time-scales. As such, the
current mapmaker is statistically slightly sub-optimal, and the re-

be solved explicitly and independently for each pixel p

as follows,

ŝp =

∑
t∈p σ

−2
t dt∑

t∈p σ
−2
t

. (25)

Here σt is the noise standard deviation of sample t,

and samples with lower noise are thus weighted more

strongly than the samples with higher noise. The corre-

sponding map-domain noise standard deviation is given

by

σp =

(∑

t∈p

1

σ2
t

)−1/2
. (26)

4. HIGHER-LEVEL ANALYSIS

Scientific exploitation and interpretation of the full

first-season COMAP data set are presented in a series of

companion papers, including Chung et al. (2021); Cleary

et al. (2021); Harper et al. (2021); Ihle et al. (2021);

Silva et al. (2021). In this section, however, we analyze a

small sub-set of the full data volume for demonstration

purposes and to assess the performance of the pipeline

itself.

4.1. 3D power spectrum and white noise simulations

We restrict this preliminary analysis to the spherically

averaged power spectrum of the CO signal, defined as

follows,

P(k) =

〈
|fk|2

〉

nxnynz
Vvox, (27)

This is extracted from the temperature sky maps by,

first, computing the 3D Fourier transform of the maps;

binning the squared Fourier coefficients according to the

wave number, k; and averaging over all contributions

to a given k-bin. Finally, they are multiplied by the

co-moving voxel volume, Vvox, and divided by the total

number of voxels, nxnynz. Each voxel is inverse variance

weighted by σ−2p as given by Eq. (26) before computing

the Fourier transform.

The same noise RMS map is also used to simulate the

noise level in this spectrum. Specifically, we generate

nsim ≈ 10 random white noise map-domain simulations

according to Eq. (26), compute the 3D power spectrum

from each, and define the uncertainty in each k-bin to

the be standard deviation among these simulations. For

applications in which multiple independent sky maps

are available, either from different regions of the sky or

sulting transfer function is lower than strictly necessary. Future
implementations of the COMAP mapmaker will therefore instead
rely on well-established destriping or maximum-likelihood algo-
rithms, which are often able to recover slightly more large-scale
information than a binning mapmaker.
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from different data splits, a mean power spectrum can

be calculated as

P̄(k) =

∑N
i σ
−2
i,kPi(k)

∑N
i σ
−2
i,k

, (28)

where Pi(k) and σi,k are the spherically averaged power

spectrum of a single map and its uncertainty, respec-

tively. The associated error bars at a given scale, k,

become

σ̄k =

(
N∑

i=1

1

σ2
i,k

)−1/2
. (29)

The same approach can also be used for cross spectra.

4.2. Transfer functions

As the raw data passes through our filtering and map-

making procedures, some of the signal is typically lost

at each stage, and the maps described in Sect. 3.8 are

therefore biased. In order to estimate and correct for

this bias at each scale, ~k, we need to estimate the so-

called pipeline transfer function, which is simply de-

fined as the power ratio between the recovered and orig-

inal signal. We can estimate this transfer function by

adding a signal-only simulation to a pure noise TOD,

and then comparing the combined signal-plus-noise sim-

ulation output to the true signal-only input. We adopt

the raw COMAP TOD as a model for the noise, which

in power units are denoted PN. The signal-only con-

tribution is produced by scanning a pre-computed 3D

N -body simulation of brightness Tsim(p) with the tele-

scope pointing, and we denote this PS. We then add

these together in power units,

PS+N = PN + PS = kBG∆νTsys

(
1 +

Tsim
Tsys

)
. (30)

We then separately generate 3D voxel maps from PS, PN

and PS+N, and from these we compute corresponding 3D

power spectrum, PS, PN, and PS+N, following the above

procedure. Based on these three spectra, we can finally

estimate a scale-dependent transfer function T (~k) as

T (~k) =
PS+N(~k)− PN(~k)

PS(~k)
. (31)

Noting that the pipeline filters have very different im-

pact in the spatial and frequency directions, it is in some

cases useful to decompose ~k into parallel and orthogo-

nal modes, ~k = (k‖, k⊥), and we will consider both 1D

and 2D transfer functions in the following. First,

to understand the impact of the various filters in terms

of signal-loss, we estimate 1D transfer functions for a

range of different pipeline configurations. Specifically,
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Figure 20: (Upper panel :) 1D transfer functions, T (k),

for different filter options and scanning modes as a func-

tion of scale, k. The default combination used in the

COMAP pipeline is shown as a solid black line. (Lower

panel :) Difference between the various filter and scan-

ning options and the default configuration.

we analyze six obsIDs (three CES and three Lissajous

obsIDs), where we consider different combinations of

PCA and polyfilter, enabling or disabling each filter in

turn. For the polyfilter, we additionally consider two

cases, namely a constant fitting term or a linear fitting

function. The results from these calculations are sum-

marized in Fig. 20. The black solid line shows the default

pipeline configuration.

One can see that the default settings, i.e., a polyfilter

of O(1) and PCA filtering turned on, yields almost the

same transfer function as the case where the PCA filter

is turned off. The PCA filter is not expected to remove

much of the actual input signal, as it only removes the
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Figure 21: Comparison of 2D transfer function estimates with (left panel) and without (middle panel) the polyfilter.

(Right panel :) Difference between the two previous cases.

components of the TOD that are the most correlated

over all frequencies and feeds, thus potentially remov-

ing only the structures of the input signal that are com-

mon over the entire survey volume observed at any given

time.

When it comes to the case with polyfilter of O(0)

or turned completely off there are, however, large dif-

ferences seen from the results using the default set-

tings. Using a polyfilter of O(0) or O(1), a consid-

erable fraction of the input signal is removed by the

pipeline on scales above k ∼ 0.04 Mpc−1. We see that

the O(0) polyfilter yields a similar result as without the

polyfilter near the peak regions of the transfer func-

tions, however a non-negligible portion of signal between

k ∼ 0.04 Mpc−1 up to the peak region is taken out when

turning on the O(0) polyfiltering. The low transfer effi-

ciency on low k for any of the shown filter combinations

is likely due to the limited area covered in each scan, and

the highpass filter imposed in the mapmaker, as well as

the polynomial filter in frequency.

If we turn off the subtraction of the pointing tem-

plates, we can also see in Fig. 20 that more signal is

let through the pipeline on scales k ≤ 0.3 Mpc−1. The

effect of the pointing template subtraction is however

especially noticable on scales k < 0.1 Mpc−1, which is

expected as the structures in the power spectra induced

removed by the pointing templates are of a larger scale

in the pixel domain.

Note also that when computing these transfer func-

tions for different filter combinations, we used the com-

bined maps of three obsIDs of type Lissajous scan and

three with constant elevation scans. However, we found

that there were significant differences between the trans-

fer functions from a Lissajous and CES scan type and

have therefore also included the average of the three

transfer function of each type in Fig. 20. As one can

see, the Lissajous scan type results in a transfer func-

tion that is larger on most scales, which probably is a

result of the Lissajous scan being more efficient in cov-

ering the sky in the same time as the constant elevation

scans. The Lissajous scans, as opposed to the ones with

CES, also seem to result in a transfer function that drops

a bit down from its peak at high k. The reason for this

difference is not yet fully understood at this point.

When looking at the 2D version of the transfer func-

tion, as shown in Fig. 21, the effects of the polyfilter

on the transfer function become more evident because

we can then distinguish between what is happening in

the angular directions (k⊥) and the spectral dimension

(k‖). As the polyfilter is designed to remove the 1/f -

noise as well as continuum foreground emission along

the frequency dimension on each sideband, we expect

the changes in the transfer function to be most visible

in the large line-of-sight scales k‖. This is indeed what is

seen in the difference ∆T (k) between the transfer func-

tions without and with an O(1) polyfilter in Fig. 21 for

low k‖, where we note a 50− 90 % relative loss in power

when using a O(1) polyfilter. Meanwhile on all other

scales the difference ∆T is left mostly unchanged.

4.3. Cross-spectra and null-tests

As already discussed in Sect. 3.7, we split the origi-

nal TOD into two or more disjoint parts with respect to

some feature before computing final power spectra. Ex-

ample splits include, for instance, even versus odd num-

bered obsIDs; daytime versus nighttime obsIDs; first

versus second half of the mission; or a split in sidereal

time. To minimize the impact of potential residual sys-
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tematic errors, any final power spectrum estimate only

includes cross-correlations between independent maps of

these types, computed as follows,

C(k) =

〈
Re
(
f1,kf

∗
2,k

)〉

nxnynz
Vvox. (32)

Here f1,k and f2,k denote the Fourier modes of two inde-

pendent maps within some split group, and, as usual, we

bin this quantity according to k. We compute individ-

ual maps for each feed in each split group, and we may

therefore individually cross-correlate each combination

of feeds from the first and second split. This results in a

total of 16×16 individual cross-spectra, after excluding

feeds that were turned off for at least some duration of

the experiment. From these, we calculate the associated

mean and uncertainty according to Eqs. (28) and (29).

We perform null-tests using the same data organiza-

tion, but in this case we subtract pairwise mean cross-

spectra. Specifically, for each data split we first compute

all possible cross-spectra of the form

Cij =
〈
Re
(
f1,if

∗
2,j

)〉
, (33)

where f1,i and f2,j are the Fourier coefficients derived

for feeds i, j = 1, . . . , nfeed for each of the two data splits,

and we have dropped normalization constants for nota-

tional convenience. We then divide these spectra into

two disjoint sets (i < j and i > nfeed − j), and com-

pute the mean cross-spectrum over each set separately,

C̄1 and C̄2. Finally, we compute the half-difference be-

tween these spectra, (C̄1(k) − C̄2(k))/2, and the associ-

ated uncertainty, σC =
√
σ̄2
1 + σ̄2

2/2. To account for fil-

tering effects, we divide both the mean and uncertainty

estimates by the product of two independent transfer

functions. The first accounts for the pipeline filtering,

as described in Sect. 4.2, and this increases both the

mean estimates and uncertainties on large scales. The

second transfer function affects the smallest scales, and

accounts for beam smoothing and the intrinsic line width

of the CO emission. The impact of aperture efficiency

has not been included yet. One example of such a calcu-

lation is shown in Fig. 22, derived from the day vs night

data split.

4.4. Result preview

For completeness, we end this paper by briefly showing

a few examples of the final results derived using the

COMAP pipeline.

Figure 23 shows a single frequency map of the CO7

patch based on the nightime data from the first year

of observations. This data set results in a sensitivity

of a few tens of µK per 2×2 arcmin2 pixel for a single
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Figure 22: Example of null cross-spectrum, used for

goodness-of-fit evaluation and pipeline validation. This

particular example is derived analyzing data from the

CO2 field, and using the day versus night data split.

31.25 MHz channel. At least at a visual level, the map

appears largely dominated by white noise.

Figure 24 shows the noise weighted average of all

feed-feed cross spectra for the time-of-day split of the

nightime-only constant elevation scan of the CO2 field.

We see that COMAP is mostly sensitive to scales with

k ∈ 0.05− 0.5 Mpc−1. The error bars on smaller scales

increase because of the instrumental beam and intrinsic

line width of CO emission, while the error bars on large

scales increase because of our limited field size and the

filtering transfer function. This cross spectrum is sta-

tistically consistent with zero, which is expected given

the limited amount of data used for this calculation.

Most importantly, however, is the fact that we do not

see evidence of any significant systematic errors, and

this suggests that the noise level is indeed integrating

down as expected from the measured white noise level

and transfer function. (Note that we have not yet taken

into account the aperture efficiency when estimating the

transfer function, and we therefore expect the uncertain-

ties to increase by an additional O(1) factor.)

5. SUMMARY AND CONCLUSIONS

We have presented the data analysis pipeline used

to process the first-season COMAP observations with

respect to high-redshift CO emission, from raw time-

ordered data to final calibrated maps. This pipeline

implements four main steps (calibration, filtering, data

selection and mapmaking), each of which are designed

to optimally exploit the unique instrumental capabili-

ties of the COMAP instrument. For instance, calibra-

tion is performed using a combination of frequent com-

parison with a hardware calibrator and real-time total

power measurements. The filtering procedure explic-

itly exploits the multi-feed and -frequency design of the

COMAP instrument to reject common-mode contam-

inants, resulting in data that are strongly dominated

by uncorrelated white noise after filtering. Finally, both

the data selection and mapmaking processes directly use

99



22 the COMAP collaboration

168 170 172
Right Ascension [deg]

51.0

51.5

52.0

52.5

53.0

53.5

54.0

54.5

D
ec

lin
at

io
n 

[d
eg

]

200

100

0

100

200

K
Figure 23: Co-added COMAP CO7 map using night-

time data only. Regions that are either not observed by

the telescope, or have a noise level σrms > 1000µK, are

masked out.
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Figure 24: Weighted mean of cross spectra calculated

for all feed-feed combinations from time-of-day map-

split for the constant elevation scans of the CO2 field

night-time data.

this fact to produce near-optimal goodness-of-fit statis-

tics and pixelized sky maps with very limited computa-

tional costs.

Based on preliminary analyses, the performance of

this pipeline appears good, not only in terms of data

quality per scan, but also in terms of full-season co-

added maps. No obvious systematic artefacts are seen

either in the final maps or power spectra. Indeed,

demonstrating a system with precisely this property—

that the noise level integrates down with time as ex-

pected for pure noise—was the defining goal of the first

phase of the COMAP pathfinder experiment. This has

been achieved through the current work. The next oper-

ational goal of the COMAP experiment is to increase the

overall mapping speed by adding more telescopes and

detectors, and then observe for a longer time. Compar-

ing the demonstrated COMAP performance with cur-

rent state-of-the-art theoretical models, a first positive

robust detection seems fully realistic with one or two

more years of observing time (Ihle et al. 2021).

A second important goal for the first COMAP phase

was to optimize the experimental setup, and thereby

both reduce systematic effects and increase the over-

all mapping speed. In that respect, we conclude that

two-stage polarizers are highly preferrable over single-

stage (or no) polarizers, as they significantly reduce the

impact of standing waves. Secondly, we find that a

constant elevation-based scanning strategy is preferrable

over a Lissajous-based scanning strategy, and results in

significantly better data quality. Simply installing dual-

stage polarizers in all feeds, and always employing CES

scanning, will by itself increase the effective mapping

speed by more than a factor of 2.5.

We acknowledge support from the Research Council

of Norway through grant 251328. Thanks to graduated

master students Erik Levén and Maren Rasmussen for

their contribution to this pipeline.
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ABSTRACT

We present the power spectrum methodology used for the first-season COMAP analysis, and assess

the quality of the current data set. The main results are derived through a Feed-feed Pseudo-Cross-

Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and

experimental systematics. We use effective transfer functions to take into account the effects of instru-

mental beam smoothing and various filter operations applied during the low-level data processing. We

find that power spectrum results derived from constant elevation scan observations are consistent with

white noise expectations, and this demonstrates that the COMAP experiment and analysis pipeline

are able to suppress both correlated noise and systematics below the white noise level. However, results

derived from Lissajous scan observations, for which the telescope motion scan continuously in eleva-

tion during observations, suggest residual systematics on large angular scales that are not sufficiently

suppressed to support astrophysical constraints at this time. We speculate that these residuals may

be caused by residual atmospheric and/or sidelobe contamination, and these effects will be considered

further in future publications.

1. INTRODUCTION

This paper, one of a set associated with the first-

season COMAP analysis, presents the methodology used

to constrain the CO power spectrum with COMAP data.

An overview of the COMAP experiment is presented by

Cleary et al. (in prep), while the COMAP instrument is

described by Lamb et al. (in prep).

The low-level COMAP data processing pipeline is

summarized by Foss et al. (in prep). This pipeline

converts raw uncalibrated observations into three-

dimensional maps, using redshifted CO line emission

from distant galaxies as a tracer of the cosmic den-

sity field. Since the first-season COMAP instrument

observes at frequencies between 26 and 34 GHz, and

the rotational CO 1-0 transition has a rest frequency

of 115 GHz, the current measurements trace galaxy for-

mation at redshifts between z = 2.4 and 3.4, which often

is referred to as ”the epoch of galaxy assembly”.

One common and powerful quantity used to charac-

terize the statistical properties of such three-dimensional

cosmic maps is the so-called power spectrum (or the two-

point correlation function), which measures the strength

of fluctuations as a function of physical distance (e.g.,

Corresponding author: H̊avard T. Ihle

h.t.ihle@astro.uio.no

Bernal et al. 2019; Ihle et al. 2019; Chung 2019; Gong

et al. 2020; Yang et al. 2020). For an isotropic and

Gaussian random field, this function quantifies all sta-

tistically relevant information in the original data set,

but with a far smaller number of data points, and it

thus represents a dramatic compression of the full data

set. Even for non-Gaussian fields, such as the galactic

density field, the power spectrum encapsulates a large

fraction of the important information, and it is therefore

an efficient tool even for such fields.

However, while compressing hundreds of terabytes of

raw data into a handful of power spectrum coefficients

certainly makes the interpretation of the data easier in

terms of theoretical comparisons, it also makes the fi-

nal estimates highly sensitive to small systematic effects

and instrumental noise. To guide our intuition, we note

that current theories predict a intrinsic CO standard

deviation per resolution element of no more than a few

microkelvins, which is to be compared with a typical sys-

tem temperature of 45 K for the COMAP instrument;

or atmospheric fluctuations of a few kelvins; or sidelobe

contributions of a few millikelvins. All such effects must

therefore be suppressed by many orders of magnitude in

order to establish robust astrophysical constraints.

As described by Lamb et al. (in prep); Foss et al. (in

prep), the COMAP instrument has many unique fea-

tures that makes this process more robust. A few im-

portant examples include highly efficient spectroscopic
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2 the COMAP collaboration

rejection of common-mode signals, a strongly inter-

connected and configurable scanning strategy, and fre-

quent usage of hardware calibrators. Still, systemat-

ics rejection at the microkelvin level is highly challeng-

ing, and the current paper describes several algorithmic

methods that can be applied to improve the robustness

of the final data.

The rest of the paper is organized as follows. In Sect. 2

we review the adopted COMAP power spectrum esti-

mators. Results as derived from the actual data are

presented in Sect. 3, and we conclude in Sect. 4.

2. METHODS

We begin our discussion with an overview of the fun-

damental algorithms used for COMAP power spectrum

estimation. For other recent examples of the use power

spectrum analysis on intensity mapping data see e.g.

(Uzgil et al. 2019; Mertens et al. 2020; Keating et al.

2020).

2.1. Auto-spectrum analysis

Let mijk denote a three-dimensional map, and let us

call each resolution element in this map a voxel. We

define the power spectrum P (~k) of this map to be the

variance of its Fourier components, f~k,

P (~k) =
Vvox
Nvox

〈|f~k|2〉, (1)

where k is the wave vector of a given Fourier mode, Vvox
is the volume of each voxel, and Nvox is the total number

of voxels.

If we assume that the map is statistically isotropic,

then the power spectrum will only be a function of the

magnitude of the wave vector, P (~k) = P (k). In ob-

servational cosmology we often want to distinguish be-

tween the angular directions (denoted by the x and y

coordinates) from the line-of-sight direction (denoted

by the z coordinate). This is because the map typi-

cally has different properties in the different directions,

for example due to instrumental beam effects or red-

shift space distortions. It is therefore often useful to

define the power spectrum in terms of parallel (line-of-

sight) modes, k‖ ≡ |kz|, and the perpendicular (angu-

lar) modes, k⊥ ≡
√
k2x + k2y. We can estimate the power

spectrum in a given set of ~k-bins, {~ki}, from a given map

as

P (~ki) ≈
Vvox

NvoxNmodes

Nmodes∑

j=1

|fkj
|2 ≡ P~ki . (2)

Assuming that foreground and systematic contribu-

tions have already been removed to negligible levels

through pre-processing, the power spectrum of a cleaned

line intensity map is typically modeled as a sum of a sig-

nal and noise component,

P (~k) = Psignal(~k) + Pnoise(~k). (3)

If we are able to estimate the noise power spectrum

through independent means, for example using a noise

model or simulations, we can extract the signal power

spectrum simply by subtracting the estimated noise,

Psignal(~ki) ≈ P~ki − P
est
noise(

~ki), (4)

where P est
noise(

~ki) is the estimated noise power spectrum

in bin number i.

If the map consists of uniformly distributed white

noise, then the noise power spectrum is independent of
~k and given by

Pnoise = Vvoxσ
2
T , (5)

where σT is the white noise standard deviation in each

voxel (in units of kelvin). In our case, this magnitude

of the white noise level is determined by the radiometer

equation,

σT =
Tsys√
δντ

, (6)

where Tsys is the system temperature of the detector, δν
is the frequency resolution of each voxel, and τ is the

total time each pixel is observed.

In addition to this instrumental noise contribution,

there is an intrinsic uncertainty when estimating the

signal power spectrum from a map, often alled cosmic

variance, that arises from the limited number of Fourier

modes in the map. This contribution is given by

σ2
P = 〈(P~ki − P (~ki))

2〉 ≈ P (~ki)
2

Nmodes
, (7)

where Nmodes is the number of Fourier modes in bin

number i, and the last approximation is exact when the

Fourier modes are assumed to be independent Gaussian

variables.

If the power spectrum is noise dominated, we can re-

duce this intrinsic uncertainty in two ways. First, we

can observe for a longer time on the same area of the

sky, thus decreasing the noise power spectrum contribu-

tion to the uncertainty. Alternatively, we can cover a

larger sky area, and thus increase the number of mea-

sured Fourier modes. As long as we are noise dominated,

a simple analysis suggests that observing a small area

for a long time is more efficient for making a first detec-

tion than spreading the observations over a larger area.

In a realistic situation, however, there are several other

factors that must be taken into account, including the
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choice of angular resolution and scanning strategy con-

straints, and these will typically limit how small fields

it is possible to observe.

Another source of uncertainty in estimating the signal

is the accuracy of the estimated noise power spectrum

model. If this model is biased or uncertain, then the

associated residuals will propagate directly into the es-

timate of Psignal(~ki).

2.2. Pseudo-spectrum analysis

There are several challenges with an auto-spectrum

analysis as described above, as discussed both in this

and the following sections. First of all, if the noise in

the map is not uniform, which it generally is not, the

noise power spectrum will be dominated by the parts of

the map with the highest noise level. In order to address

this, it is necessary to devise a method that puts more

weight on the parts of the map with low noise, and less

weight the parts of the map with high noise.

The standard method of accounting for this is through

inverse noise variance weights. That is, we weigh the

map, m, by the noise level map, σm, before we compute

the power spectrum,

P̃~ki =
Vvox

NvoxNmodes

Nmodes∑

j=1

|f̃kj
|2, (8)

where P̃ denotes the pseudo-spectrum, and f̃ are the

Fourier components of the noise weighted map,

m̃ ≡ wm, (9)

and

w ≡ N 1

σ2
m

. (10)

N is a single overall normalization constant (which we

will get back to), and σm is, as usual, the noise level

map.

On a general note, the term ’pseudo-spectrum’ typi-

cally refers to a power spectrum estimator that is com-

puted from a biased estimator of the true sky map, and

is as such itself biased; see Hivon et al. (2002). This may

be contrasted to more conventional power spectrum es-

timators that aim to estimate the power spectrum of

the true sky signal. The statistical information content

of the pseudo-spectrum and unbiased power spectrum

is identical, and the main difference between the two

classes of estimators concerns their ease of interpreta-

tion; while the unbiased power spectrum may be directly

compared with theoretical models and other literature

results, the pseudo-spectrum is experiment dependent,

and typically requires simulations for proper statistical

interpretation.

In our setting, we use the pseudo-spectrum to take

into account both masked voxels (by setting σm → ∞
for voxels that are excluded from further analysis) and

varying noise levels across the map. Both these opera-

tions lead to mode mixing, i.e., different signal Fourier

modes map are mixed together, and the estimated signal

pseudo-spectrum is therefore a slightly distorted version

of the true signal power spectrum. However, since we

know exactly how the signal map has been distorted,

we can, at least in principle, calculate the exact mode

mixing matrix that is needed to reconstruct the mode

mixing and obtain an unbiased signal spectrum from

the pseudo-spectrum (Hivon et al. 2002). How feasible

this is for a specific case depends on the details of the

map dimensions and computational resources For more

details on mode mixing, see App. C.

Although mode mixing does complicate the physical

interpretation of the pseudo-spectrum, there are several

ways of dealing with this without having to calculate

and invert the full mode mixing matrix. First of all,

if the analysis involves comparisons with signal simula-

tions, then one may simply apply the same weight ma-

trix to each simulation, making the observed and sim-

ulated power spectra statistically compatible. Second,

if the level of mode mixing is modest, then the pseudo-

spectrum may be an adequate estimator for the signal

power spectrum for a given application. This typically

holds particularly well for noise-dominated applications,

for which a single power estimate covering a large range

in k is desired; in that case, the mode mixing often

has minimal effect on the estimates, and the pseudo-

spectrum often is a perfectly valid estimate in its own

right. The accuracy of this approximation must be as-

sessed for each use case.

In cases for which the pseudo spectrum is intended to

be used as a direct estimator, it is necessary to set the

normalization factor N in Eq. 10 properly. To establish

the formally correct value for this normalization is not

entirely well defined. However, we can make a simple

and fairly reasonable choice as follows

N =
1√〈
1
σ4
m

〉 , (11)

where 〈〉 denotes average over the whole map. To make

the results easier to interpret, we therefore apply this

normalization to all results shown in this paper. For

analyses that employ the full mode-mixing matrix, or

in which the pseudo-spectrum is compared directly to

simulations, this normalization is completely irrelevant.

To roughly estimate the expected level of mode mixing

we calculate the ratio of the pseudo-spectrum and the
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Figure 1: Ratio of the signal pseudo-spectrum to the

signal auto-spectrum based on ten signal realizations.

auto-spectrum for ten signal realization maps. Figure 1

shows the mean and standard deviation of the mode

mixing in each of the main power spectrum bins. Over-

all, we see that at the scales where we have most of our

sensitivity, the effect of mode mixing is fairly modest,

typically in the 5-30% range. Thus, even at face value,

the pseudo-spectrum does provide a reasonable order-

of-magnitude estimate of the true power spectrum, even

if it may not be appropriate for precision analysis.

We leave it for future work to estimate the mode

mixing matrix and undo the mode-mixing bias in the

pseudo-spectra. For the rest of this paper we will inter-

pret the pseudo-spectra at face value.

2.3. Cross-spectrum analysis

A general challenge when using either the auto- or

pseudo-spectrum is that highly accurate estimates of the

noise contribution are required to estimate the signal

power spectrum. In many cases this can be very chal-

lenging, and any systematic error will directly bias the

final signal estimate.

One way to avoid this complication is to use the so-

called cross spectrum, C(~k). While the power spectrum

quantifies the variance of the Fourier components of a

single map, the cross spectrum quantifies the covariance

between the Fourier modes of two different maps,

C(~k) =
Vvox
Nvox

〈
Re{f∗

1~k
f
2~k
}
〉

≈ Vvox
NvoxNmodes

Nmodes∑

j=1

Re{f∗
1~kj
f
2~kj
} ≡ C~ki . (12)

Here Re{} denotes the real part of a complex number,

and f1 and f2 are the Fourier components of two maps

m1 and m2.

Clearly, if m1 and m2 are identical, then the cross-

spectrum is equivalent to the auto-spectrum. The ad-

vantage of the cross-spectrum, however, is that, if the

maps m1 and m2 are independent, then the noise con-

tributions are also independent, and they do not con-

tribute to the mean of the cross-spectrum, but only to

its variance. Therefore, it is not necessary to estimate

and subtract the noise power spectrum to obtain an un-

biased signal estimate, but rather

〈C~ki〉 = Psignal(~ki). (13)

Of course, a proper noise estimate is still necessary for

uncertainty estimation, but the requirements on this are

typically far less stringent than for the estimator mean.

Although the cross spectrum strongly alleviates the

need for estimating the noise power spectrum, we do

pay a price in the form of somewhat lower intrinsic sen-

sitivity. For instance, when splitting the data into two

independent parts, and cross-correlate these, we do lose

a factor of at least
√

2 from the fact that we do not

exploit the auto-correlations within each data set sep-

arately. Fortunately, this problem can be remedied by

splitting the data into more independent maps, and av-

eraging the cross-spectra of all possible combinations. A

lower limit on the cross-spectrum sensitivity is given by

σ
Nsplit

C ≥
√

1

1− 1/Nsplit
σP , (14)

where Nsplit is the number of different map splits, and

σP is the optimal sensitivity of the auto-spectrum de-

rived from the full data set.

The cross-spectrum has some other very important

advantages with respect to the auto-spectrum as well.

As discussed in the introduction, one of the major chal-

lenges for an experiment like COMAP, in which we have

to integrate down the noise several orders of magnitude

in order to measure a small signal, are systematic errors.

However, since the cross-spectrum may only be biased

by common-mode contributions among the two maps,

one is well advised to ensure that any known system-

atic effect contribute independently to the two maps. In

that case, the systematic effects will not bias the signal

estimate. Combining this insight with splitting the data

into multiple parts allows us to design a power spectrum

statistic that is far more robust to systematics than the

auto-spectrum.

We define a pseudo-cross-spectrum in an analogous

manner as for the pseudo-auto-spectrum. The only sub-

tlety is that we make sure to apply the same weight

map, w, for both maps. Explicitly, we adopt the follow-
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ing weight map,

w1,2 ∝
1

σm1σm2

, (15)

for both m1 and m2 when calculating the pseudo-cross-

spectrum, C̃~ki .

2.4. The Feed-feed Pseudo-Cross-Spectrum

The idea of the Feed-feed Pseudo-CROSS-Spectrum

(FPXS) method is to combine all the insights from the

preceding sections to construct a single statistic for the

CO signal that has a high intrinsic sensitivity, uses

proper noise weighting, and that is robust against in-

strumental and other systematics. In that respect, we

first note that the COMAP focal plane consists of 19

feeds, each with its own amplifiers and detectors. Fur-

thermore, many systematics are particular to each feed,

due to different bandpasses, amplifiers, cables, beams

etc. We may therefore split the data according to feeds

(i.e., make one map per feed), and then compute cross-

spectra of all different feed combinations, while never

correlating two maps from the same feed.

Second, we also note that one of the most trouble-

some systematics for COMAP is ground pickup. This

is mainly because the ground contamination correlates

with the pointing, and it therefore does not average

down the same way as any systematic that is random

in time-domain (and hence independent in different ob-

servations). We can make ourselves as robust as possible

to any residual ground signal in our map by also split-

ting the data by the elevation of the observations, so

that we never take the cross-spectrum of two different

datasets taken at the same elevation.

With these considerations in mind, we define the fol-

lowing procedure for calculating the FPXS:

1. We split the data into disjoint sets sorted accord-

ing to elevation. For simplicity we assume for now

that we split the data into two sets, A and B,

where A contains all the observations taken at el-

evations below the median elevation, and B con-

tains all the observations from the higher eleva-

tions. We can easily generalize this to a case where

we split the data into more than two sets.

2. For each set, A and B, we generate maps for each

of the 19 feeds. We denote the different maps ac-

cording to dataset and feed, such that A13 indi-

cates the map that combines all data from dataset

A for feed number 13.

3. We then calculate the pseudo-cross-spectrum, C̃ij~ki
for all different map combinations of Ai and Bj
where i 6= j.
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Figure 2: Instrumental beam transfer function.

4. Next, we compute the average pseudo-cross-

spectrum, C̃~ki , by noise weighting all different

cross spectra,

C̃FPXS
~ki

=
1∑

i6=j
1

σ2

C̃
ij
~ki

∑

i 6=j

C̃ij~ki
σ2
C̃ij

~ki

. (16)

Here σC̃ij
~ki

is the uncertainty (standard deviation)

in ~k bin number i of the pseudo-cross-spectrum of

the maps Ai and Bj , and the sum is over all com-

binations of i and j except the cases where i = j.

Under the naive assumption that all cross-spectra

are independent, the uncertainty of the combined

cross-spectrum is given by

σC̃FPXS
~ki

=

√√√√√
1∑

i 6=j
1

σ2

C̃
ij
~ki

. (17)

Similar procedures can of course be done by splitting

the data in other ways, to make ourselves less suscepti-

ble to other systematics, but we have found that using

the feeds and elevation splits yields good results for the

current dataset.

2.5. White noise simulations

Until now we have not discussed how to estimate the

noise power spectrum and the corresponding noise un-

certainty of the power spectrum. In general, estimat-

ing the noise power spectrum precisely is very difficult,

since one needs to take into account not only the in-

trinsic white noise level of the data, but also the effect

of the different filtering procedures in the low-level data

analysis, as well as any correlated noise contribution.
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Since we use a cross-spectrum method, however, the

noise spectrum is only used to estimate the uncertainties

of the power spectrum, not its mean level, and the re-

quirements on the absolute noise spectrum are therefore

somewhat alleviated. Explicitly, if we make an error of

a few percent in our noise estimate, we will not bias the

estimated signal spectrum, only only misestimate the er-

ror bars by a few percent. While clearly not ideal, this is

usually not critical, considering all the other simplifying

assumptions introduced in the analysis. On the other

hand, if we had adopted an auto-spectrum method, an

error of a few percent on the noise power spectrum could

easily have rendered our signal estimate unusable, even

in the case of very high intrinsic sensitivity.

For this reason, we therefore adopt a simple approach

to noise power spectrum estimation: We assume that

the noise in the maps is uncorrelated white noise, and

generate noise simulations, mi, by drawing random sam-

ples in each voxel from a Gaussian distribution with zero

mean and a standard deviation given by the value of

the noise level map, σm. We then estimate error bars

by generating a large number of noise simulation maps,

calculating the power spectrum from each, and, and fi-

nally taking the standard deviation in each ~k bin of in-

terest. This gives us error bars of the noise contribution

to each power spectrum bin, but neglects the intrinsic

uncertainty in the signal power spectrum itself. How-

ever, as we are still completely noise dominated, this

intrinsic uncertainty of the signal spectrum should be

negligible.

2.6. Transfer functions

Until now we have assumed that the sky maps pro-

duced by the low-level analysis pipeline are unbiased.

For multiple reasons, this is not the case. First of all,

the instrument does not have infinite resolution, and the

instrumental beam will therefore smooth out the signal

on small angular scales. The same effect happens due

to the finite spectral resolution of the instrument in the

frequency dimension. Secondly, the various filters and

mapmaking procedures in the analysis pipeline gener-

ally remove some of the signal, mostly on larger angular

and spectral scales. In the following, we take these ef-

fects into account through so-called transfer functions.

These are functions in the k‖-k⊥ plane that quantify the

fraction of the signal power that is retained in each ~k-

bin, and allow us to establish unbiased estimates of the

power spectrum from biased sky maps.

In general a transfer function, T (~k), is defined through

the following relation,

〈P~k〉 = T (~k)Psignal(~k) + Pnoise(~k), (18)

10 2 10 1 100

k [Mpc 1]

0.0

0.2

0.4

0.6

0.8

1.0

T(
k)

Mixed Liss and CES
Liss only
CES only

Figure 3: Pipeline transfer function for the spherically

averaged power spectrum from Lissajous scans (green),

constant elevation scans (blue) and combined data (red).

These transfer functions are based on a single signal re-

alization and roughly three hours of Lissajous data, and

3 hours of constant elevation data.

where P~k is the power spectrum calculated from the fi-

nal map and Psignal(~k) is the actual physical signal power

spectrum. We decompose the full transfer function into

different parts, and derive each separately. We then mul-

tiply the transfer functions together to get the full trans-

fer function.

2.6.1. Instrumental beam transfer function

Due to the finite resolution of the instrument, we

cannot measure the cosmological signal on the small-

est angular scales. In order to take this effect into ac-

count we introduce a beam transfer function. For now,

we assume the beam to be both achromatic (i.e., con-

stant in frequency) and azimuthally symmetric, and we

assume that it may be approximmated well by a 2D

Gaussian with a full-width-half-maximum (FWHM) of

δFWHM
θ = 4.5 arcminutes (Lamb et al. in prep).

The corresponding beam transfer function is esti-

mated using signal-only simulations. That is, Wwe gen-

erate a large number of 3D signal realizations and apply

a Gaussian beam smoothing to the angular dimensions

of the map. We then calculate the power spectrum of

each of the signal realization maps with and without

beam smoothing. The estimated transfer function is

given as the average ratio of these,

T beam(~k) ≈
〈
P signal,beam
~k

P signal
~k

〉
, (19)
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Figure 4: Pipeline transfer function for the cylindrically averaged power spectrum from Lissajous scans (a), constant

elevation scans (b) and combined data (c). These transfer functions are based on a single signal realization and roughly

three hours of Lissajous data, and 3 hours of constant elevation data.

where P signal,beam
~k

is the power spectrum calculated from

a beam smoothed signal realization map and P signal
~k

is

the power spectrum calculated from non-smoothed one.

By using a single Gaussian beam, we implicitly assume

that all sky signal power enters the instrument through

the main beam, i.e., that the aperture efficiency is equal

to one. In reality a significant fraction of the power is

located in near sidelobes, and a smaller fraction is lo-

cated in the far sidelobes. We leave it for future work to

take these effects into account, which will then allow us

to estimate the beam transfer function more accurately.

In this paper, we do not consider the effect of the

finite spectral resolution on the recovered signal power,

but leave this for future work. As a result, the reported

power spectra will be biased at small scales. However,

since the reference simulations are biased in precisely

the same manner, this does not affec the interpretation

as measured in terms of statistical significance.

Figure 2 shows the beam transfer function derived us-

ing 100 signal simulations. We see that the 4.5’ FWHM

beam corresponds roughly to a physical scale of 8 Mpc

(comoving), so any angular scales smaller than this will

be significantly suppressed.

2.6.2. Pipeline transfer function

Each step of the analysis pipeline, including low-

level filtering, calibration and mapmaking, affects how

much of the true sky signal is present in the final maps

and power spectra. We estimate the transfer function

of these operations by processing the sum of the raw

data and a known signal-only time-ordered simulation

through the analysis pipeline, following the exact same

procedure as for the raw data alone. The pipeline trans-

fer function may then be estimated as

T pipeline(~k) ≈
〈
P full
~k
− P noise

~k

P signal
~k

〉
, (20)

where P full
~k

is the power spectrum calculated from the

maps derived from the raw data with added signal,

P noise
~k

is the spectrum derived from the same data but

without the added signal and P signal
~k

is the power spec-

trum derived from the raw signal simulation that was

added to the raw data.

2.6.3. Unbiased signal estimate

Correcting the FPXS with the above transfer func-

tions, we can establisy an unbiased estimate of the signal

pseudo-spectrum,

P̃signal(~k) ≈
C̃FPXS
~k

T̃ full
~k

, (21)

where P̃signal(~k) is the signal pseudo-spectrum and

T̃ full
~k

= T̃ beam
~k

T̃ pipeline
~k

is the full estimated transfer func-

tion for the pseudo-spectrum. The uncertainty of this

signal estimate is given by

σP̃signal(~k)
=
σC̃FPXS

~k

T̃ full
~k

. (22)

To illustrate the process, we estimate the pipeline

transfer function for both Lissajous and CES scans, us-

ing three obsIDs (of about one hour observation time

each) in each case, as well as the combined case. How-

ever, as it is quite expensive to produce these trans-

fer functions, only a single signal simulation outcome
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Figure 5: Spherically averaged mean pseudo cross spectra for the CES observations (left) and Lissajous observations

(right) of co2 (red), co6 (blue) and co7 (purple) fields. These spectra were generated from all the accepted data

using the FPXS cross spectrum statistic. In addition the full transfer function has been applied, to de bias the signal

estimate.

was used. It thus remains for future work to compute

transfer functions using several more simulations and

subsequently take an ensemble average to get a better

estimate of the true filter transfer function.

In Fig. 3 the resulting 1D binned transfer functions are

shown for both the mixed Lissajous/CES case, as well

as the individual Lissajous- and CES-only cases. As can

be seen in the figure, the transfer function resulting from

Lissajous scans has a somewhat higher maximum com-

pared to the transfer function of the CES-only scans.

Also, we note that the Lissajous transfer function peaks

at lower k than the CES equivalent. At the same time,

the transfer function resulting from a map of mixed Lis-

sajous and CES scans is close to the mean between the

two single-type transfer functions.

This pattern is also seen in the corresponding 2D

binned transfer function in Fig. 4, visualizing the effect

of filtering separately on transverse and perpendicular

scales. As can be seen in the middle panel of Fig. 4, the

Lissajous-only transfer function peaks at intermediate to

high k’s, with efficiencies of ∼ 0.9−0.95 around the peak

region, while the the CES equivalent seen in the right

panel peaks at higher k with efficiencies of ∼ 0.8− 0.85.

The mixed transfer function in this case also lies in be-

tween that of the Lissajous- and CES transfer function

with efficiencies at ∼ 0.85 − 0.88 near its peak region

at intermediate to high k. The reason for why the Lis-

sajous transfer function is a little higher at its peak than

that of the CES case is most probably due to the fact

that a Lissajous scans typically cover a larger area of the

sky in a single scan, and it therefore retains more larger

angular scale information. As the various filters remove

large-scale structure, the low k⊥ and k‖ region shows a

very low transfer efficiency, which greatly reduces our

sensitivity at these scales.

3. POWER SPECTRUM RESULTS

As described in Foss et al. (in prep), after the COMAP

time-ordered data have been filtered and calibrated, and

bad observations have been removed, the cleaned data

set is compressed into a set of 3D maps. We make sep-

arate maps for the Lissajous scans and the CES, since

these tend to have different systematics and statistical

properties.

3.1. FPXS results

We estimate the cross-spectrum separately for the Lis-

sajous and CES data. In each case we split the data in

two parts according to the elevation of the observations,

and use the FPXS method on these two sets of feed maps

in order to minimize systematics. We also calculate a χ2

statistic for each of the 19 × 18 different feed-feed cross

spectra, C̃ij~ki
, and reject any spectrum with more than

a 5 sigma excess, before we calculate the FPXS mean

spectrum. For the CES data, about 3–10 % of the spec-

tra are removed by this cut, while for the Lissajous data

about 10–20 % is cut.

The resulting spherically averaged pseudo cross spec-

tra are shown in Fig. 5. We see that the results for the

CES data appear largely flat, with fluctuations that are

consistent with our white noise estimate. This demon-

strates that we are in fact averaging down the noise as

expected for uncorrelated noise for the current data set,

and the various potential systematics are suppressed to a
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Figure 6: Cylindrically averaged mean pseudo cross spectra for the CES observations (top 2 rows) and Lissajous

observations (bottom two rows). Second and fourth row shows the spectra divided by the corresponding white noise

uncertainty.
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level well below the noise. At this point in the COMAP

survey, this is the ideal outcome, given that most the-

oretical models predict a signal level that is lower than

the current white noise sensitivity. At the same time,

these data are in fact already ruling out some of the

most optimistic models (see Chung et al. (in prep) for

more details).

In contrast, the Lissajous data do not appear equally

well behaved. For these, we see clear signs of excess

power on large scales in both the CO2 and CO6 fields,

although not in the CO7 observations. These excesses

suggest that large scale systematics are still present in

for the Lissajous scans, and may for instance be caused

by either atmospheric variations or complex sidelobe

contamination.

These residuals are even more prominent when consid-

ering the 2D k‖×k⊥ power spectrum, as shown in Fig. 6.

Here we see that while the CES results look mostly con-

sistent with the white noise expectation, the Lissajous

results clearly exhibit regions with a systematic power

excess. This is seen most clearly in the fourth row of the

figure, which shows the power spectrum divided by the

expected white noise fluctuations, and thus correspond

to power measured in units of standard devations. In

particular, we see a bright region on the largest angu-

lar scales, and on scales between k‖ ∼ 0.03–0.1 Mpc−1

in the frequency direction. This is seen very clearly for

both the CO2 and CO6 fields, although not for the CO7

case, corresponding to the behaviour seen in the 1D case.

3.2. Null tests

Given that the current data appear to be largely con-

sistent with white noise, the importance of null-tests is

less critical than if a potential detection had been made.

Still, null-tests may be useful to identify and highlight

specific systematic errors, and they may potentially pro-

vide hints regarding the nature of the Lissajous excesses.

In the following, we split the data in two disjoint sets

according to various criteria specified below. For each

disjoint set, we compute independent maps, and com-

pute the power spectrum of the difference map. Any

common signal or systematic should then ideally can-

cel, leaving only noise; any surviving signal would be

indicative of a systematic associated with the split in

question. In the following, we consider the four differ-

ent data splits, as defined by 1) season (winter versus

summer), 2) first versus last half of the mission, 3) day

versus night, and 4) even versus odd observation num-

ber. In the first three cases we adjust the split threshold

such that there are roughly equal amounts of data in

each of the two parts of the split.

Figure 7 shows the results from these calculations, and

we see that most of the null spectra are consistent with

white noise expectations. This is true even for the Lis-

sajous data which showed a large excess in the regular

spectra, suggesting that the excess is present in all the

data and thus is removed in the difference maps. The

main exception to this is a slight positive bias in the

CES null tests for the CO2 field. However, the sta-

tistical significance of this excess is marginal, with an

overall significance level of 3–4σ even with the simple

white noise approximation used in this paper. For the

purposes of the current analysis, we conclude that the

data are largely consistent with the white noise approx-

imation, both as measured through co-added and null

maps.

4. DISCUSSION

In this paper, we have introduced the FPXS as a ro-

bust method for estimating the CO signal power spec-

trum from 3D intensity maps produced by the COMAP

data analysis pipeline. We have discussed how to ac-

count for signal loss both due to both filtering and beam

smoothing, and we have estimated their magnitudes for

the first-year COMAP observations with simulations.

Computing the FPXS from the actual COMAP data, we

find that the current data set is consistent with white

noise for constant elevation scan data, and the uncer-

tainties average down with time as expected for ideal

data. Equivalently, these results suggest that all system-

atics are significantly lower than the white noise level in

our main sensitivity range.

In contrast, the FPXS results from the Lissajous scan

data show clear signs of excess systematics at large scale,

as is most clearly seen in the 2D power spectrum. Fur-

ther modelling and analysis work is required before these

data can be used for astrophysical analysis.

Null tests largely seem consistent with zero. However,

we do note that some of the most worrisome system-

atics may not show up in the current null test suite.

One prominent example is ground contamination, which

tends to be similar in different observations, for example

when a given field is observed at similar telescope coor-

dinates. Thus, the ground contamination could be, at

least partially, canceled out along with the signal when

forming the difference map, at least for some null-maps.

This could potentially explain why the large scale sys-

tematic effects in the Lissajous data seem to disappear in

our current null tests. We also note that null tests are in

general significantly less sensitive than the correspond-

ing co-added spectra, since these are formed through

straight difference maps, as opposed to noise weighted
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Figure 7: FPXS spectra of difference maps between data split according to Winter/Summer (blue), Half-mission

(red), Odd/Even obsid (purple) and Day/Night (green). The full transfer functions have been applied.

averages; this is necessary to ensure that the signal van-

ishes in the difference map.

We also note that there are several O(1) effects that

have not yet been accounted for that are relevant for de-

riving an actual upper limit on the CO intensity power

spectrum. First of all, we recall that our current esti-

mate is a pseudo-spectrum, and hence subject to mode

mixing. Even though we have estimated that this mode

mixing should modest at the scales we are considering, it

will still probably affect our results at the 5–30 % level.

Second, we also have not accounted for the aperture effi-

ciency, but have rather assumed that all the power is in

the main beam; this effect could also give a significant

suppression of the signal at small angular scales. Third,

we have also neglected the effect of a finite spectral res-

olution, which will also suppress power on small scales

in the line-of-sight dimension. For these reasons, we do

not yet combine our power spectrum bins into an upper

limit on the CO power spectrum. Rather, the main re-

sult of the current paper is a demonstration of the fact

that the COMAP instrument produces data that are

statistically consistent with white noise, and systemat-

ics are suppressed to below the white noise for the CES

scan type. All of the above-mentioned effects are multi-

plicative in nature, and does not change the statistical

significance of the measurements, but only their physical

normalization.

APPENDIX

A. FOURIER CONVENTIONS

In this Appendix, we present the conventions for the discrete Fourier transformations used in this paper. All the

conventions are consistent with the default conventions in numpy’s FFT library. The forward transformation is given

by

fl =

n−1∑

m=0

xm exp

(
−2πi

ml

n

)
, l = 0, · · · , n− 1

where xm are the discrete values of the function in real space, and fl are the Fourier coefficients. The inverse

transformation is then given by

xm =
1

n

n−1∑

l=0

fl exp

(
2πi

ml

n

)
,
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We define the physical wave number

k ≡ 2πj

∆xn
, j ∈

{
−n

2
, · · · ,−1, 0, 1, · · · , n

2

}

= 2π · np.fft.fftfreq(n,∆x).

B. DEFINITION OF COSMOLOGICAL MAP GRID

Since Fourier transforms require a rectangular grid, we assume that the 3D temperature maps can be approximated

by a rectangular grid in co-moving cosmological parameters. We assume that all the voxels have the same shape and

size as the middle voxel at redshift zmid ≈ 2.9.

The comoving length corresponding to an angular separation δθ, for a given redshift z, is given by

δl⊥ = r(z)δθ = δθ

∫ z

0

cdz′

H(z′)
, (B1)

where r(z) is the comoving distance travelled by light emitted from redshift z to us.

The comoving radial distance corresponding to a small redshift interval δz = z1 − z2 = ν0/ν
obs
1 − ν0/ν

obs
2 ≈

(1 + z)2δνobs/ν0, where z1 > z2, is given by

δl‖ =

∫ z1

z2

cdz

H(z)
≈ cδz

H(z)
≈ c

H(z)

(1 + z)2δνobs

ν0
, (B2)

where ν0 ≈ 115.27 is the emission frequency of the CO 1→0 line we are studying and δνobs = 31.25 MHz is the

resolution of our frequency bins.

C. MODE MIXING AND THE MASTER ALGORITHM

In order to understand the mode-mixing effect, let us consider in more detail the Fourier transform of a weighted

map1,

f̃k1k2 =

n−1∑

m1=0

n−1∑

m2=0

xm1m2Wm1m2 exp

(
−2πi

m1k1 +m2k2
n

)
. (C3)

Here xm1m2
is the map, Wm1m2

is the weight map and f̃k1k2 is the Fourier transform of the weighted map. We can

insert the expression for the inverse Fourier transform of x and W ,

f̃k1k2 =
1

n4

n−1∑

k
′
1=0

n−1∑

k
′
2=0

fk′1k
′
2

n−1∑

k
′′
1 =0

n−1∑

k
′′
2 =0

fW
k
′′
1 k

′′
2

n−1∑

m1=0

n−1∑

m2=0

× exp

(
−2πi

m1(k
′
1 + k

′′
1 − k1) +m2(k

′
2 + k

′′
2 − k2)

n

)
, (C4)

(C5)

where f and fW are the Fourier transforms of x and W respectively. Working through the algebra, we get

f̃k1k2 =
1

n2

n−1∑

k
′
1=0

n−1∑

k
′
2=0

fk′1k
′
2

n−1∑

k
′′
1 =0

n−1∑

k
′′
2 =0

fW
k
′′
1 k

′′
2

× δk′′1 (k1−k′1)%n,k
′′
2 (k2−k′2)%n

f̃k1k2 =
1

n2

n−1∑

k
′
1=0

n−1∑

k
′
2=0

fk′1k
′
2
fW
(k1−k′1)%n(k2−k

′
2)%n

f̃k1k2 =

n−1∑

k
′
1=0

n−1∑

k
′
2=0

fk′1k
′
2

1

n2
fW
(k1−k′1)%n(k2−k

′
2)%n︸ ︷︷ ︸

≡K
k1,k2,k

′
1,k

′
2

, (C6)

1 We work in 2D here to save some indices; the generalization to
3D is straightforward.
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where % denotes the modulo operation and where we have defined the mode mixing amplitude K~k,~k′ .

Adopting vector notation, we may now write the pseudo-spectrum as follows,

P̃ (~k) =
Vvox
Nvox

〈f̃~kf̃∗~k 〉 (C7)

=
Vvox
Nvox

1

n2D

∑

~k′

∑

~k′′

〈f~k′f∗~k′′ 〉K~k,~k′K
∗
~k,~k′′

(C8)

=
1

n2D

∑

~k′

∑

~k′′

P (~k′)δ~k′,~k′′K~k,~k′K
∗
~k,~k′′

(C9)

=
∑

~k′

P (~k′)
1

n2D
|K~k,~k′ |2︸ ︷︷ ︸
M~k,~k′

, (C10)

where D is the number of dimensions of the map, and where we have defined the mode mixing matrix, M~k,~k′ . We see

that the auto-spectrum and the pseudo-spectrum is related by a linear transformation, so all the information in one is

also there in the other.

Within the CMB field, accounting for mode mixing by explicitly calculating and inverting M~k,~k′ is often referred

to as the MASTER algorithm (Hivon et al. 2002). Doing this requires that we calculate the mode mixing between

each Fourier mode and all the other Fourier modes, so for a 3D maps this scales poorly with the map dimension. On

the other hand, the algorithm parallelizes trivially, and the matrix must only be computed once for a given weight

map, after which the same operation may be applied efficiently to any number of simulations. Whether this is feasible

depends on the details of the individual use case. Some methods exists in the literature to approximate this procedure

in a faster way, see e.g. Louis et al. (2020).
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Abstract

We develop a framework for joint constraints on the CO luminosity function based on power spectra (PS) and
voxel intensity distributions (VID) and apply this to simulations of CO Mapping Array Pathfinder (COMAP), a
CO intensity mapping experiment. This Bayesian framework is based on a Markov chain Monte Carlo
(MCMC) sampler coupled to a Gaussian likelihood with a joint PS + VID covariance matrix computed from a
large number of fiducial simulations and re-calibrated with a small number of simulations per MCMC step. The
simulations are based on dark matter halos from fast peak patch simulations combined with the LCO(Mhalo)
model of Li et al. We find that the relative power to constrain the CO luminosity function depends on the
luminosity range of interest. In particular, the VID is more sensitive at large luminosities, while the PS and
the VID are both competitive at small and intermediate luminosities. The joint analysis is superior to using
either observable separately. When averaging over CO luminosities ranging between = –L L10 10CO

4 7 , and
over 10 cosmological realizations of COMAP Phase 2, the uncertainties (in dex) are larger by 58% and 30% for
the PS and VID, respectively, when compared to the joint analysis (PS + VID). This method is generally
applicable to any other random field, with a complicated likelihood, as long a fast simulation procedure is
available.

Key words: diffuse radiation – galaxies: high-redshift – large-scale structure of universe

1. Introduction

Intensity mapping (Madau et al. 1997; Battye et al. 2004;
Peterson et al. 2006; Loeb & Wyithe 2008) appears promising
for mapping large 3D volumes cheaply in a relatively short
period of time, using specific bright emission lines as matter
tracers. This is an interesting avenue for advancing precision
cosmology, with a multitude of ongoing efforts (Kovetz et al.
2017), following on the successes of the CMB field in the last
few decades. One such line intensity mapping experiment
currently under construction is called the CO Mapping Array
Pathfinder (COMAP; Cleary et al. 2016; Li et al. 2016), which
aims to observe frequencies between 26 and 34 GHz,
corresponding to redshifted CO line emission from the epoch
of galaxy assembly (redshifts between z=2.4 and 3.4) for the
CO J=10 line at 115 GHz rest frequency, and CO
emission from the epoch of reionization (z=5.8–6.7) for the
CO J=21 line at 230 GHz rest frequency.

One important scientific target for studying and under-
standing the epoch of galaxy assembly, the main goal of the
first COMAP phase, is the so-called CO luminosity function,
which measures the number density of CO emitters as a
function of luminosity. Several methods for extracting this
function from real data have already been suggested in the
literature, the most prominent being the power spectrum (PS)
approach, for instance as implemented by Li et al. (2016). A

second complementary method is the one-point function, or
voxel intensity distribution (VID), ( )T , as suggested by
Breysse et al. (2016, 2017).
In this paper, we consider the prospect of combining the VID

and PS approaches when constraining the CO luminosity
function, and we study this approach within the context of the
COMAP experiment. To do so, we first define a joint likelihood
that includes both the VID and the PS and construct a joint
covariance matrix for both observables. This covariance matrix
is constructed from a large set of dark matter (DM) light-cone
halo catalogs from so-called “peak patch” cosmological
simulations (Bond & Myers 1996, Stein et al. 2019), coupled
to an empirical LCO(Mhalo) model (Li et al. 2016) that infers CO
luminosities, LCO, from DM halo masses, Mhalo. We then
investigate the posterior distribution of the resulting model
parameters for each of the first two anticipated phases of the
COMAP experiment (see Table 1). Finally, we compare the
constraints on the CO luminosity function derived from joint
PS and VID measurements to those obtained from the PS or
VID separately.

2. Idealized Simulations of the COMAP Experiment

We start our discussion by reviewing some central properties
of the COMAP experiment, focusing in particular on those
required for generating representative yet computationally
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affordable simulations. For convenience, these properties are
summarized in Table 1.

In Phase 1, COMAP will employ a single telescope equipped
with 19 single-polarization detectors, each with 512 frequency
channels with width δν≈15.6 MHz10 covering frequencies
between 26 and 34 GHz. The system temperature is expected to
be around Tsys≈40 K and the angular resolution corresponds
to a Gaussian beam with 4′full width at half maximum
(FWHM). We anticipate two years of observation time
targeting a single field of 1°.5×1°.5 close to the north celestial
pole, and we assume a conservative observing efficiency of
35% for a total of 6000 hr of total integration time on the field.

In Phase 2, the experiment will be expanded to five
telescopes with the same setup as in Phase 1 and will observe
for three additional years. In this phase, we assume that the
observation time will be split between four fields of the same
size as in Phase 1. The two COMAP phases will be referred to
as COMAP1 and COMAP2 in the following.

2.1. Noise

The simulations used in this work consist of two components
only, namely the target CO signal and random white noise with
properties corresponding to the parameters described above.
Explicitly, the noise per voxel is given by

s
t dn t dn

= = ( )T T N

e N
, 1T

sys sys pixels

tot obs feeds

where Tsys is the system temperature, τ is the observation time
per pixel, τtot is the total observation time, eobs is the
observation efficiency, Nfeeds is the number of feeds, Npixels is
the number of pixels, and δν is the frequency resolution. This
gives us σT≈11 μK and 8 μK for the COMAP1 and
COMAP2 phases, respectively. For simplicity we assume that
the noise is evenly distributed over all voxels.

A voxel is the 3D equivalent of a pixel. Two of the
dimensions correspond to a regular pixel on the sky, while the
third dimension corresponds to a small range of redshifts from
where line emission would redshift into a given frequency bin
of our instrument.

Both instrumental systematics and astrophysical foreground
contamination are neglected in the following. However, since
our estimator is inherently simulation based, these effects can
be added at a later stage when a sufficiently realistic instrument

model is available. For discussion of foreground contamination
in similar line intensity surveys see, e.g., da Cunha et al.
(2013), Breysse et al. (2015, 2017), and Chung et al. (2017).

2.2. DM Simulations

The signal component is based on the peak patch DM halo
approach described by Bond & Myers (1996) and Stein et al.
(2019), coupled to the LCO(Mhalo) model presented by Li et al.
(2016). Additionally, we adopt the same cosmological para-
meters as the Li et al. (2016) analysis for the DM simulations:
Ωm=0.286, ΩΛ=0.714, Ωb=0.047, h=0.7, σ8=0.82,
and ns=0.96.
The DM simulations in this paper were created using the

peak patch method of Bond & Myers (1996) and Stein et al.
(2019). To cover the full redshift range of the COMAP
experiment we simulated a volume of (1140Mpc)3 using a
particle-mesh resolution of Ncells=40963. Projecting this onto
the sky results in a 9°.6×9°.6 field of view covering the
redshift range 2.4<z<3.4, with a minimum DM halo mass
of 2.5×1010Me.
The resulting halo catalog contains roughly 54 million halos,

each with a position, velocity, and mass. The peak patch
method can simulate continuous light cones on-the-fly, so
stitching snapshots together was not required to create the light
cone. Although peak patch simulations result in quite accurate
halo masses, the DM halo catalogs were additionally mass
corrected by abundance matching along the light cone to
Tinker et al. (2008) to ensure statistically the same mass
function as the simulations used in the Li et al. (2016) analysis.
For a detailed study of the clustering properties of peak patch
simulations and other approximate methods, see Lippich et al.
(2019), Blot et al. (2018), and Colavincenzo et al. (2019).
A single run required 900 s of computation time on 2048

Intel Xeon EE540 2.53 GHz CPU cores of the Scinet-GPC
cluster, with a memory footprint of ;2.4 TB. This efficiency of
the peak patch method allowed for 161 independent realiza-
tions of the full 1140Mpc, =N 4096cells

3 volume, taking a
total computation time of only ∼82,000 CPU hours, over three
orders of magnitude faster when compared to an N-body
method of equivalent size.

2.3. Converting to CO Brightness Temperature

There are many approaches in the literature for estimating
the expected CO signal based on DM halos (e.g., Righi et al.
2008; Obreschkow et al. 2009; Visbal & Loeb 2010; Carilli
2011; Gong et al. 2011; Lidz et al. 2011; Fu et al. 2012; Carilli
& Walter 2013; Pullen et al. 2013; Breysse et al. 2014; Greve
et al. 2014; Mashian et al. 2015; Li et al. 2016; Padmanabhan
2018), with resulting estimates of the CO luminosities spanning
roughly an order of magnitude.
Here we adopt the model described by Li et al. (2016) to

convert from simulated light cones populated with DM halos to
observed CO brightness temperature. This model is defined by
a set of parametric relations between DM halo masses, star
formation rates (SFR), infrared (IR) luminosities, LIR, and CO
luminosities, LCO.
The model uses the results from Behroozi et al. (2013a,

2013b) to obtain average SFR from DM halo masses and adds
an additional log-normal scatter on top of the average,
determined by σSFR. IR luminosities are then obtained through

Table 1
Experiment Setup for the Two COMAP Phases

Parameter COMAP1 COMAP2

System temperature, Tsys [K] 40 40

Number of feeds 19 95
Beam FWHM (arcmin) 4 4
Frequency band [GHz] 26–34 26–34
Channel width, dn (MHz) 15.6 15.6
Observing time [hr] 6000 9000
Noise per voxel [μK] 11.0 8.0
Field size [deg2] 2.25 2.25
Number of fields 1 4

10 Higher spectral resolutions are available, but these are most likely useful
only for systematics mitigation rather than science due to limited signal-to-
noise per voxel.
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the relation

d= ´ - ( )LSFR 10 . 2MF
10

IR

Further, to obtain CO luminosities, the relation

a b= ¢ + ( )L Llog log 3IR CO

is used before a second round of log-normal scatter is added,
determined by the parameter sLCO.

This gives us a LCO(Mhalo) model with five free parameters,
q s d a b s= { }, log , , , LSFR MF CO . The relation between LCO and
Mhalo for our fiducial model parameters is shown in Figure 1.
For more discussion of the physical and observational
motivation for this model, see the original paper, Li et al.
(2016).

This model is applied to each DM halo separately and we
create high-resolution maps from the resulting CO luminosities
by converting the total luminosity in a given voxel into
brightness temperature. These maps were created using the
publicly available limlam_mocker code.11 Next, we con-
volve these maps with the (Gaussian) instrumental beam
profile, degrade to the low-resolution voxel size used in the
analysis, and, finally, we add Gaussian uncorrelated noise with
standard deviation σT, as specified above.

3. Algorithms

The ultimate goal of this work is to constrain cosmological
and astrophysical parameters from CO line intensity observa-
tions. The computational engine for this work is a standard
Metropolis Markov chain Monte Carlo (MCMC) sampler (see,
e.g., Gilks et al. 1995), coupled to a posterior distribution with
a corresponding likelihood and prior. For this task to be
computationally tractable, though, the full CO line intensity
data set must first be compressed to a smaller set of observables

that may be modeled in terms of the desired astrophysical
parameters, fully analogous to how CMB sky maps are
compressed to a CMB power spectrum from which cosmolo-
gical parameters are derived (e.g., Bond et al. 2000). As
described above, we adopt the power spectrum and the VID as
representative observables, each of which may be approxi-
mated in terms of multivariate Gaussian random variables.
However, in order to perform a joint analysis of these two
observables, we need to construct their joint covariance matrix,
and that is the primary goal of this section. Before doing
that, however, we review for completeness each observable
individually, and our posterior sampler of choice, referring to
relevant literature for full details.

3.1. The Power Spectrum

The estimated power spectrum, P(ki), is calculated simply by
taking the 3D Fourier transform of the temperature cube,
binning the absolute squared values of the Fourier coefficients
according to the magnitude of corresponding wave number k,
and averaging over all the contributions within each bin. For a
Gaussian map, the Fourier components within each bin follow
a perfect normal distribution with mean zero and variance
given by the value of the power spectrum. For a non-Gaussian
field, the distribution of the Fourier components is more
complicated, and thus the power spectrum does not contain all
the statistical information in the map. We expect the CO signal
to form a highly non-Gaussian map, therefore, in this paper we
simply consider the power spectrum as a useful observable that
carries some, but far from all, of the statistical information in
the map.
As an observable, the power spectrum needs to be

accompanied by a covariance matrix x º ( ( ) ( ))P k P kCov ,ij
P

i j

in the analysis, since there are correlations between the power
spectrum at different k values.

3.2. The Voxel Intensity Distribution

We consider the VID as another observable, complementary
to the PS and more closely related to the luminosity function.
Unlike in many other works on ( )D analysis (e.g., Lee et al.

2009; Glenn et al. 2010; Vernstrom et al. 2014; Breysse et al.
2017; Leicht et al. 2019), we do not try to estimate the VID
analytically, rather we estimate it based on simulations. This
allows us to fully take into account the effects of the beam,
clustering, and covariance between temperature bins in a very
straightforward manner.
We consider two contributions to the VID, namely the CO

signal itself and the instrumental noise. Together they result in
the the full probability distribution of voxel temperatures,
( )T , where T is the observed brightness temperature from a
voxel. Since we assume the noise to be uniformly distributed
over all voxels in the observed field and assume that the CO
signal itself is statistically homogeneous and isotropic, the total
probability distribution, ( )T , is the same across all voxels.
The basic observable related to the VID are the temperature

bin counts (i.e., the histogram of voxel temperatures), Bi. The
expectation value of these are given by the VID itself,

òá ñ =
+ ( ) ( )B N T dT , 4i

T

T

vox
i

i 1

where Nvox is the number of voxels observed and Bi is the
number of voxels with a temperature between Ti and Ti+1.

Figure 1. Plot of CO luminosity, LCO, as a function of dark matter halo mass,
Mhalo, in the Li et al. (2016) model. Here, s d a b s =( ), log , , , LSFR MF CO( )0.3, 0.0, 1.17, 0.21, 0.3 (our fiducial model), and we have evaluated the
function at redshift 2.9. The solid line corresponds to the mean relation with no
scatter added, while the shaded region corresponds to the 95% confidence
intervals after adding log-normal scatter at the two appropriate steps.

11 https://github.com/georgestein/limlam_mocker
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If the temperatures of all the voxels that we sample were
completely independent, then each of the voxel bins would be
approximately independent and would follow a binomial
distribution with variance = á ñ - á ñ( ) ( )B B B NVar 1i i iind vox .
However, even in this ideal case they would not be perfectly
independent. We only have a finite number of voxels, and,
therefore, if one bin contains a number of voxels above
average, then the other bins must have a number lower than
average.

In general, the samples will not be independent for many
reasons, including correlated sky or noise structures and
processing effects, and we therefore need the full covariance
matrix between bins, x º ( )B BCov ,ij

B
i j . This covariance matrix

will depend on the DM density field, the CO bias, and the
luminosity function, and we will estimate it using simulations.

3.3. The Joint PS+VID Covariance Matrix

The main missing component in the above method is
definition of a joint power spectrum and VID covariance
matrix. By having access to the computationally cheap yet
realistic Monte Carlo simulations described above, we can
approximate this matrix with simulations. In addition to giving
us covariance matrices to do our analysis, this also allows us to
check under what conditions the full covariance matrix is
necessary and when we can get away with assuming that
individual samples are independent.

In this paper, we start with 161 independent simulated light-
cone cubes of DM halos, each covering about 9°.6×9°.6 on
the sky and a frequency range between 26 and 34 GHz,
corresponding to redshifts between 2.4 and 3.4. The frequency
dimension is divided equally into 512 frequency bins, each
spanning δν≈15.6MHz, corresponding to a redshift resolu-
tion of δz≈0.002. Since the COMAP field only spans
1°.5×1°.5 on the sky, we sub-divide each of the 9°.6×9°.6
light-cone cubes, after beam convolution, into 36 square fields,
each covering 1°.5×1°.5 , resulting in a total of 5796 semi-
independent sky realizations. The final pixelization of these
maps is a 22×22 grid of square pixels, resulting in a pixel size
of dq » ¢4.1. To these maps, we add uniformly distributed
white noise at the appropriate levels for the COMAP1 and
COMAP2 experiment setups described above.

When choosing the pixel size to use for the analysis, we
follow Vernstrom et al. (2014). They show that, for ( )D
analysis, choosing a pixel size to be equal to the FWHM of the
beam is a good tradeoff between picking a small pixel size to
include the maximal information, and choosing a larger pixel
size to reduce the pixel to pixel correlations induced by
the beam.

We combine our two observables into a joint one-
dimensional vector of the form

= ( ) ( )d P B, , 5i k ii

where Pki is the binned power spectrum and Bi are the
temperature bin counts. Let us first consider the ideal case in
which all elements in this vector are independent and the
Fourier components are approximately Gaussian. In that case
we can compute the expected variance, which we will simply
call the independent variance, analytically,

= á ñ( ) ( ) ( )P P N kVar , 6k k iind
2

modesi i

= á ñ - á ñ » á ñ( ) ( ) ( )B B B N BVar 1 , 7i i i iind vox

where Nmodes(ki) is the number of modes in the ith k bin and
where we have introduced the notation Varind(di) for this
conditionally independent variance.
With this notation in hand, we define a “pseudo-correlation

matrix” as

x
º ( ) ( ) ( )c

d dVar Var
, 8ij

ij

i jind ind

where, as in Section 3.4, ξij is the full covariance matrix. Note
that cij is the exact correlation matrix in the limit that Varind(di)
is the true full variance. An important advantage of the pseudo-
correlation matrix, however, is the fact that Varind(di) may be
estimated directly from the average data itself, and this is
required for our MCMC procedure to be sufficiently fast.
The full covariance matrix ξ is estimated for the model

described by Li et al. (2016), adopting the fiducial parameters
θ0, using the set of 5796 simulations described above.
However, for the MCMC sampler described in Section 3.4,
we actually need the full covariance matrix, corresponding to
different model parameters θ, at each step in the Markov chain.
Generating the full covariance matrix with the above procedure
at each MC step is clearly not computationally feasible and we
therefore need to approximate this somehow.
With regard to this last point, we introduce the following

proposal: we assume that the full covariance matrix scales,
under a change of model parameters from θ0 to θ, the same way
as the independent variance, Varind(di),

x q x q»
q q

q q
ˆ ( ) ( ) ( ) ( )

( ) ( )
( )d d

d d

Var Var

Var Var
, 9ij ij

i j

i j

0
ind ind

ind ind
0 0

where q ( )dVar iind
0 is the independent variance for the fiducial

model and q ( )dVar iind is the independent variance for arbitrary
parameters θ. Since this latter function only depends on the
average quantities á ñdi , it is computationally straightforward to

compute x qˆ ( )ij at any position in an MCMC sampler. Note also

that x qˆ ( )ij is, by construction, positive definite, as required for a
proper covariance matrix.
For a noise-dominated experiment, where all samples

are approximately independent, the independent variance,
Varind(di), is the correct variance and Equation (9) is the
correct scaling of the covariance matrix. However, we use this
scaling as a first approximation even in cases where there is
some covariance in the data.
Intuitively, Equation (9) is equivalent to postulating that the

pseudo-correlation matrix, cij, is approximately constant (i.e.,
independent of the specific parameters in question). For real-
world applications, we recommend testing this assumption
explicitly by computing the covariance matrix by brute force
simulation for a few extreme parameter combinations drawn
from the Markov chains produced during the analysis.
The above prescription applies straightforwardly to single-

field observations as, for instance, planned for COMAP1. In
contrast, COMAP2 will, under our assumptions, span N=4
independent but statistically identical fields. Since the mean
vector of observables evaluated across those four fields equals
the average of the four corresponding independent observable
vectors, the full covariance matrix is simply given by the
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single-field covariance matrix divided by the number of fields:

x =
x ( ). 10ij

N
N

field ij
1 field

Note that cij then, assuming the fields are of the same size, only
depends on the noise level per field, so for a given noise level
per field, cij is independent of the number of fields.

Finally, we note that the total number of degrees of freedom
in our joint PS+VID statistic is in this paper equal to 45,
corresponding to 20 power spectrum bins and 25 VID bins. For
this number of degrees of freedom, a set of 5796 (semi-
independent) simulations provides a very good estimate of all
numerically dominant components of the covariance matrix,
including both the diagonal and the leading off-diagonal
modes, and ξij is well conditioned.

3.4. Posterior Mapping by MCMC

As previously mentioned, we use an MCMC algorithm to
sample from the posterior distribution of the LCO(Mhalo) model
parameters, q s d a b s= { }, log , , , LSFR MF CO . This posterior dis-
tribution is, as usual, given by Bayes’ theorem,

q q qµ( ∣ ) ( ∣ ) ( ) ( )P d P d P , 11i

where d represents our compressed data set, q( ∣ )P d is the
likelihood defined below, and P(θ) is some set of priors. We
use the emcee package (Foreman-Mackey et al. 2013) and its
implementation of an affine-invariant ensemble MCMC
algorithm, with 142 walkers.

We use a burn-in period of 1000 steps, and use the next 1000
steps for the posterior estimation.

We assume a Gaussian likelihood for our observables di of
the form (up to an additive constant)

åq x x- = - á ñ - á ñ +-( ∣ ) [ ]( ) [ ] ∣ ∣ ( )P d d d d d2 ln ln , 12
ij

i i ij j j
1

where the means á ñdi depend on the model parameters θ, and
the covariance matrix ξij is approximated by the expression
given in Equation (9). (Note that we do not need to assume that
the low-level data are Gaussian, but only that the compressed
observables may be well approximated by a multivariate
Gaussian distribution. Due to the central limit theorem, this is
in practice very often an excellent approximation.)

For both the power spectrum and the low and intermediate
temperature VID bins, for which there is a large number of
voxel counts per bin, this Gaussian approximation holds to a
high degree. However, for the highest VID temperature bins,
where there are only a few voxel counts per bin, the discrete
nature of the bin count may become relevant and the full
binomial distribution should, in principle, be taken into
account. However, this effect can also be easily remedied by
increasing the bin width, albeit at the cost of a slight loss of
information, as is suggested in Vernstrom et al. (2014), and we
therefore neglect it in the following, since our primary focus is
the dominant Gaussian component of the likelihood. A more
thorough analysis may take this issue into account either
analytically or by simulations.

An advantage of using a Gaussian likelihood for the VID is
that it gives us a straightforward way to take into account the
correlations between temperature bins apparent in the

covariance matrix, ξij (e.g., in Figure 2). For another approach
to building up a ( )D likelihood, see Glenn et al. (2010).
To estimate á ñdi , we compute 10 maps of the survey volume

at each step in the MCMC chain using the current model
parameters θ with different DM halo realizations (randomly
drawn from 252 independent catalogs corresponding to the
survey volume). The specific number of realizations, 10 in our
case, represents a compromise between minimizing the sample
variance in the estimate of á ñdi and maintaining a reasonable
computational cost per MC step. Finally, we bin all of the halos
in the 10 realizations according to their luminosity and use this
histogram to estimate the luminosity function at the current
values of θ. This way the MCMC procedure gives us the
luminosity function at different points in parameter space,
sampled according to the posterior of the model parameters,
which we can use to derive constraints on the luminosity
function itself.
We adopt the same physically motivated priors as discussed

by Li et al. (2016). Specifically, these read

s =( ) ( ) ( )P 0.3, 0.1 13SFR

d =( ) ( ) ( )P log 0.0, 0.3 14MF

a =( ) ( ) ( )P 1.17, 0.37 15

b =( ) ( ) ( )P 0.21, 3.74 16

s =( ) ( ) ( )P 0.3, 0.1 , 17LCO

where  m s( ), corresponds to a Gaussian distribution with
mean μ and standard deviation σ. Additionally, we require
the two logarithmic scatter parameters, σSFR and sLCO, to be
positive. We choose the mean of all these distributions as the
fiducial model, θ0.
To quantify the importance of joint PS+VID analysis, we

perform the above analysis both with each observable
separately and with the joint analysis. The main result in this
paper may then be formulated in terms of the relative
improvement on the CO luminosity function uncertainty
derived from the joint analysis to those found in the
independent analyses.
When calculating our observables (PS and VID), we assume

that our survey volume can be treated as a rectangular grid of
voxels with constant co-moving volume. We also neglect the
evolution of our observables over redshifts between z=2.4
and 3.4. That is, we assume that samples from different
redshifts are drawn from the same distribution, whether they
are power spectrum modes or voxel temperatures. We also
assume that the instrument beam is achromatic and is equal to
the value at the central frequency. This is of course just an
approximation that we make in order for the analysis to be
simple. If we were doing experiments with higher signal to
noise, we might divide our data into two different redshift
regions and do an independent analysis of each region. This
could allow us to study the redshift evolution of the
observables. For COMAP (1 and 2), however, we are probably
best off combining all the data, like we do here, in order to
increase the overall signal to noise.
Finally, since COMAP will not measure absolute zero levels,

we subtract the mean from all maps. For the power spectrum,
this has a negligible impact, as it simply removes one out of
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Nvox modes. However, it has a significantly higher impact for
the VID. Specifically, it makes it much harder to distinguish a
potential background of weak sources from noise. Indeed, as

shown by Breysse et al. (2017), removing the monopole makes
it much harder to detect a possible low luminosity cutoff in the
CO luminosity function using the VID.

Figure 2. Estimated pseudo-correlation matrix of observables di, = ( ) ( ( ) ( ) )c d d d dCov , Var Varij i j i jind ind , based on simulated maps with and without noise. The
first block in each matrix corresponds to the power spectrum and the second block to the VID. Top: signal plus white noise corresponding to the COMAP1 experiment
(s m» 11 Kvoxel ). Middle: signal plus white noise corresponding to the COMAP2 experiment (s m» 8 Kvoxel ). Bottom: signal alone. Note that here we have changed
the color scale. Left: covariance matrices without beam smoothing. Right: covariance matrices with q = ¢4FWHM beam smoothing.
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4. Results

We are now ready to present the main numerical results from
our analysis, starting with an inspection of the joint PS+VID
covariance matrix itself.

4.1. Visual Inspection of the PS+VID Covariance Matrix

Figure 2 shows the pseudo-correlation matrices, cij, for our
two experimental setups, as well as for pure signal alone, for
reference. In order to illustrate the effect of the beam, we show
covariance matrices from maps both without and with beam
smoothing in the left and right columns, respectively.

The first thing to notice is that instrumental noise
significantly reduces the numerical values of the normalized
covariance matrices, bringing it closer to the independent white
noise case for which cij=δij. This agrees with intuition, since
the noise itself is white and uncorrelated.

Beam smoothing also leads to weaker correlations. This is
mainly due to the beam diluting the signal at small scales,
where the correlation is otherwise strongest.

Next, we notice that the cross-correlations between the
power spectrum and VID are of the same order of magnitude as
the correlations internal to each observable itself. Thus, it is
essential to account for all these correlations in any joint PS and
VID analysis, as is done in the present paper.

Finally, we note that when designing an experiment like
COMAP, one of the important trade-offs involves observation
time per field. To obtain a fast signal detection it is in general
advantageous to observe deep on the smallest possible field.
However, this only holds true while the signal-to-noise per
voxel is significantly less than unity. When the noise starts to
become comparable to the signal, the signal-induced voxel–
voxel correlations starts to become important, and the effective
uncertainties no longer scale as  t( )1 , where τ is the
observation time per pixel. Generally, in such a tradeoff, any
significant correlations between different power spectrum
modes or voxel temperatures will tend to favor larger survey
area or multiple fields, both effectively leading to more
independent samples, and thereby higher overall integration
efficiency.

4.2. Luminosity Function Constraints

We are now ready to present both individual and joint PS
+VID constraints on the CO luminosity function, which are
summarized in Figure 3 for COMAP1 (left column) and
COMAP2 (right column). The top row shows the constraints
obtained from the power spectrum alone; the middle row shows
the constrains obtained from the VID alone; and the third row
shows the constraints from the joint analysis. In each panel, the
shaded colored region shows the 95% credibility region from
the MCMC samples and the solid line with the same color
shows the posterior median. The purple solid line shows the
average luminosity function obtained from the mean of all
available halo catalogs, and thus represents the ensemble
average of our input model. Note that the colored regions
correspond to one single realization and the uncertainties
therefore contain contributions from instrumental noise, cosmic
variance, and sample variance. The agreement between the
estimated confidence regions and the ensemble mean is quite
satisfactory in all cases, with uncertainties that appear neither
too large nor too small.

Considering first the individual PS and VID estimates,
shown in the top two rows, we see that the two observables are
indeed complementary. In particular, the VID primarily
constrains the high luminosity end of the luminosity function,
while the power spectrum imposes relatively stronger con-
straints on the low luminosity end. This makes sense
intuitively, since the VID is essentially optimized to look for
strong outliers above the noise, whereas the power spectrum
represents a weighted mean across the full field for each
physical scale. It is interesting to note, however, that the VID
provides, on average, stronger constraints on the luminosity
function than the power spectrum does.
Due to this complementarity, the joint estimator provides the

strongest constraints of all. To make this point more explicit,
the fourth row compares the uncertainties of the independent
power spectrum and VID analyses to the joint constraints. Of
course, there is a significant amount of cosmic variance in each
of these functions and the precise numerical value of the
uncertainty ratio therefore varies significantly with luminosity;
but the mean trend is clear: The individual analyses typically
result in 20%–70% larger uncertainties than the joint analysis
when averaged over luminosities between LCO=104–107 Le.
Over 10 cosmological realizations, the PS and VID resulted in,
on average, 58% and 30% larger uncertainties (in dex)
individually, than the joint analysis. This is the main novel
result presented in this paper.

4.3. Posterior Distribution of Model Parameters

Lastly we present the constraints of the model parameters
themselves. When doing the MCMC posterior mapping we
explore the parameter space of the Li et al. (2016) LCO(MHalo)
model. Figure 4 shows the posterior distribution for these
parameters derived from one realization of the COMAP2
experiment (the same realization as the COMAP2 results in
Figure 3).
Results for PS, VID, and joint PS+VID analysis are shown

in blue, red, and black, respectively. Prior distributions are
shown in green. The two curves of each color correspond 68%
and 95% credibility regions.
We see that the two parameters that are mainly constrained

are α and β, the two parameters from the average LCO–LIR
relation. These two parameters are fairly degenerate, and the
direction in which they are degenerate is given roughly by the
line α=−0.1β + 1.19 (Li et al. 2016). In Figure 5, we show
the luminosity function for different points on this line. For the
figure, the values of s s, LSFR CO, and dlog MF are fixed at 0.3,
0.3, and 0.0, respectively. Although the overall signal strength,
at least in terms of detectability, is fairly constant along this
line, the shape of the luminosity function changes significantly.
Lower values of alpha imply a more steep power-law relation
between LCO and LIR leading to more sources with very high or
very low luminosities. We see this as a flattening of the
luminosity function. In such a case, a larger fraction of the
overall signal will be given by high-luminosity sources.
The other parameter that is also slightly constrained is the

log-normal scatter parameter from the LCO–LIR relation, sLCO.
This parameter is only slightly more constrained compared to
the prior, with the highest values of sLCO being disfavored. The
posterior of the other scatter parameter, σSFR, is basically given
by the corresponding prior (i.e., this parameter is not very well
constrained by the experiment), although, as expected from the
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Figure 3. Constraints on the luminosity function from simulated experiments COMAP1 (left) and COMAP2 (right). The shaded area corresponds to 95% credibility
intervals, solid lines correspond to the median, while the purple curve corresponds to the average luminosity function derived from all the available halo catalogs (i.e.,
the ensemble mean). Top row: constraints derived using only the power spectrum ( )P ki as the observable. Middle row: constraints derived using only the temperature
bin counts Bi as the observable. Bottom row: constraints derived by a joint analysis using both the power spectrum ( )P ki and the temperature bin counts Bi as
observables. Bottom: comparison of the uncertainty of the luminosity function constraints in dex, i.e., DF º F - Flog log10 97.5% 10 2.5%.
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fact that the scatter parameters have basically the same effect,
we see signs of the degeneracy between them in the posterior.

Interestingly, the normalization parameter in the SFR–LIR
relation, dlog MF, actually has a posterior that is wider than the
prior. This may be because the best fit of this parameter from
each of the different patches have an intrinsic scatter larger than
the scatter in the prior. We note that we see the same effect in
Li et al. (2016; their Figure 7).

From the mean relations in the Li et al. (2016) model, we
have log LCO∼−β−log δMF. Intuitively, we would then
expect dlog MF to be completely degenerate with β. However,
since the SFR–LIR is much better constrained by observations
than the LCO–LIR relation, the prior on dlog MF is much tighter
than the one on β. The degeneracy thus prevents us from

constraining d buntillog MF is constrained to a comparable
level.

5. Discussion

We have developed a joint power spectrum and VID analysis
for the CO luminosity function in the context of the COMAP
CO intensity mapping experiment. We have implemented an
efficient approach to estimating the joint covariance matrix for
these two observables and have shown that accounting for both
one- and two-point correlations leads to 20%–70% smaller
uncertainties on the CO luminosity function for both COMAP1
and COMAP2.
The critical computational engine in our approach is the

construction of fast yet semi-realistic simulations of the signal

Figure 4. Posterior distributions for the Li et al. (2016) model parameters for a single realization of the COMAP2 experiment (the same realization as the COMAP2
results in Figure 3). Results for PS, VID, and joint PS+VID analysis are shown in blue, red, and (slightly bolder) black, respectively. Prior distributions are shown in
green. The two curves of each color correspond to 68% and 95% credibility regions. The numbers on top of each column correspond to the 68% credibility interval for
each parameter from the PS+VID analysis. We see that while the posterior of the two scatter parameters, sSFR and sLCO, is mostly set by the prior, the posterior on

dlog MF, from the SFR–LIR relation, is actually slightly wider than the prior, suggesting a significant intrinsic scatter in estimates of this parameter. These results are
consistent with the corresponding results in Figure 7 in Li et al. (2016). The two parameters that are actually strongly constrained by the simulated experiment are α
and β, the two parameters from the –L LCO IR relation, and this figure shows that, at least for this realization, the constraints on these two get significantly improved in
the combined analysis (PS+VID) as compared to analysis using the individual observables. This figure was created using the publicly available code (https://github.
com/dfm/corner.py) corner (Foreman-Mackey 2016).
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in question. These simulations are based on the computation-
ally cheap peak patch DM halo simulations produced by Bond
& Myers (1996) and Stein et al. (2019), coupled to the semi-
analytic CO luminosity model of Li et al. (2016). Of course, the
results we derive are correspondingly limited by how well the
model reproduces the true cosmological signal. If the true
signal is significantly more complex than the model predicts,
the constraints in Figure 3 will not be reliable.

The strength of the constraints on the CO luminosity
function will depend on the overall level of the CO signal,
which is highly uncertain. However, given the same rough
level of signal, we expect the constraints on the luminosity
function at the high luminosities to be less model dependent
than the constraints on the LCO–Mhalo relation or the luminosity
function at lower luminosities. This is because the high-
luminosity sources leave a fairly unique imprint on the maps
that does not depend on the specific model used.

Additionally, we expect that the relative merits of using the
PS or the VID as observables will change depending on the
properties of the signal. In particular, anything that increases
the shot noise of the signal, like a a strong galactic duty cycle, a
large intrinsic scatter in luminosities or just a more top-heavy
luminosity function, will make the resulting map more non-
Gaussian, tending to favor observables like the VID more as
compared to the PS. We can see this effect directly in Figure 4.
The VID is better, compared to the PS, at ruling out low values
of α and high values of sLCO, both of which correspond to cases
where we would have a more top-heavy luminosity function
and thus more shot noise.

We also expect the map to be more non-Gaussian on small
scales than on large, so a wide survey with low resolution will
tend to favor the PS, relative to the VID, more than a narrower
high-resolution survey.

While the issues of model dependence are less relevant for
low signal-to-noise measurements, where we are just trying to
establish the rough level of the signal, they will become more
important as the measurements improve.
Another potential issue with the simulations used in this

paper is the minimum DM halo mass of ´ M2.5 1010 . While
the model used here predicts that only a small fraction of the
CO signal would come from halos lighter than this (see Li et al.
2016 and Chung et al. 2017), other models could disagree. If
fact, searching for a low luminosity cutoff in the CO luminosity
function is an interesting target for CO intensity mapping, and
simulated halo catalogs with a smaller minimum DM halo mass
would be useful both for forecasts and inference in such a
scenario.
In general, it will be important to continuously improve the

simulation pipeline as the experiment proceeds in order to
account for more and more cosmological, astrophysical, and
instrumental effects. However, the most important point in our
approach is the fact that all such effects may be seamlessly
accounted for, as long as the simulation procedure is
sufficiently fast in order to be integrated into the MCMC
procedure.
It should also be noted that our approach may be generalized

in many different directions. For instance, the CO luminosity
function does not play any unique role in our analysis, but is
rather simply one specific worked example of a particularly
interesting astrophysical function to be constrained. Many other
functions may be constrained in a fully analogous manner,
including, for instance, non-parametric LCO(Mhalo) models, or
any of the parameters that are involved in converting the DM
halo distributions to CO luminosities. The method is also not
specific to CO intensity mapping, but should be equally well
suited for other lines, or a combination of lines (Chung et al.
2018). Indeed, it should work for any type of random fields for
which the covariance matrix must be estimated by simulations.
Finally, we also note that there is nothing special about the
power spectrum or VID as observables, but any other efficient
data compression can be equally well included in the analysis,
as long as the required compression step is sufficiently
computationally efficient.
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Figure 5. Plot of the CO luminosity function in the Li et al. (2016) model for
different values of α and β. The colors of the lines indicate the values of α, the
values of s s d, and logLSFR MFCO are fixed at 0.3, 0.3, and 0.0, respectively,
while the value of β is determined from the relation a b= - +0.1 1.19. This
line corresponds roughly to the direction along which α and β are degenerate.
Although the overall detectability of the signal remains roughly constant along
this line, we see that the shape of the luminosity function changes significantly.
We see that lower values of α correspond to less steep high-luminosity tails in
the luminosity function, meaning that a larger proportion of the overall signal
comes from high-luminosity sources.
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ABSTRACT

We describe the BeyondPlanck project in terms of motivation, methodology and main products, and provide a guide to a set of
companion papers that describe each result in fuller detail. Building directly on experience from ESA’s Planck mission, we implement
a complete end-to-end Bayesian analysis framework for the Planck Low Frequency Instrument (LFI) observations. The primary
product is a full joint posterior distribution P(ω | d), where ω represents the set of all free instrumental (gain, correlated noise,
bandpass etc.), astrophysical (synchrotron, free-free, thermal dust emission etc.), and cosmological (CMB map, power spectrum
etc.) parameters. Some notable advantages of this approach compared to a traditional pipeline procedure are seamless end-to-end
propagation of uncertainties; accurate modeling of both astrophysical and instrumental effects in the most natural basis for each
uncertain quantity; optimized computational costs with little or no need for intermediate human interaction between various analysis
steps; and a complete overview of the entire analysis process within one single framework. As a practical demonstration of this
framework, we focus in particular on low-` CMB polarization reconstruction, paying special attention to the LFI 44 GHz channel. We
find evidence of several significant residual systematic effects that are still not accounted for in the current processing, but must be
addressed in future work. These include a break-down of the 1/ f correlated noise model at 30 and 44 GHz, and scan-aligned stripes
in the Southern Galactic hemisphere at 44 GHz. On the Northern hemisphere, however, we find that all results are consistent with the
ΛCDM model, and we constrain the reionization optical depth to τ = 0.067 ± 0.016, with a low-resolution χ2 probability-to-exceed
of 16 %. The marginal CMB dipole amplitude is 3359.5 ± 1.9 µK. This analysis framework can play a central role in the analysis of
several current and future high-sensitivity CMB experiments, including LiteBIRD. All software is made publicly available under an
OpenSource license, and both codes and products may be obtained through http://beyondplanck.science.

Key words. ISM: general – Cosmology: observations, polarization, cosmic microwave background, diffuse radiation – Galaxy:
general
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1. Introduction

1.1. CMB cosmology

According to the current cosmological concordance model, the
observable universe came into existence some 13.8 billion years
ago in a process often referred to as the Big Bang. While the
physical laws underpinning this singular event remain unknown,
it is a testament to the success of modern cosmology that physi-
cists today are able to measure and model the evolution and en-
ergy content of the universe to exquisite precision, starting only
a fraction of a second after the Big Bang.

Among the most important cosmological observables is the
cosmic microwave background (CMB), first detected by Penzias
& Wilson (1965). This leftover heat from the Big Bang fills the
entire universe, and may today be observed as a nearly isotropic
blackbody signal with a temperature of 2.7255 K (Fixsen 2009).
Initially, CMB photons were trapped locally within a dense
electron–proton plasma by Thomson scattering. However, once
the mean plasma temperature fell below 3000 K as the Universe
expanded, electrons and protons combined into neutral hydrogen
atoms, and the photons were free to move throughout the en-
tire observable universe, with almost no further scattering. This
event took place some 380 000 years after the Big Bang, at a
time often referred to as the recombination epoch. To any ob-
server, the resulting photons appear to come from a so-called
last-scattering surface, a sphere corresponding to a light travel
distance of just under the entire history of the universe.

While the CMB field is very nearly isotropic, it does exhibit
small spatial variations at the O(30 µK) level (e.g., Hu & Do-
delson 2002, and references therein). These fluctuations are pro-
duced primarily by variations in the local gravitational potential,
temperature, density, and velocity at the last-scattering surface.
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Fig. 1. Planck 2018 Commander CMB temperature (top panel) and ther-
mal dust polarization amplitude (bottom panel) maps. Reproductions
from Planck Collaboration IV (2020).

Smaller amplitude fluctuations arise from various secondary in-
teractions taking place after the photons leave the last-scattering
surface, for instance through gravitational lensing or Thomson
scattering in the hot, ionized medium in clusters of galaxies. It
is precisely by measuring and modelling all these small varia-
tions that cosmologists are able to decipher the history of the
universe in ever greater detail. The currently best-fit cosmolog-
ical model derived from this work is often referred to as the
ΛCDM model, which posits that the universe is isotropic and
homogeneous on large scales; that it started in a hot Big Bang;
that it underwent a brief period of exponential expansion called
inflation that seeded the universe with Gaussian random density
fluctuations drawn from a scale-invariant power spectrum; and
that the energy contents of the universe comprise 4.9 % baryonic
matter, 26.5 % cold dark matter, and 68.5 % dark energy (Planck
Collaboration VI 2020). Flat spatial curvature is also frequently
assumed.

The rich cosmological information embedded in the CMB
is not, however, easy to extract. Even the most dominant physi-
cal effects produce only O(10−5) temperature fluctuations in the
CMB. A primary goal for next-generation CMB experiments is
the detection of primordial gravitational waves through the sub-
tle polarization they imprint on the CMB (e.g., Kamionkowski &
Kovetz 2016, and references therein). These so-called B-modes
are likely to have an amplitude no larger than 30 nK, or a relative
amplitude smaller than O(10−8).

The fact that current CMB observations reach the µK level
in the face of instrument noise and systematics is a testament to
the effort of many scientists and engineers in this field, and to
the time and money they have spent. Here, we list only a few of
the results of five decades of observational milestones. NASA’s

COBE mission produced the first highly accurate measurement
of the thermal spectrum of the CMB (Mather et al. 1994) and
the first detection of large scale fluctuations in the CMB (Smoot
et al. 1992). The first high-fidelity map of smaller scale CMB
fluctuations was made by the BOOMERanG team (de Bernardis
et al. 2000), and the first detection of polarized fluctuations by
DASI (Kovac et al. 2002). These are among the more than 50
past and present CMB projects, all of which have contributed to
technological innovations or scientific breakthroughs.

Two space missions, however, are primarily responsible for
today’s cosmological concordance model. They are NASA’s
Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al.
2013) and ESA’s Planck (Planck Collaboration I 2020) satellite
missions. WMAP was the first experiment to take full advan-
tage of the exquisite thermal stability at Earth’s second Lagrange
point (L2), and observed the CMB sky for nine years (2001–
2010) in five frequency bands (23–94 GHz) with precision un-
precedented at the time.

1.2. Planck

The state-of-the-art in all-sky CMB observations as of 2020 is
defined by Planck (Planck Collaboration I 2020). Planck ob-
served the CMB sky for four years (2009–2013) in nine fre-
quency bands (30–857 GHz), with three times higher angular
resolution and ten times higher sensitivity than WMAP. Its orig-
inal design goal was to measure the primary CMB temperature
fluctuations with a precision limited only by fundamental phys-
ical processes, including cosmic variance, not by instrumental
sensitivity (Planck Collaboration 2005).

Planck comprised two separate instruments within a com-
mon focal plane. One was the Low Frequency Instrument (LFI;
Planck Collaboration II 2020), which employed coherent High
Electron Mobility Transistor (HEMT) radiometers with center
frequencies near 30, 44 and 70 GHz, each with a fractional band-
width of roughly 20 %. The other was the High Frequency In-
strument (HFI; Planck Collaboration III 2020), which employed
spider-web and polarization sensitive bolometers with center fre-
quencies of 100, 143, 217, 353, 545 and 857 GHz, each with a
fractional bandwidth of 25 %.

Two different detector technologies were required to span
Planck’s frequency range. The use of two very different detec-
tor technologies also provided crucial cross-checks against some
subtle instrumental errors. Planck’s wide frequency range fully
covered most of the spectrum of a 2.7255 K blackbody, but more
crucially allowed for the removal of contaminating foreground
signals (e.g., Leach et al. 2008). These arise from synchrotron
emission from relativistic electrons moving in the magnetic field
of the Galaxy, thermal emission from warm Galactic dust and
bremsstrahlung emission from ionized gas, as well as microwave
emission from extra-galactic sources. This list is not exhaustive;
but each mechanism for foreground emission has a unique spa-
tial distribution on the sky and a unique, non-blackbody spec-
trum which allows it to be distinguished from the CMB. The
preferred method for separating cosmological fluctuations in the
CMB from astrophysical foreground signals is to map the sky
at multiple frequencies, and then perform a joint fit to this set of
maps while taking into account the particular spatial and spectral
behaviour of each foreground. These considerations drove the
design of Planck (Planck Collaboration 2005). The capability to
detect polarized signals was added at the seven lowest frequency
bands, from 30 to 353 GHz. Figure 1 shows the CMB tempera-
ture fluctuation and the polarized thermal dust emission maps as
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derived from Planck observations, which rank among the most
iconic results from the experiment.

The Planck satellite was launched to L2 on May 14th 2009
and deactivated on October 23rd 2013; it thus completed in total
almost 4.5 years of observations (Planck Collaboration I 2020).
Unlike the case for WMAP, both Planck instruments were cryo-
genically cooled. The last 18 months of operation included only
LFI measurements, as HFI exhausted its cooling capacity in Jan-
uary 2012.

The first Planck data release (denoted either “PR1” or 2013
here; Planck Collaboration I 2014) took place in March 2013,
and was based on the first 15.5 months of data, covering the full
sky twice. By and large, these measurements confirmed the cos-
mological model presented by WMAP and other previous exper-
iments, but with significantly higher signal-to-noise ratio. This
higher sensitivity also supported several truly groundbreaking
results, two of which were a 25σ detection of gravitational lens-
ing of CMB anisotropies (Planck Collaboration XVII 2014), and
a revolutionary new image of polarized thermal dust emission in
the Milky Way (Planck Collaboration XI 2014).

The 2013 release, however, did not include any CMB polar-
ization results. In addition, the initial angular power spectrum of
CMB anisotropies exhibited a ∼2 % shift in amplitude compared
to the earlier WMAP power spectrum (Planck Collaboration XV
2014). Both of these issues had a common origin, namely in-
completely controlled systematic errors arising from instrumen-
tal effects. As noted earlier, CMB observations are not easy: even
small errors in assumptions made about foregrounds or instru-
mental behaviour can have dramatic effects on the recovered
CMB signal. Examples of instrumental effects include: uncer-
tainties in the beam shape and far sidelobes; mis-estimation of
the frequency response of detectors, which can introduce tem-
perature to polarization leakage; unaccounted-for non-linearity
in the analog-to-digital converters (ADCs) used in each detector
chain; and uncertainties in the polarization properties of detec-
tors.

The Planck team grappled with all of these, as well as un-
certainties in foreground contamination, in the years between
2013 and the release of the final Planck results in 2020 (Planck
Collaboration I 2020). Very substantial investments of time and
money were made to develop increasingly accurate models of
the two Planck instruments; these allowed for more precise and
robust science results. We emphasize that the official LFI and
HFI pipelines evolved step-by-step in the post-launch period as
instrument-specific effects emerged due to increased calibration
accuracy. BeyondPlanck builds on all this accumulated expe-
rience in implementing a global approach to the data analysis
problem.

A major milestone in this iterative process was the second
Planck data release (“PR2” or 2015; Planck Collaboration I
2016), which for the first time included the full set of Planck ob-
servations (50 months of LFI data and 27 months of HFI data).
At this point, the polarization properties of both the LFI and
HFI instruments were sufficiently well understood to allow for
a direct measurement of CMB polarization on intermediate and
small angular scales (Planck Collaboration XI 2016). For HFI,
however, accurate large-scale polarization was still out of reach
due to systematic errors, and only LFI provided such constraints.
The original power spectrum discrepancy relative to WMAP was
tracked down to inaccuracies in the calibration procedure and
reference dipole values used for the Planck 2013 analysis, and
these were subsequently corrected in the 2015 release. With this
second data release, Planck finally fulfilled its promise of mea-
suring the primary CMB temperature fluctuations to the limits

set by astrophysical and cosmological effects (Planck Collabo-
ration I 2016).

1.3. Large-scale CMB polarization, the reionization optical
depth, and systematic errors

Planck analysis continued beyond 2015, with a particular em-
phasis on reducing large-scale polarization systematics (Planck
Collaboration I 2020). Both the importance and difficulty of this
specific issue may be summarized in terms of the reionization
optical depth, τ (e.g., Planck Collaboration Int. XLVII 2016).
This parameter is directly related to the epoch during which the
first stars were born, often called the epoch of reionization (e.g.,
Loeb & Barkana 2001, and references therein). According to de-
tailed measurements of the abundance of neutral hydrogen in the
universe from quasar spectra (the so-called “Lyman alpha for-
est”; Gunn & Peterson 1965), this event cannot have happened
later than about 1 billion years after the Big Bang, corresponding
to an optical depth of τ & 0.048. However, an independent mea-
surement of τ may also be derived through CMB observations,
by noting that the first stars or galaxies ionized their surrounding
medium, and thereby released large numbers of free electrons
off which CMB photons could scatter. Detailed models predict
a CMB polarization signal at the level of O(0.5 µK) on angular
scales larger than 10◦ (e.g., Alvarez et al. 2006, and references
therein).

While the scientific potential in establishing robust large-
scale polarization measurements is very high, potentially pin-
pointing a critical epoch in the history of the universe, the tech-
nical challenges are massive. The expected curl-free E-mode po-
larization signal is only about 1 % of the corresponding CMB
temperature fluctuations, and the signal is only visible on large
angular scales. Among all parameters in the cosmological con-
cordance model, the reionization optical depth is the most sus-
ceptible to systematic errors, and for this reason it is often
adopted as a monitor for residual errors.

To illustrate the difficulties associated with measuring τ, it is
interesting to consider its value as reported in the literature as a
function of time. The first CMB constraint was reported in the
first-year WMAP release, which claimed τ = 0.17 ± 0.04 cor-
responding to a reionization epoch of tr = 180+220

−80 Myr (Kogut
et al. 2003). Such an early reionization epoch imposed strong
limits on galaxy formation processes, and was not immediately
compatible with standard theories. However, this preliminary
measurement was based on the cross-correlation between tem-
perature and polarization fluctuations for which uncertainties
and degeneracies are large. Furthermore, it also did not account
for bias introduced by foreground emission.

After adding more data, and, critically, allowing more time
for understanding the data and controlling systematic errors, the
3-year WMAP data release resulted in a significantly revised es-
timate of τ = 0.089 ± 0.03, nearly doubling the time allowed
for structure formation (Page et al. 2007). This estimate was
derived directly from polarization-only measurements, and in-
cluded proper foreground corrections. Based on further improve-
ments and additional data, the reported 5-year WMAP posterior
mean value was τ = 0.085 ± 0.016 (Komatsu et al. 2009), while
in the 7-year release it was τ = 0.088 ± 0.015 (Larson et al.
2011), before finally settling on τ = 0.089 ± 0.014 in the 9-year
release (Hinshaw et al. 2013). This represented the state-of-the-
art before Planck in terms of large-scale CMB polarization mea-
surements.

As already mentioned, no CMB polarization measurements
were included in the first Planck 2013 release (Planck Collabo-
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ration I 2014). However, from temperature measurements alone,
the best-fit optical depth was constrained to τ = 0.097 ± 0.038,
in seemingly excellent agreement with the final WMAP polar-
ization results (Planck Collaboration XVI 2014). Then, in the
Planck 2015 release, the LFI data allowed the first indepen-
dent constraint on large-scale CMB polarization since WMAP
(Planck Collaboration XI 2016). At the same time, the HFI polar-
ization observations provided new and powerful constraints on
Galactic polarized thermal dust (Planck Collaboration X 2016),
to which the WMAP experiment was only marginally sensitive.
The combination of LFI CMB and HFI thermal dust polariza-
tion measurements alone resulted in τ = 0.064+0.022

−0.023, or 1.1σ
lower than the 9-year WMAP value. Furthermore, when com-
bining the WMAP large-scale polarization CMB data with the
same HFI polarization foreground data, the best-fit value was
τ = 0.067 ± 0.013, in full agreement with LFI.

The HFI large-scale CMB polarization data were not consid-
ered sufficiently mature for scientific analysis until 2016, when
new calibration, mapmaking, and simulation procedures had
been implemented in a code called SROLL (Planck Collaboration
Int. XLVIII 2016). Taking advantage of these new developments,
and leveraging the higher statistical power of the HFI data, the
reported estimate of the reionization optical depth was adjusted
further down by HFI to τ = 0.055 ± 0.009. In parallel, the LFI
procedure was improved by merging calibration and component
separation into one framework. Combined, these new analysis
procedures formed the basis for the third and final official Planck
release (Planck Collaboration I 2020), for which a final value of
τ = 0.053 ± 0.009 was reported. The good agreement with the
lower limit imposed by quasar measurements, τ > 0.048, implies
both that reionization by the first generation of stars occurred rel-
atively late, and that we can pin down the epoch of reionization
with precision.

While a stable and internally consistent ΛCDM model, in-
cluding τ, had emerged by the official end of the Planck con-
sortium in 2018, one could still see clear signatures of residual
systematics present in various subsets of the data. For HFI, sev-
eral internal cross-correlations did not agree with each other to
statistical precision (Planck Collaboration III 2020). For LFI the
44 GHz channel failed internal null tests (Planck Collaboration
II 2020), and there were clear discrepancies between the raw fre-
quency maps as seen by LFI and WMAP (Planck Collaboration
IV 2020), indicating that there were still issues to be resolved
within either LFI or WMAP, or both.

The last effort of the Planck collaboration to resolve these
questions was organized within the so-called NPIPE pipeline
(Planck Collaboration Int. LVII 2020). This name is short for
“NERSC pipeline”, a name deriving from the computer facilities
at which it is executed, namely the National Energy Research
Scientific Computing Center (NERSC). One unique feature of
this pipeline is its ability to analyze both LFI and HFI jointly
within the same framework. Combining some of the most pow-
erful features from each of the instrument analysis pipelines, this
approach has led to further reduction of systematic errors in both
data sets, as reported in Planck Collaboration Int. LVII (2020).
The resulting best-fit estimate of the reionization optical depth
from NPIPE reads τ = 0.058 ± 0.006 (Tristram et al. 2020).

An independent initiative to improve the Planck processing
was SROLL2(Delouis et al. 2019), which was a direct continu-
ation of the HFI SROLL effort (Planck Collaboration III 2020).
A defining feature of this approach is improved ADC correc-
tions, which in particular leads to more robust large-scale polar-
ization estimates. From the SROLL2 polarization analysis alone,

the current best-fit estimate of the reionization optical depth is
τ = 0.0566+0.0053

−0.0062 (Pagano et al. 2020).
A second independent initiative is called BeyondPlanck, and

this is the primary focus of the current paper and suite of com-
panion papers. The scope of this project is significantly different
than the previous efforts, in that BeyondPlanck primarily aims
at building a complete integrated end-to-end analysis pipeline
for current and future CMB experiments. The current work fo-
cuses in particular on the Planck LFI data set, although signif-
icant effort is spent ensuring that the tools are generalizable to
other experiments. Indeed, two examples of this are already pre-
sented within the current project, with preliminary applications
to WMAP (Bennett et al. 2013; Watts et al. 2020) and LiteBIRD
(Sugai et al. 2020; Aurlien et al. 2020).

Because instrumental systematics and residual foreground
contamination have such a dramatic impact on the large-scale
CMB polarization estimates, we will in this paper use the reion-
ization optical depth as a direct demonstration of the Beyond-
Planck framework, and our ultimate scientific goal is to estimate
the posterior distribution P(τ | d) from Planck LFI and WMAP
observations, d. The posterior summarizes our knowledge about
τ in the form of a probability distribution, and we will estimate
P(τ | d) within a strict Bayesian framework, with as few approx-
imations and little data selection as possible. We avoid the use
of cross-spectrum techniques, which generally reduce the sen-
sitivity of the final products to instrumental systematics. In this
project, we aim to do the opposite, and highlight the impact of
residual systematics, such that, if needed, they can be addressed
at a lower level of the analysis. As such, internal consistency,
goodness-of-fit and χ2 tests will play critical roles.

1.4. Lessons learned from Planck

Historically speaking, to understand the background and moti-
vation for the BeyondPlanck program, it is useful to revisit the
“Lessons learned from Planck,”1 as compiled by the Planck con-
sortium in 2016. In Section 9.6 (“Understanding the data”) one
can read the following:

In a project like Planck, “understanding the data” is
certainly the most significant driver of the quality of the
final products and science it can produce. This activity
must be at the core of the data processing. It covers a lot
of ground – photometry, optical response, time response,
calibration, systematic effects, etc. – all interlinked is-
sues that can be diagnosed at many different levels in the
data processing pipelines, from raw data streams to fin-
ished maps and scientific products.

(. . . ) In the early phases of Planck, much of the strat-
egy was based on separating the various elements of the
problem into independent parts. This was adequate for
a first treatment of the data. However, as the quality of
the data improved, it became harder to find and analyse
subtler non-ideal effects, and to do so required a more in-
tegrated approach, where a variety of effects were treated
simultaneously.

(. . . ) An example is the influence of foregrounds on
calibration: initially model foreground templates were
used to isolate the CMB dipole signal (the calibrator),
but in later stages the template had to be iterated within
the calibration pipeline to include and self-consistently
reduce the effects of polarization, sidelobes, dipoles, etc.

1 https://www.cosmos.esa.int/web/planck/lessons-learned
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(. . . ) As understanding of the data progresses, analy-
sis – and the teams doing it – need to become more and
more integrated, pulling in parts of the pipeline which
initially could be separated out.

As described in these paragraphs, the analysis approach
adopted by Planck became gradually more and more integrated
as the effective sensitivity of the data set improved through more
refined analysis, and new systematic effects were uncovered. In-
deed, only toward the end of the Planck mission period did it be-
come evident that the single most limiting factor for the overall
analysis was neither instrumental systematics nor astrophysical
foregrounds as such, but rather the interplay between the two. In-
tuitively speaking, the problem may be summarized as follows:
One cannot robustly characterize the astrophysical sky without
knowing the properties of the instrument, and one cannot char-
acterize the instrument without knowing the properties of the as-
trophysical sky. The calibration and component separation pro-
cedures are intimately tied together. By the time this issue was
fully understood, there were neither sufficient resources nor time
to redesign a complete Planck analysis pipeline from bottom-up.
An important organizational goal of the BeyondPlanck program
has therefore been to provide a financial structure that allows the
team to consolidate this experience into practical computer code,
and make this publicly available to the general community.

1.5. The next frontier: Primordial gravitational waves

While a statistically coherent analysis of existing data is un-
doubtedly both interesting and useful in its own right, it is impor-
tant to emphasize that none of the developments detailed in this
work are likely to impact the overall cosmological concordance
model to any significant degree. Indeed, looking at the big pic-
ture, the cosmological model has been remarkably stable even
before WMAP and Planck provided their high-precision mea-
surements; see, e.g., Wang et al. (2003) for a summary of pre-
WMAP measurements and constraints. The main achievement of
WMAP and Planck has been to refine this model to the level at
which cosmology now is a high-precision science within which
competing theoretical models can be tested and rejected at high
statistical significance.

Planck has for all practical purposes completed the study of
primary CMB temperature fluctuations. Currently, however, an-
other frontier is driving the CMB field, namely the search for pri-
mordial gravitational waves created during inflation. These are
predicted to exist by most inflationary theories, although their
predicted amplitudes can vary by many orders of magnitude, de-
pending on the precise details of the assumed inflationary model
(e.g., Kamionkowski & Kovetz 2016). Typically, this amplitude
is quantified in terms of the tensor-to-scalar ratio, r, which mea-
sures the ratio in fluctuation power attributable to gravitational
waves and ordinary density perturbations, respectively.

If such gravitational waves do exist, one generically expects
a specific imprint in the CMB polarization field in the form of
a large-scale “divergence-free” or B-mode polarization signal.
The observational challenges associated with gravitational wave
detection are essentially the same as those for measuring τ. How-
ever, the state-of-the-art upper limit on the tensor-to-scalar ratio
is r < 0.044 at 95 % confidence (Tristram et al. 2020), which
immediately implies that the B-mode signal must be more than
one order of magnitude smaller than the E-mode signal, and thus
no more than a few tens of nK in amplitude.

With such a small target amplitude, it is safe to assume that
an integrated analysis approach will no longer be optional for fu-

ture CMB missions, but rather a strict prerequisite. Establishing
both the experience and appropriate code required to implement
such an approach for future CMB missions is the main long-
term scientific motivation for the BeyondPlanck program; cur-
rent experiments such as Planck and WMAP provide real-world
test-beds that ensure that the BeyondPlanck approach is both re-
alistic and practical.

1.6. The BeyondPlanck program

In this context, we are now ready to formulate the main goal of
the BeyondPlanck program:

BeyondPlanck aims to implement and apply a sin-
gle statistically coherent analysis pipeline to Planck and
other CMB data sets, processing raw uncalibrated time-
ordered data into final astrophysical component maps,
angular power spectra, and cosmological parameters
within one single code.

Important secondary goals include

1. to model and propagate instrumental uncertainties from raw
time-ordered data into final high-level Planck scientific re-
sults;

2. to provide a computationally convenient interface to the raw
Planck data that can be accessed and extended by external
users;

3. to develop a framework that allows joint analysis of Planck
with other data sets; and

4. to prepare for next-generation CMB experiments, in partic-
ular those aiming to detect primordial gravitational waves
through their imprint on large-scale polarization of the CMB.

The “BeyondPlanck” name serves as a reminder that this work
builds directly on several decades of Planck efforts and experi-
ence, while at the same time highlights the fact that it aims to
apply the Planck methodology to data sets beyond Planck, both
archival and future.

Clearly, this is a very ambitious program that will require
long-term and dedicated support. The first stage of the pro-
gram, which is reported in the current suite of papers, has been
funded within an EU-based Horizon 2020 action called “Lead-
ership in Enabling and Industrial Technologies” (LEIT), as well
as through various individual grants. This funding only covers
end-to-end analysis of the Planck LFI data, which is smaller in
volume than HFI data, and therefore serves as a convenient real-
world test case for development purposes, while still represent-
ing a very important scientific data set in its own right.

As detailed in the H2020 LEIT contract, the BeyondPlanck
program started on March 1st 2018, and ended on November
30th 2020; the total duration of the program is thus strictly lim-
ited to two years and nine months. During this period, large
amounts of software, products and documentation had to be writ-
ten from scratch. Indeed, a first fully operational pipeline was
completed as late as June 2020. With an effective run-time of
six to eight weeks to achieve convergence on our current com-
puter systems, we have been able to complete two full end-to-
end data reprocessings since that time. While two full iterations
certainly are a technical achievement, they are insufficient for de-
tailed fine-tuning and thus the results are uncharacteristically un-
polished relative to a typical data release. They however demon-
strate the power of the analysis process itself. Further, the cur-
rent BeyondPlanck release is not intended to be a static and final
analysis solution for one specific data set, i.e., Planck LFI, but
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rather a common community-wide platform that will allow sci-
entists to explore different data sets both individually and jointly.
As such, we expect numerous updates to emerge in the coming
months and years, both from BeyondPlanck members and from
external researchers, that will gradually refine the current prod-
ucts in a collaborative effort.

2. BeyondPlanck analysis strategy and organization

2.1. End-to-end Bayesian CMB analysis

Recognizing the lessons learned from Planck as summarized in
Sect. 1.4, the defining design philosophy of BeyondPlanck is
tight integration of all steps from raw time-ordered data process-
ing to high-level cosmological parameter estimation. Tradition-
ally, this process has been carried out in a series of weakly con-
nected steps, pipelining independent executables with or without
human intervention. Some steps have mostly relied on frequen-
tist statistics, employing forward simulations to propagate un-
certainties, while other steps have adopted a Bayesian approach,
using the posterior distribution to quantify uncertainties. For in-
stance, traditional mapmaking is a typical example of the for-
mer (e.g., Ashdown et al. 2007b), while cosmological parameter
estimation is a typical example of the latter (e.g., Lewis & Bri-
dle 2002); for component separation purposes, both approaches
have been explored in the literature (e.g., Planck Collaboration
Int. XLVI 2016).

BeyondPlanck is the first real-world CMB analysis pipeline
to adopt an end-to-end Bayesian approach. This solution was in
fact first proposed by Jewell et al. (2004). However, it took more
than 15 years of computational and algorithmic developments to
actually make it feasible.

Perhaps the single most important advantage of a uniform
Bayesian approach is that it allows seamless propagation of un-
certainties within a well-established statistical framework. This
aspect will become critically important for future experiments,
as demonstrated by Planck. For most CMB experiments prior to
Planck, the dominant source of uncertainty was noise; for most
CMB experiments after Planck, the dominant source of uncer-
tainty will be instrumental systematics, foreground contamina-
tion, and the interplay between the two. As a logical consequence
of this fact, BeyondPlanck adopts a consistent statistical frame-
work that integrates detailed error propagation as a foundational
feature.

The Bayesian approach also has several notable advantages
in terms of intuition and transparency. In particular, the most crit-
ical step for any Bayesian analysis is the definition of the data
model. This may often be described in terms of a handful of
equations, and these equations subsequently serve as a road-map
for the entire analysis. While the complexity of the numerical
implementation may vary from model to model, the posterior
distribution itself has a very intuitive and direct interpretation.

At a practical level, integrating the entire pipeline into a sin-
gle computational code also has significant advantages in terms
of net computational speed and resources. Not only are slow
disk operations reduced to a minimum by performing all opera-
tions within one single code, but more importantly, all interme-
diate human interactions are eliminated from the process. This
both saves significant amounts of human time required for “code
shepherding” and file transfers, and it significantly reduces the
risk of human errors. Thus human resources are saved that can
be better spent on fundamental modelling aspects.

A fourth significant advantage of end-to-end integration is
increased transparency of implicit and explicit priors. For a dis-

tributed analysis process, it is critically important to communi-
cate all assumptions made in each step to avoid errors, while
in an integrated approach internal inconsistencies become much
more visible; there are simply fewer opportunities for misun-
derstandings to propagate undetected throughout an integrated
analysis pipeline.

2.2. Commander

We adopt Commander2 (Eriksen et al. 2004, 2008; Seljebotn
et al. 2019), a well-established Bayesian CMB Gibbs sampler
developed for Planck, as the starting point of our pipeline. As
demonstrated in Planck Collaboration IV (2020), this code al-
ready supports Bayesian multi-resolution component separation,
which is precisely the operation that connects low-level map-
making to high-level cosmological parameter estimation. A main
implementational goal for BeyondPlanck is thus to extend this
framework to incorporate Bayesian calibration and mapmaking,
as well as to connect component separation and cosmological
parameter estimation.

We will refer to three different versions of the Commander
code in the following. Commander1 refers to the original im-
plementation described by Eriksen et al. (2004, 2008), which
at the beginning of the BeyondPlanck project represented the
most mature version in terms of foreground spectral parameter
fitting. However, a major limitation of that code is a requirement
of common angular resolution among all data sets. Commander2
removes this limitation through explicit beam convolution for
each frequency map during component separation, as detailed
by Seljebotn et al. (2019), and thereby allows for full resolu-
tion analysis of the Planck data. Due to the much higher com-
putational cost associated with increased angular resolution, the
development of Commander2 required a re-implementation of
the original algebra from scratch, adopting a much more fine-
grained parallelization strategy than Commander1.

Finally, Commander3 refers to the time-domain version of
the algorithm, as developed in BeyondPlanck, and is a direct
generalization and extension of Commander2 in terms of code
implementation. As a result, Commander2 is no longer an inde-
pendent code, but we will still refer to it in cases where it might
be convenient for pedagogical purposes to distinguish between
multi-resolution component separation in the pixel-domain ver-
sus the time-domain. All Commander source codes are available
under a GNU Public Library (GPL) OpenSource license.2

2.3. Paper organization

The BeyondPlanck methodology and results are described in a
suite of companion papers, as listed in Table 1. The present paper
provides a broad overview in terms of motivation, algorithms,
and main results. However, it is not intended to be comprehen-
sive, as specific details are instead deferred to the relevant com-
panion papers.

The remaining papers may be divided into four main cate-
gories, namely 1) pipeline papers; 2) instrument characterization
papers; 3) cosmological and astrophysical results papers; and 4)
analysis of external data. The first category of papers provides
a comprehensive overview of the current implementation of the
BeyondPlanck pipeline, at a level that is hopefully sufficiently
detailed to allow external users to understand intuitively its sta-
tistical and computational basis, what assumptions it relies on,
and what its limitations are. The ultimate goal of these papers is

2 https://github.com/Cosmoglobe/Commander
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Table 1. Overview of BeyondPlanck papers.

Reference Title

Pipeline
BeyondPlanck Collaboration (2020) . . . I. Global Bayesian analysis of the Planck Low Frequency Instrument data
Keihänen et al. (2020) . . . . . . . . . . . . . II. CMB mapmaking through Gibbs sampling
Galloway et al. (2020a) . . . . . . . . . . . . III. Computational infrastructure and Commander3
Brilenkov et al. (2020) . . . . . . . . . . . . IV. Time-ordered data simulations
Gerakakis et al. (2020) . . . . . . . . . . . . V. Open Science and reproducibility

Instrument characterization
Ihle et al. (2020) . . . . . . . . . . . . . . . . . VI. Noise characterization and modelling
Gjerløw et al. (2020) . . . . . . . . . . . . . . VII. Calibration
Galloway et al. (2020b) . . . . . . . . . . . . VIII. Sidelobe modelling
Svalheim et al. (2020a) . . . . . . . . . . . . IX. Bandpass and beam leakage modelling

Cosmological and astrophysical results
Suur-Uski et al. (2020) . . . . . . . . . . . . X. LFI frequency map posteriors and sample-based error propagation
Colombo et al. (2020) . . . . . . . . . . . . . XI. CMB analysis with end-to-end error propagation: Temperature anisotropies
Paradiso et al. (2020) . . . . . . . . . . . . . XII. CMB analysis with end-to-end error propagation: Likelihood and cosmological parameters
Andersen et al. (2020) . . . . . . . . . . . . . XIII. Intensity foregrounds, degeneracies and priors
Svalheim et al. (2020b) . . . . . . . . . . . . XIV. Polarized foreground emission between 30 and 70 GHz
Herman et al. (2020) . . . . . . . . . . . . . . XV. Limits on polarized anomalous microwave emission

External analysis
Aurlien et al. (2020) . . . . . . . . . . . . . . XVI. Application to simulated LiteBIRD observations
Watts et al. (2020) . . . . . . . . . . . . . . . . XVII. Application to WMAP
Galeotta et al. (2020) . . . . . . . . . . . . . XVIII. End-to-end validation of BeyondPlanck

that external users should be able to repeat and extend the work
that is presented here.

The second category of papers address the various rele-
vant instrumental parameters required to process the raw time-
ordered data into sky maps. These include noise characteriza-
tion, gain estimation, sidelobe corrections, and bandpass and
beam mismatch modelling. Each paper aims both to provide an
intuitive understanding of the effect in question, and to show how
it impacts the final results. These papers also demonstrate how to
quantitatively model each instrumental effect, and how to prop-
agate uncertainties into other parameters. Particular emphasis is
placed on building intuition regarding leading internal parameter
degeneracies, both among the various instrumental parameters
and with astrophysical and cosmological parameters.

The third category of papers present the main scientific re-
sults in terms of frequency and component maps, as well as an-
gular power spectra and cosmological parameters. Consistency
between the BeyondPlanck products and non-Planck sets is also
considered in this category of papers.

The fourth category includes papers that aim to generalize
the BeyondPlanck data model to other data sets. For now, the
main emphasis is put on WMAP (Watts et al. 2020) and LiteBIRD
(Aurlien et al. 2020).

We note that, in the spirit of reproducibility and accessibil-
ity, a significant emphasis is put on intuition and background
throughout the BeyondPlanck papers. The paper suite is in-
tended to be largely self-contained, and detailed knowledge of
the Planck publication list is not an assumed prerequisite. As
such, a substantial amount of review material is included, both
in terms of general background material and algorithmic details.
The style of the papers is consciously tuned toward Ph.D. stu-
dents and early postdoctoral fellows, rather than seasoned CMB
experts.

3. Parameterizing the microwave sky

As already noted, the single most important component in any
Bayesian analysis is the parametric model that is fitted to the
data. In our case, this model consists of both astrophysical and
instrumental components. In this section we consider the cos-
mological and astrophysical parameters, before introducing the
instrumental parameters in the next section.

3.1. Conventions: Stokes parameters, pixelization, spherical
harmonics, and units

In order to characterize each astrophysical component quantita-
tively, we need to introduce some general notation and conven-
tions. First, each astrophysical component will be described in
terms of three Stokes parameters, namely intensity (denoted ei-
ther I or T ) and two linear polarizations (denoted Q and U). We
will ignore circular polarization (V) for now, but we note that
this may be added in future work.

To discretize the Stokes parameters on the sphere, we adopt
the HEALPix pixelization3 (Górski et al. 2005). This pixeliza-
tion has several highly desirable properties, including equal-
area pixels and support for fast spherical harmonics transforms,
and is now effectively a standard in modern CMB analysis.
The HEALPix pixel resolution is controlled through a param-
eter called Nside, and the total number of pixels on the sky is
Npix = 12N2

side. We organize the Stokes parameters into vectors
of length 3Npix, simply by stacking {T,Q,U} into a map vector
s(n̂), where n̂ is a unit direction vector.

Unless otherwise noted, we define the Stokes parameters
with respect to Galactic coordinates. We adopt the cosmologi-
cal convention for the polarization angle, γ, in which γ = 0 for
vectors pointing north and increases westward. This is opposite

3 http://healpix.jpl.nasa.gov
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to the IAU convention used in most other fields of astronomy, in
which γ increases eastward. To convert from one convention to
the other, one must multiply Stokes U by −1.

The Stokes polarization parameters Q and U form a spin-2
field, which intuitively may be interpreted as a “headless vector
field”. In contrast, the intensity T is a spin-0 field, and does not
change under rotations. Thus, when rotating Stokes parameters
by an angle α, the transformed Stokes parameters are


T ′
Q′
U′

 =


1 0 0
0 cos 2α − sin 2α
0 sin 2α cos 2α




T
Q
U

 . (1)

As described by Zaldarriaga & Seljak (1997), the polariza-
tion Stokes parameters may be expanded into spherical harmon-
ics through the following relations,

T (n̂) =

`max∑

`=0

∑̀

m=−`
a`mY`m(n̂) (2)

(Q ± iU)(n̂) =

`max∑

`=2

∑̀

m=−`
±2a`m ±2Y`m(n̂), (3)

where ka`m are called (spin-k) spherical harmonic coefficients.
The polarization coefficients are often combined algebraically
into E and B coefficients,

aE
`m = −1

2
(2a`m + −2a`m) (4)

aB
`m =

i
2

(2a`m − −2a`m) , (5)

which each form a spin-0 field, fully analogous to the intensity
T .

From the spherical harmonic coefficients we may compute
the observed angular power spectrum as

σXY
` =

1
2` + 1

∑̀

m=−`

(
aX
`

)∗
aY
`m, (6)

where {X,Y} ∈ {T, E, B}. These quantify the strength of fluctua-
tions at a given multipole ` as directly measured from some sky
map. In addition, we define the ensemble-averaged power spec-
trum as

CXY
` ≡

〈(
aX
`

)∗
aY
`m

〉
=

〈
σXY
`

〉
, (7)

where brackets indicate an average over statistical realizations.
This function is thus independent of the observed sky, and only
depends on the model that describes the field in question.

Finally, each sky map s must be quantified in terms of a phys-
ical unit. In the following work, we will encounter many differ-
ent conventions for this, depending on the particular application
in question. However, three conventions are more common than
others, and we limit our discussion here to these special cases.

The first measure is surface brightness per solid an-
gle, which simply measures the amount of energy emit-
ted by some source per surface area, per frequency inter-
val, per sky solid angle. This is often measured in units of
MJy sr−1 ≡ 10−20 W m−2 Hz−1sr−1, and it quantifies the specific
intensity Iν of a given source as a function of wavelength, ν.

The second measure we will use is thermodynamic tempera-
ture. In this case, we identify the intensity with that emitted by a
blackbody source with temperature T ,

Iν = Bν(T ) =
2hν3

c2

1

e
hν
kT − 1

, (8)

where h is Planck’s constant, c is the speed of light, and k
is the Boltzmann constant. This measure is particularly useful
for CMB applications, because the CMB is itself a near-perfect
blackbody, and a single temperature T (n̂) therefore uniquely
specifies its intensity at any wavelength at a given position. The
unit for thermodynamic temperature is denoted KCMB or simply
K.

Our third and final measure is the brightness temperature or
Rayleigh-Jeans temperature, TRJ. This is defined by the the long
wavelength limit (hν � kT ) of Eq. (8), such that

Iν =
2ν2kTRJ

c2 . (9)

While the thermodynamic temperature is convenient to de-
scribe the CMB, most astrophysical foreground signals have a
non-blackbody nature, and are more naturally quantified in terms
of brightness temperature. In particular, while the spectral en-
ergy density of many foregrounds can span many tens of or-
ders of magnitude when expressed in KCMB, they are usually
limited to a few orders of magnitude when expressed in either
MJy sr−1 or KRJ. To avoid numerical problems, all astrophysical
components are therefore expressed in units of KRJ internally
in Commander, and only converted to the respective natural unit
before outputting results to disk. Monochromatic conversion be-
tween KRJ and MJy sr−1 is performed through Eq. (9), while
monochromatic conversion between KRJ and KCMB is given by

∆TCMB =
(ex − 1)2

x2ex TRJ, (10)

where x = hν/kT0, and T0 = 2.7255 K is the mean CMB tem-
perature (Fixsen 2009). Note that this conversion applies only
to small temperature variations around the CMB mean value,
∆T ≡ T − T0, which is precisely the form of most CMB temper-
ature maps in common use today.

We are now ready to write down parametric models for each
of the main astrophysical components that are relevant for the
Planck frequency range. Each component will be described in
terms of a spectral energy density (SED) in brightness tempeer-
ature units, and, in some cases, in terms of an angular power
spectrum or some other similar spatial coherence measure.

3.2. Cosmic microwave background anisotropies

We start our survey with the CMB component, which is the sci-
entifically most important one for Planck. For this, we first de-
fine sCMB to be a 3Npix sky vector of CMB Stokes parameters as
described above. Second, we assume that the CMB SED may be
approximated as a blackbody. As such, its brightness tempera-
ture SED is given by Eq. (10),

sCMB
RJ (ν) ∝ x2ex

(ex − 1)2 sCMB, (11)

where x = hν/kT0. (Note that we define the effective SED only
up to a normalization constant, as we will typically parameterize
each component in terms of an amplitude map at a given refer-
ence frequency times the SED normalized to unity at the refer-
ence; any normalization factor is therefore accounted for in the
amplitude coefficient.)

For component separation purposes, this is the only assump-
tion we make regarding the CMB. However, for cosmological
parameter estimation purposes, we make two important addi-
tional assumptions, namely that the CMB temperature flucuta-
tions are both Gaussian distributed and statistically isotropic.
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The assumption of Gaussianity determines the conditional prob-
ability distribution for the CMB signal,

P(s | C`) ∝ e−
1
2 stS−1 s
√|S| , (12)

where S is the covariance matrix of the CMB fluctuation field,
and we have dropped the “CMB” superscript for convenience.
The assumption of statistical isotropy implies that S is fully
specified in terms of the angular power spectrum,

SXY
`m,`′m′ ≡

〈(
aX
`

)∗
aY
`′m′

〉
= CXY

`m δ``′δmm′ . (13)

For practical parameter estimation purposes, both of these as-
sumptions have been shown to be excellent approximations to
the true CMB sky (see, e.g., Planck Collaboration VII 2020;
Planck Collaboration IX 2020, and references therein).

The connection to cosmological parameters, such as the
Hubble constant H0 or the reionization optical depth τ, is made
through cosmological Boltzmann codes, such as CMBfast (Sel-
jak & Zaldarriaga 1996) or CAMB (Lewis et al. 2000). These
deterministically calculate the ensemble-averaged CMB power
spectrum based on well-understood physics given some specific
set of cosmological parameters, ξ. However, this calculation is
only straightforward going from ξ to C`; it is highly nontrivial
to go directly from C` to ξ. Instead, Markov Chain Monte Carlo
(MCMC) methods such as CosmoMC (Lewis & Bridle 2002) are
typically employed to perform the inversion, in which a series of
parameter combinations are proposed and rejected or accepted,
ultimately resulting in a set of parameter samples that jointly rep-
resents the final parameter posterior distribution. As described in
Sect. 1.6, the goal of the BeyondPlanck program is to implement
a similar MCMC method that eventually accounts for the entire
process from raw time-ordered data to final cosmological param-
eters; in its current form, the final product of the BeyondPlanck
pipeline will be the so-called CMB power spectrum likelihood,
L(C`) ≡ P(d | C`), and the final parameter estimation process
will still be performed using CosmoMC.

3.3. Galactic foreground emission

The second most important class of sky emission components
consists of diffuse Galactic foregrounds. These all originate from
within the Milky Way, and are due to particles (electrons, ions,
dust, etc.) associated with various processes such as star forma-
tion or supernova explosions. Furthermore, these particles all in-
teract with the same magnetic field, and as a result they produce
correlated polarized emission. In this section, we provide a brief
survey of each of the main physical emission mechanisms, with
a particular focus on parametric models.

3.3.1. Synchrotron emission

At low microwave frequencies, synchrotron emission dominates
the radio sky. This emission is mostly due to relativistic electrons
ejected from supernova, spiralling in the magnetic field of the
Milky Way. CMB observations are typically made at frequencies
in the range of tens or hundreds of GHz, and at these frequencies,
the synchrotron SED falls rapidly with increasing frequency. In-
deed, detailed models and observations both suggest that the ef-
fective spectrum may be closely approximated by a power-law
at frequencies higher than a few gigahertz, with some evidence
for possible curvature. In this work, we therefore follow Kogut

(2012), and adopt a general SED model of the form

ssynch
RJ (ν) ∝

(
ν

ν0,s

)β+C ln ν/ν0,s

, (14)

where ν0,s is a reference frequency, β is a power-law index, and
C is a curvature parameter. However, in most cases we set C = 0,
as the signal-to-noise ratio for this parameter is very low with the
limited data set considered in this work.

When the local magnetic field is highly structured, syn-
chrotron emission can be highly polarized, with a theoretical
maximum polarization fraction of p = 75 %. In practice, this
value is decreased due to line-of-sight and volume integration
effects, and according to Planck and WMAP, more typical values
are . 15 % at high Galactic latitudes, with extreme cases reach-
ing 30–50 % only in a few large-scale supernova remnants that,
when projected on the sky, take the form of so-called “Galactic
spurs” (Planck Collaboration XXV 2016).

At low frequencies, polarized synchrotron emission is also
significantly affected by Faraday rotation (e.g., Beck et al. 2013,
and references therein). This effect is caused by circular bire-
fringence, i.e., left- and right-handed circular polarized emission
travel at different speeds through a magnetic field embedded in
an ionized medium, resulting in a net rotation of the polariza-
tion angle of linearly polarized emission. The polarization angle
rotation is proportional to the magnetic field strength as well as
to the square of the wavelength of the emission. Numerically,
the rotation angle is typically a few degrees at 23 GHz at low
Galactic latitudes, but reaches hundreds of degrees at 2.3 GHz
(Carretti et al. 2019; Fuskeland et al. 2019). Therefore, where
relevant, we account for Faraday rotation when comparing our
results with low-frequency surveys such as S-PASS (2.3 GHz;
Carretti et al. 2019), but we neglect it for higher-frequency sur-
veys such as Planck and WMAP.

3.3.2. Free-free emission

Free-free emission (or bremsstrahlung) arises primarily from
free electrons scattering off protons without being captured, and
emitting a photon in the process. Since free electrons only ex-
ist in appreciable amounts when the temperature of the medium
is comparable to the hydrogen binding energy, corresponding to
103 − 104 K, free-free emission predominantly traces hot H ii re-
gions and, as such, active star forming regions. Free-free emis-
sion is particularly important for CMB experiments because it
is the only foreground component that is non-negligible at all
frequencies between 1 and 1000 GHz, and it is therefore partic-
ularly sensitive to degeneracies with respect to both the CMB
and other foreground components.

The free-free SED depends primarily on the number of free
protons and electrons along the line of sight, which typically is
quantified in terms of the emission measure (EM), i.e., the inte-
gral of the square electron density along the line of sight,

EM ≡
∫ ∞

0
n2

e dl, (15)

where the number densities of free protons and electrons are as-
sumed to be equal. The conventional unit adopted for the EM is
pc cm−6, and typical values for the Milky Way range between 0
and 1000 (Planck Collaboration X 2016).

Assuming local thermodynamic equilibrium and first con-
sidering an optically thick medium, the free-free SED is deter-
mined by a blackbody spectrum given its electron temperature,
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Te, alone. Since the optical depth drops rapidly with increasing
frequency, however, free-free emission in astrophysical contexts
and at CMB frequencies is optically thin. Hence, the effective
SED can be expressed as

sff
RJ(ν) = Te (1 − e−τ). (16)

As shown by Dickinson et al. (2003) and Draine (2011), τ may
be very well approximated by

τ = 0.05468 · T−3/2
e · ν−2

9 · EM · gff , (17)

where

gff = log
{
exp

[
5.960 −

√
3/π log(ν9 · T−3/2

4 )
]

+ e
}

(18)

is called the Gaunt factor, and ν9 and T4 are the frequency and
the electron temperature measured in units of GHz and 104 K,
respectively.

This SED is a nonlinear function of EM and Te. A complete
free-free model therefore corresponds to a complicated proba-
bility distribution with expensive special-purpose sampling al-
gorithms, as for instance employed in Planck Collaboration IX
(2016). In this work, we instead adopt a simpler linearized ver-
sion of Eq. (16) that is only strictly valid in the optically thin
case, τ � 1, namely

sff
RJ(ν) ∝

gff(Te)
ν2 , (19)

and we correspondingly quantify the free-free amplitude in
terms of the observed signal at a given reference frequency in
µKRJ, as opposed to the full nonlinear EM parameter described
above.

There is essentially no effective alignment mechanism for
thermal electrons in a hot medium, and large-scale free-free
emission is therefore expected to be nearly unpolarized. The
main exception to this are sharp edges around hot H ii regions,
which do introduce a preferred direction in the emission geom-
etry. However, even these are only expected to be mildly polar-
ized, and over large angular scales, the net polarization fraction
is expected to be well below 1 % (see discussion in Keating et al.
1998). In this paper, we thus assume that free-free emission is
completely unpolarized.

3.3.3. Thermal dust emission

The interstellar medium (ISM) is filled not only with hydrogen
and electrons, but also with tiny dust grains ranging in diameter
from less than a nanometer (i.e., a few atoms across) to roughly
a micron (i.e., thousands of atoms across). Dust grains typically
condense from stellar outflows and ejecta, and so dust abundance
is correlated with star formation. Newly-formed dust is rapidly
mixed in the dynamic, turbulent ISM, where it undergoes sig-
nificant processing. Dust is therefore ubiquitous in the Galaxy,
found wherever there is interstellar gas.

It is known from spectroscopic features that dust is made
from, at minimum, silicate and carbonaceous materials. How-
ever, the precise grain composition is likely to vary with lo-
cal environment. Dust grains are heated by ambient stellar ra-
diation, and large grains accounting for the bulk of the dust
mass equilibriate to a steady-state temperature ranging between
10 and 30 K. This energy is thermally re-emitted with a peak
wavelength in the sub-mm frequency range, typically between
1000 and 3000 GHz. Since these grains are inefficient radiators

at longer wavelengths, the thermal dust SED falls rapidly at fre-
quencies below the peak, where CMB observations are typically
carried out. The varied composition and geometry of ISM dust
particles makes the thermal dust SED significantly more com-
plicated to model from first principles, when compared to the
free-free emission described above; for recent examples of such
modelling efforts, see, e.g., Guillet et al. (2018) and Draine &
Hensley (2020).

In practice, simpler fitting formulae are therefore usually
adopted for practical analyses, and one particularly popular class
of models is the so-called modified blackbody spectrum, which
in intensity units reads

Id
ν ∝ τνβd Bν(Td). (20)

This function is simply a blackbody spectrum with tempera-
ture Td, modulated by a power-law having index βd. In physi-
cal terms, this corresponds to dust having an opacity that scales
as νβd, a reasonable approximation for wavelengths longer than
∼ 20 µm (Hensley & Draine 2020).

The amplitude is, as for free-free emission, given by the op-
tical depth, τ, which depends directly on the surface density of
particles along the line of sight. Typical numerical values for
these three parameters are τ ∼ 10−6, βd ∼ 1.6, and Td ∼ 20 K. In-
tuitively speaking, βd determines the slope (or first derivative in
log-log space) of the SED below 200 GHz, while Td determines
the SED peak position, and second derivative at lower frequen-
cies. However, we will model thermal dust emission in terms of
brightness temperature, and in these units the effective SED may
be written in the form

sd
RJ(ν) ∝

νβd+1

ehν/kTd − 1
. (21)

Interaction with gas and radiation torques up grains, and they
tend to rotate about their axis of greatest moment of inertia, i.e.,
their short axis. Dust grains having unpaired electrons can de-
velop a non-zero magnetic moment anti-parallel to their angu-
lar velocity through the Barnett effect (Dolginov & Mitrofanov
1976). Dissipative processes act to align the rotation axis with
the local magnetic field. For a more detailed discussion of grain
alignment, see Andersson et al. (2015).

The preferential alignment of the short axes of grains with
the local magnetic field leads to significant net polarization from
the ensemble of grains. Thermal dust polarization fractions as
large as 20 % are found using the high frequency Planck po-
larization measurements (Planck Collaboration XI 2020). We
therefore include all three Stokes parameters in our thermal dust
model. At the same time, we note that the highest polarization-
sensitive Planck frequency channel is 353 GHz, and this does not
provide sufficient frequency range to allow an independent esti-
mate of the thermal dust temperature in polarization. We there-
fore assume the same Td for intensity and polarization, while βd
is allowed to be different.

3.3.4. Spinning dust (or anomalous microwave) emission

Dust grains rotate with rotational kinetic energy of order the
thermal energy in the ambient gas. Consequently, sub-nanometer
grains can achieve rotational frequencies of tens of GHz. If these
grains possess an electric dipole moment, as generally expected
for particles of this size (Macià Escatllar & Bromley 2020),
this rotation produces emission in the microwave frequency
range, as first predicted theoretically by Erickson (1957), and
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described quantitatively by Draine & Lazarian (1998). The spin-
ning dust mechanism currently provides the most popular the-
oretical explanation for so-called “anomalous microwave emis-
sion” (AME) observed around 20 GHz in CMB surveys, as first
identified and named by Leitch et al. (1997).

In this work, we will adopt a spinning dust model for this
component, starting from an SED template, ssd

0 (ν), computed
with the SpDust2 code (Ali-Haïmoud et al. 2009; Ali-Haimoud
2010; Silsbee et al. 2011) for environmental parameters typi-
fying the Cold Neutral Medium. This spectrum is intrinsically
computed in intensity units, in which it peaks at 30 GHz. Af-
ter converting to brightness temperature by scaling with ν−2, as
given by Eq. (9), the peak shifts to 17.4 GHz, and the overall
spectrum is less than 1 % of its peak value at frequencies below
1.3 GHz or above 66 GHz. To fit this SED model to the data, we
follow Bennett et al. (2013), and introduce a peak position pa-
rameter, νp, that shifts the spectrum rigidly in log ν–log s space,

ssd
RJ(ν) ∝ ν−2 ssd

0

(
ν · 30.0 GHz

νp

)
(22)

We note, however, that this emission component is associ-
ated with large uncertainties, both in terms of the physical mech-
anism that is actually responsible for the observed emission, and
in terms of detailed modelling within the chosen paradigm. In
a companion BeyondPlanck paper, Herman et al. (2020), we
perform a non-parametric analysis of the observed diffuse AME
spectrum in polarization. However, for all main analyses pre-
sented in this work, we adopt the spinning dust model in Eq. (22)
for the AME component.

Despite sensitive searches in individual objects (Génova-
Santos et al. 2015; Génova-Santos et al. 2016) and over large
sky areas (Macellari et al. 2011), polarization has not been de-
tected in the AME. In principle, AME could be highly polar-
ized if small spinning grains are efficiently aligned. Theoretical
estimates of the alignment efficiency of ultrasmall grains vary
widely, with predicted AME polarization fractions ranging from
. 1% (Hoang et al. 2013) to completely negligible (Draine &
Hensley 2016). We perform a detailed study of AME polariza-
tion in Herman et al. (2020), but assume it to be unpolarized in
all other analysis.

3.3.5. Carbon monoxide emission

In the same way that rotating dust particles can emit radio emis-
sion, so can molecules with a non-zero electric dipole moment.
One particularly important example of such molecules is carbon
monoxide (CO), which resides primarily in dense clouds where
it is shielded from destruction by UV radiation. The most com-
mon isotopologe of CO is 12C16O (abbreviated 12CO), which is
typically 10–100 times more abundant than 13C16O (abbreviated
13CO) (Szűcs et al. 2014).

For a simple system such as CO, quantum mechanical effects
are highly significant. In particular, only very specific rotational
states are allowed by quantization of angular momentum. Let us
denote the masses of the two atoms by mC and mO, respectively,
and the corresponding atomic distances from their center of mass
by rC and rO. We also define rCO = rC + rO to be the effective
atom size and mCO = mCmO/(mC + mO) its reduced mass.

With this notation, the moment of inertia of the CO molecule
is I = mCrC + mOrO. The corresponding eigenvalues of the
Schrödinger equation are given by

Erot =
J(J + 1)~2

2I
, (23)

where J = 0, 1, . . . is the angular momentum quantum num-
ber. Quantum mechanically allowed energy changes are given
by ∆J = ±1, and each such transition either absorbs or emits a
photon with wavelength

ν0 =
∆Erot

h
=
~J
2πI

=
~J

2πmr2
CO

, J = 1, 2, . . . (24)

For the 12CO J=1←0 transition, one finds ν0 = 115.27 GHz,
while for the 13CO J=1←0 transition, it is ν0 = 110.20 GHz.
Higher-order transitions, such as J=2←1, are very nearly multi-
ples of these frequencies.

The width of CO lines is small compared to the broad Planck
bandpasses, and so we model the corresponding SED by a delta
function at the respective frequency,

sCO
RJ (ν) ∝ δ(ν − ν0). (25)

We note that specific intensity units are not appropriate for CO
emission since all of the energy is being emitted in a narrow
spectral range. Instead, CO emission is conventionally quantified
in terms of K km s−1. Because the central frequency is known
from theory, emission away from line center can be attributed
to radial motion with a definite mapping between frequency and
velocity. The line intensity in brightness temperature units is in-
tegrated over all velocities, yielding K km s−1.

CO emission is expected to be only weakly polarized, with a
polarization fraction around 1 % in molecular clouds (Greaves
et al. 1999). Detecting such low levels of true polarization is
challenging with the currently available Planck data, primar-
ily due to instrumental temperature-to-polarization leakage. For
now, we assume CO line emission to be fully unpolarized, but
note that this is likely to change in future analysis.

Finally, we note that although the base CO frequencies do
not lie within the Planck LFI frequency bands themselves, CO
emission is nevertheless indirectly important for LFI because of
its prevalence in the HFI channels, and these are in turn critical
to model thermal dust emission for LFI.

3.4. Extra-galactic foreground emission

In addition to the Galactic foreground emission mechanisms dis-
cussed in Sect. 3.3, several extra-galactic effects are also impor-
tant for CMB frequencies.

3.4.1. Extra-galactic compact sources

For LFI frequencies, the most important class of extra-galactic
components are compact radio sources. All the emission mech-
anisms listed above operate in external galaxies, but the radio
source population is dominated by active galactic nuclei (AGN).
Radio emission from AGN is largely synchrotron, and comes
from either the galactic nucleus itself or from jets and lobes as-
sociated with the nucleus. While the morphology of individual
sources may be complicated, few are resolved by most CMB
experiments and hence can be treated as “point” sources. Thus,
while individual components of an AGN may exhibit polarized
microwave emission, the emission from an unresolved source as
a whole is rarely strongly polarized; typical polarization frac-
tions are a few percent (Datta et al. 2019).

AGN have a wide range of SEDs, but most AGN spectra at
CMB frequencies can be adequately modeled by a simple power
law with a spectral index determined primarily by the energy
spectrum of the relativistic electrons generating the synchrotron
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emission. The spectral indices (in brightness) typically range
from 0 to −1, and most fall in a narrower range of −0.5 to −0.7.
Hence we adopt a simple power law SED as our model for radio
sources, and fit for the amplitude and spectral index of the radio
source contribution,

ssrc
RJ (ν) ∝

(
ν

νsrc

)α−2

(26)

Here νsrc is a fixed reference frequency, and α is the spectral
index defined in intensity units; the conversion between intensity
and brightness temperature is proportional to ν2.

As we move to higher CMB frequencies, or to more sensi-
tive experiments, the counts of extra-galactic sources begin to
include dusty galaxies. These objects emit modified blackbody
radiation, like Galactic dust, but typically at higher temperatures.
Emission from this class of objects is included in the cosmic in-
frared background discussed below.

Unlike the dusty galaxies, which tend to be clustered,
synchrotron-dominated radio sources are quite randomly dis-
tributed on the sky, and hence have a flat angular power spec-
trum. On the other hand, the emission of synchrotron dominated
sources is frequently variable, on time scales ranging from days
to years. Time variability is not accounted for in the current
model, and variable sources are therefore likely to leave resid-
uals in the final maps. For this reason, we will apply a dedicated
point source mask during the final CMB parameter estimation,
to minimize contamination in the final cosmological parameters.

3.4.2. Sunyaev-Zeldovich effect

Some CMB photons happen to pass through one or more clusters
of galaxies on their way through the universe. Such clusters are
very hot, some reaching temperatures as high as 108 K. At such
high temperatures, the inter-cluster medium is highly ionized.

CMB photons have a non-negligible probability of scatter-
ing on these free electrons, and when they do, they gain energy
from the free electrons. As a result, their spectrum is shifted to
slightly higher frequencies compared to the standard blackbody
form. This is called the thermal Sunyaev-Zeldovich (tSZ) effect
(Sunyaev & Zeldovich 1972), and it is an effective probe of the
intergalactic medium in high-redshift clusters.

In this work, we will mostly ignore the tSZ effect, as it has
a relatively modest impact on the LFI measurements, due to
both their limited sensitivity and angular resolution. In the cases
where we do consider it, we adopt the non-relativistic model of
the effect, which in brightness temperature units takes the form

ssz
RJ(ν) ∝

x2ex

(ex − 1)2

(
xex + 1
ex − 1

− 4
)
, (27)

where x = hν/kT0.
In additional to the thermal SZ effect, non-zero cluster veloc-

ities give rise to an additional contribution called the kinetic SZ
effect. This does not affect the SED shape of the underlying pho-
tons, but simply changes the apparent temperature fluctuation at
a given position. For typical cluster velocities of . 103 km s−1,
these modifications are however small, at the level of a few µK,
and we therefore neglect this effect in the following. Likewise,
we also neglect small polarization effects in the thermal SZ case,
which are expected to be well below 1 µK in amplitude.

3.4.3. Cosmic infrared background

The last extra-galactic component that will be encountered in
this analysis is the cosmic infrared background (CIB). This is

the thermal dust emission emitted by many distant galaxies. The
CIB may be spatially approximated as a continuous field, similar
to the CMB, but with an SED that is defined as an average of a
large number of independent thermal dust SEDs, each redshifted
according to the distance of the emitting galaxy.

The CIB affects CMB observations in two different ways.
First, uncertainties in the CIB monopole translate into uncer-
tainties in the zero-level of each frequency channel. In partic-
ular, current models predict a CIB monopole of about 400 µK at
353 GHz, but with a model uncertainty of about 20 %. If left un-
mitigated, such large uncertainties would translate into massive
uncertainties in the thermal dust spectral parameters, βd and Td.
In practice, the HFI monopoles are currently determined through
cross-correlation with H i (Planck Collaboration III 2020); how-
ever, this approach is of course associated with its own uncer-
tainties.

Second, CIB fluctuations dominate over Galactic thermal
dust fluctuations near the Galactic poles, where local thermal
dust emission is low. In the foreground model employed in the
current work, we do not account separately for CIB fluctuations,
as we do not have a high enough signal-to-noise ratio to robustly
separate them from Galactic emission. The thermal dust emis-
sion estimates presented in the following therefore correspond
to the sum of Galactic thermal dust emission and CIB fluctu-
ations. Since CIB and thermal dust emission have very similar
SEDs, this has only a small effect on other components, most
importantly on the CMB. However, it does complicate the phys-
ical interpretation of the resulting thermal dust parameter maps
and dust parameters derived from them.

3.5. Zodiacal light emission

The last emission component we will consider is zodiacal light
emission (ZLE). Similar to both CO and CIB emission, this com-
ponent is far more important for HFI than LFI frequencies, and
its mean amplitude is only about 0.5 µK at 70 GHz (Planck Col-
laboration X 2016).

The ZLE is emitted by dust particles located within the Solar
system, primarily in the asteroid belt between Mars and Jupiter.
These grains are heated by solar radiation to a temperature of
about 150 K, and this energy is then thermally re-emitted with a
thermal dust-like SED with the corresponding temperature. As
such, its frequency spectrum is similar to both Galactic thermal
dust and CIB fluctuations across CMB bands.

However, unlike Galactic dust and CIB, the ZLE is not sta-
tionary on the sky throughout a given survey. As Planck moves
with the Earth around the Sun throughout a year, the ZLE is ob-
served through different lines of sight. This both allows for, and
indeed requires, dynamic modelling of the effect, taking into ac-
count the precise location of the satellite as a function of time.
For this purpose, we adopt the COBE-DIRBE ZLE model (Kel-
sall et al. 1998), as integrated and re-implemented natively into
Commander for efficiency purposes.

The COBE model treats the ZLE in terms of six distinct con-
stituents (a smooth cloud, three asteroidal dust bands, a circum-
solar ring, and a trailing blob), each specified in terms of its
own geometry and optical properties. In total, the model has 43
free parameters, and in this work we adopt the parameter set de-
scribed by Planck Collaboration XIV (2014), which takes into
account information from both COBE-DIRBE and Planck. Fu-
ture work will aim to estimate these parameters internally in our
analysis framework, but this will require time-domain Planck
HFI and COBE-DIRBE observations, and is outside the scope
of the present work. In the current work, we adopt the same cor-
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rections as described in Planck Collaboration Int. LVII (2020)
for the HFI channels, and neglect ZLE for the LFI channels.

3.6. Default sky model

Based on the above survey, and unless specified otherwise, the
default BeyondPlanck astrophysical sky model (in brightness
temperature units) reads as follows,

sRJ = aCMB
x2ex

(ex − 1)2

(ex0 − 1)2

x2
0ex0

+ (28)

+ as

(
ν

ν0,s

)βs

+ (29)

+ aff

gff(ν; Te)
gff(ν0,ff ; Te)

(ν0,ff

ν

)2
+ (30)

+ aAME

(ν0,sd

ν

)2 ssd
0

(
ν · νp

30.0 GHz

)

ssd
0

(
ν0,sd · νp

30.0 GHz

) + (31)

+ ad

(
ν

ν0,d

)βd+1 ehν0,d/kTd − 1
ehν/kTd − 1

+ (32)

+

Nsrc∑

j=1

a j
src

(
ν

ν0,src

)α j,src−2

, (33)

where x = hν/kT0 and ν0,i is the reference frequency for com-
ponent i. Thus, ai is the amplitude of component i in units of
µKRJ, as observed at a monochromatic frequency ν0,i. The sum
in line 33 runs over all sources brighter than some flux threshold
as defined by an external source catalog, and both the amplitude
and spectral index are fitted individually per source. We adopt
the same catalog as Planck Collaboration IV (2020), which is
hybrid of the AT20G (Murphy et al. 2010), GB6 (Gregory et al.
1996), NVSS (Condon et al. 1998) and PCCS2 (Planck Collab-
oration XXVI 2016) catalogs comprising a total of 12 192 indi-
vidual sources.

Only {sRJ, aCMB, as, ad} are assumed to be polarized in
this model, and these comprise 3-component vectors including
Stokes T , Q, and U parameters. The remaining amplitudes pa-
rameters, {aff , aAME, a

j
src}, are assumed unpolarized, and have

vanishing Stokes Q and U parameters.
For algorithmic reasons, we distinguish between lin-

ear and nonlinear parameters. The former group includes
{aCMB, as, aff , aAME, ad, asrc}, collectively denoted a; as de-
scribed in Sect. 8.3.6, this set of parameters may be estimated
jointly and efficiently through a multivariate Gaussian Monte
Carlo sampler. In contrast, the nonlinear parameters include
{βs,Te, νp, βd,Td, βsrc}, and these must be estimated indepen-
dently and with computationally far more expensive algorithms;
see Sect. 8.3.5 for specific details. In practice, we fit individual
compact source amplitudes jointly with the corresponding spec-
tral indices using a general sampling algorithm, since these are
much more correlated with these than with any of the diffuse
component parameters.

4. Instrument characterization

We now turn to the second half of the parametric model em-
ployed in the BeyondPlanck analysis, which describes the in-
strument used to collect the measurements. So that the Beyond-
Planck analysis may freely be used by others, we aim to keep

the presentation and notation as general as possible, and only in-
troduce BeyondPlanck and LFI-specific notation where strictly
necessary. We start our discussion by first defining an ideal de-
tector response model, and then increase the level of realism
step-by-step, until we reach the final instrument model.

4.1. Ideal instrument model

Let us first consider an ideal monochromatic detector observ-
ing at frequency ν a stationary sky signal with local Stokes pa-
rameters {T,Q,U} at Galactic coordinates (l, b) and polarization
angle ψ. We also initially assume infinite angular resolution. In
this ideal case, the signal recorded by the detector as a function
of time t may be written as

d(t) = g(t)
[
T + Q cos 2ψ + U sin 2ψ

]
+ n(t), (34)

where g is a multiplicative factor called the gain, which converts
between physical signal units (which in our case will be KCMB)
and digitized instrumental detector units (which in our case will
be V), and n denotes instrumental noise.

In order to obtain data that may be processed on a computer,
it is necessary to discretize the measurements by averaging over
some (short) time period, ∆t. For most CMB experiments, typi-
cal samples rates are between 10 and 200 Hz. A single recorded
datum, dt, thus corresponds to the detector output averaged over
a period typically between 0.005 and 0.1 s.

For an ideal detector, the noise may be approximated as
Gaussian and uncorrelated in time, and, as such, its variance de-
creases proportionally to 1/∆t. We define the standard deviation
of a single time sample to be σ0.

A CMB experiment scans the sky according to some scan-
ning strategy, p(t) = [l(t), b(t), ψ(t)], while continuously record-
ing the signal dt. To describe this behaviour in a convenient nota-
tion, we first discretize the sky as described in Sect. 3.1, s = sp,
and then re-write Eq. (34) in vector form as follows,

d = G Ps + n, (35)

where d = [d1, d2, . . . , dnTOD ]t and n = [n1, n2, . . . , nnTOD ]t are
time-domain vectors of length NTOD, and G is a diagonal NTOD×
NTOD matrix with gt on the diagonal. The scanning strategy is en-
coded in an NTOD × 3Npix matrix that contains (1, cos 2ψ, sin 2ψ)
in the columns that correspond to pixel p that happens to be ob-
served at time t, and zero elsewhere, i.e.,

P =



0 1 0 . . . 0 cos 2ψ1 0 . . . 0 sin 2ψ1 0
1 0 0 . . . cos 2ψ2 0 0 . . . sin 2ψ2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 1 . . . 0 0 cos 2ψ1 . . . 0 0 sin 2ψ1

.

(36)

This matrix is called the pointing matrix.4 Correspond-
ingly, the sky vector consists of the three pixelized
Stokes parameter maps stacked into a single vector,
s = [T1, . . . ,TNpix ,Q1, . . . ,QNpix ,U1, . . . ,UNpix ]t.

Equation (35) describes an ideal instrument that cannot be re-
alized in actual hardware. The remainder of this section is there-
fore dedicated to generalizing this equation to the point that it
actually does serve as a useful model for real-world CMB exper-
iments.

4 Only the nonzero entries need to be stored in the pointing matrix, and
memory requirements are therefore manageable.
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4.2. Spectral response, bandpass averaging, and unit
conversion

The first generalization we will consider is the assumption of
monochromaticity. No real detector can measure a single fre-
quency signal, but it is instead sensitive to a range of frequen-
cies. This sensitivity is described by a so-called bandpass pro-
file or spectral transmission, τ(ν), which quantifies how much
of the radiation at a given frequency is actually recorded by the
detector. We define τ to be normalized to unity when integrated
across all frequencies. Adopting brightness temperature units for
all quantities (i.e., τ, d, and the monochromatic sky signal, s(ν)),
the data model in Eq. (35) generalizes to

d = GP
∫

s(ν)τ(ν) dν + n, (37)

after taking into account the bandpass effect.5
However, most data sets are not provided in terms of bright-

ness temperature units, but more often in either thermodynamic
temperature or intensity units. As described in detail in Planck
Collaboration IX (2014), in order to convert from unit conven-
tion Xi to unit convention X j, one must multiply with a unit con-
version factor that is given by

Ui j =

∫
τ(ν) dIν

dXi
dν

∫
τ(ν) dIν

dX j
dν
, (38)

where dIν/dXi is the intensity derivative expressed in unit con-
vention Xi. In particular, the conversion factors from brightness
temperature to thermodynamic temperature and intensity units
are given by

UKRJ→KCMB =

∫
τ(ν) 2hν2

c2 dν
∫
τ(ν) b′ν dν

(39)

UKRJ→MJy sr−1 =

∫
τ(ν) 2hν2

c2 dν
∫
τ(ν) νc

ν
dν

, (40)

where

b′ν =
∂B(T, ν)
∂T

∣∣∣∣∣
T=T0

(41)

is the derivative of the blackbody function with respect to tem-
perature, evaluated at the CMB temperature T0, and νc is an
arbitrary selected reference frequency for the channel in ques-
tion. For other conversions, including to K km s−1 and the SZ
y-parameter, we refer the interested reader to Planck Collabora-
tion IX (2014). Taking into account both bandpass integration
and unit conversion, the instrument model reads

d = UGP
∫

s(ν)τ(ν) dν + n. (42)

We aim to constrain s given d. It is therefore important to be
able to quickly evaluate the integral and unit conversion factors
in Eq. (42). With this in mind, we consider signal component
i as defined by the sky model in Sect. 3.6, and write it in the

5 Note that many experiments, including Planck HFI, defines the band-
pass profile in intensity units rather than brightness temperature units,
and in this case an additional factor of 2hν2/c2 must be included in the
integral, as given by Eq. (9); see Planck Collaboration IX (2014) for
details.
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Fig. 2. Detector averaged bandpass profiles, τ, for the three Planck LFI
frequency channels.

general form si(ν) = ai fi(ν; ν0, β), where ai is the linear ampli-
tude relative to some reference frequency, ν0,i, and fi(ν; β) is the
frequency scaling from that reference frequency to an arbitrary
frequency ν, which depends on some set of spectral parameters
β. The total signal measured by detector j may then be written
as

s j =

Ncomp∑

i=1

ai

[
U j

∫
fi(ν; β) τ j(ν) dν

]
≡

Ncomp∑

i=1

M j
i ai = M j a, (43)

where M j
i is called the mixing matrix. In order to take into ac-

count bandpass integration and unit conversion, the idealized
data model in Eq. (35) must be generalized as follows,

d = GPMa + n. (44)

It is evident that M depends only on the spectral parameters
β and the bandpass τ, but not the amplitudes. Since most signal
components are parameterized with limited number of spectral
parameters (see Sect. 3), and these parameters are typically also
fairly uniform on the sky, it is possible to pre-compute accu-
rate lookup tables for M for each component and detector. In our
current code, we adopt (bi-)cubic splines with regular grids for
these lookup tables, and the computational cost of performing a
full bandpass integral is thus equal to that of a simple polynomial
evaluation.

4.2.1. Bandpass uncertainties and corrections

While the bandpass integral described by Eq. (37) may look sim-
ple enough at first glance, it does lead to a wide variety of impor-
tant complications in practice. The most important among these
is the fact that the exact shape of the bandpass profile itself is
unknown. In particular, it is highly nontrivial to measure τ ac-
curately in a laboratory for a combined multi-component instru-
ment, and it is obviously impossible to do so after commission-
ing for satellite missions.

As a concrete real-world illustration of this, Fig. 2 shows the
laboratory-determined (normalized) bandpass profiles after av-
eraging over all radiometers for a given LFI channel. First, we
see that the profiles for both 44 and 70 GHz are truncated, and
therefore significant response is likely present outside the mea-
sured range. Second, for all three channels we see notable small

Article number, page 15 of 77

149



A&A proofs: manuscript no. ms

scale ripples, which are due to standing waves. These may be
due to real standing waves within the optical assembly of the
LFI instrument itself; but some part of them may also be due to
standing waves in the test equipment used to make the measure-
ments. In addition to these two visually obvious effects, there
may also be systematic errors in the actual shape, for instance
in the form of a smooth slope across the bands, or in the precise
position of the peaks within the band.

As described in Sect. 8.3.1, the CMB dipole serves as our pri-
mary calibrator for BeyondPlanck, following both WMAP and
the official Planck pipelines. Because the CMB SED very closely
follows a blackbody spectrum, which translates into a frequency
independent scaling in thermodynamic units, the precise shape
of the bandpass is irrelevant for the CMB component. Instead,
errors in the bandpass shape effectively translate into incorrectly
estimated foreground components, and introduce inaccuracies in
the relative foreground SEDs between different frequency chan-
nels. In turn, foreground errors can affect the CMB reconstruc-
tion.

To account for the uncertainties noted above, we introduce
one or more free parameters that can modify the bandpass shape,
and allow the data to inform us about, and hence mitigate, poten-
tial inaccuracies in the laboratory bandpass measurements. The
simplest and most common model we adopt is a simple linear
shift, ∆bp, in frequency space,

τ(ν) = τ0(ν + ∆bp), (45)

where τ0 is the default laboratory measurement. One value of
∆i

bp is allowed per radiometer i, but (in most cases) either with
the prior that

∑
i ∆i

bp = 0, or that one particular channel is held
fixed. Without any priors, the bandpass parameters are fully de-
generate with the spectral parameters β of the foreground model,
and no stable solution can be found. Various choices of both
bandpass models and priors are considered by Svalheim et al.
(2020a). In general, we note that the impact of ∆bp is essentially
to scale the amplitude of foregrounds, while leaving the CMB
unchanged. At CMB dominated frequency channels, the band-
pass shift is therefore non-degenerate with respect to the gain,
while at foreground-dominated channels, it is virtually impossi-
ble to distinguish between a bandpass error and a gain error.

In addition to this fundamental uncertainty in the band-
pass profile for each detector, we note, first, that different de-
tectors within the same frequency band observe different sky
signals, and if not properly accounted for, this can create so-
called bandpass mismatch errors in co-added frequency maps
(see Sect. 7.2.2). Second, as discussed in the next section, the in-
strumental beam is also intrinsically frequency dependent, with
an angular resolution of the main beam that is inversely propor-
tional to the frequency for diffraction-limited observations, as
is the case for LFI. In addition, far sidelobes can vary rapidly
with frequency through complicated diffraction patterns. Unless
properly accounted for, all these effects can potentially compro-
mise final estimates. In BeyondPlanck we account for sidelobes
as modelled by the Planckteam (Planck Collaboration IV 2016),
but we do not explore uncertainties in the beam model itself.

4.3. Beam and pixel window convolution

In the same way that no real detector can measure the signal
from only a single monochromatic frequency, no real detector
can measure the signal from a single point on the sky. Rather,
each detector is associated with a so-called “point spread func-
tion” (PSF) or “beam”, b(n̂), that characterizes its instantaneous

Fig. 3. (Top:) Scanning beam (or main beam) of the 30 GHz LFI 27S
radiometer in local telescope coordinates, i.e., the instantaneous spatial
sensitivity sensitivity to a point source centered at the beam maximum.
Bottom: Corresponding 4π beam map, oriented such that the main beam
is located on the north pole. The main Planck far sidelobes are caused
by spillover from (i.e., diffraction around) the primary and secondary
mirrors. The beams are normalized such that their combined integral
over the full sky equals unity.

spatial sensitivity. Conventionally, we define b(n̂) to be normal-
ized by setting the full-sky integral equal to unity, and to be ori-
ented such that its maximum value is centered on the north pole.

The recorded value of the sky signal, sbeam
t , as seen through

the beam at time t is then given as the convolution of b and s,

sbeam
t =

∫

4π
bt(n̂)s(n̂) dΩ, (46)

where bt(n̂) = Rt(n̂, n̂′)b(n̂′), and Rt is a time-dependent rotation
matrix that rotates the beam as given by the scanning strategy of
the instrument. Since convolution is a linear operation, we may
define a matrix operator, B, such that sbeam = Bs, and the data
model in Eq. (44) may therefore be generalized further into its
final form,

d = GPBMa + n, (47)

where the position of the operator is defined by noting that the
beam only acts on the true sky signal, and not on instrumental
effects such as gain or noise.

Noting that modern CMB maps typically comprise up to
several hundred million pixels, Eq. (46) is prohibitively expen-
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Fig. 4. Azimuthally symmetric and normalized beam transfer functions,
b` for each co-added Planck LFI frequency channel (thick colored lines)
and for each radiometer (thin colored lines). The former include the ef-
fects of non-Gaussian tails, while the latter are strictly Gaussian approx-
imations. Black curves show the HEALPix pixel window functions for
Nside = 512 and 1024, respectively.

sive to evaluate directly in pixel space. Instead, we take advan-
tage of the convolution theorem, which states that any convolu-
tion in pixel space may be expressed as a multiplication in har-
monic space, and vice versa. As first demonstrated by Wandelt
& Górski (2001), and later optimized by Prézeau & Reinecke
(2010), Eq. (46) may be computed efficiently through reduced
Wigner matrices, reducing the cost by a factor of O(

√
Npix) per

evaluation for a general b.
Another substantial saving can be made if we additionally

assume that b is azimuthally symmetric. In that case, the spher-
ical harmonics expansion of b is independent of m, and may be
expressed in terms of its Legendre transform, b`. The full convo-
lution may (by the convolution theorem) in this case be written
as6

sbeam(n̂) =

`max∑

`=0

∑̀

m=−`
b`s`mY`m(n̂), (48)

where s`m are the spherical harmonics coefficients of s. Often, b`
is referred to as the beam transfer function.

Note that the bandlimit, `max, in Eq. (48) should be selected
sufficiently large that b` ≈ 0 as compared to the noise level of the
instrument. Conversely, if a too low value of `max is adopted for
analysis, the most notable artifacts arising from the convolution
is ringing around bright point sources, resulting from premature
harmonics truncation.

Note also that sbeam(n̂) in Eq. (48) is written as a function
of position rather than time in the above expression, which is
only possible in the case of an azimuthally symmetric beam. To
obtain the time-dependent signal, one simply reads off the value
of sbeam(n̂) given by the beam center position at time t. In this
approximation, a full real-space convolution may be carried out
at the cost of only two spherical harmonics transforms.

As discussed in Sect. 3.1, all CMB sky maps are pixelized in
order to allow for efficient analysis on a computer. Such pixeliza-
tion corresponds to an additional smoothing operation of the true
6 This expression applies to temperature convolution; polarization con-
volution is notationally slightly more involved, but mathematically fully
analogous.

sky signal that can be approximated with a top-hat convolution
kernel of a given pixel size. For HEALPix, the effect of this ker-
nel in harmonic space is described in terms of a pixel window
function, p`, that is provided with the library. Implementation-
ally, it is often convenient to redefine b` → b`p` internally in
computer codes, as the beam and pixel window affect the sig-
nal in the same way, and accounting for the pixel window can
therefore usually be done with no additional computational cost
compared to beam convolution.

In Euclidean space, the Nyquist theorem assures that any
bandwidth limited signal may be reconstructed exactly with at
least two samples per bandwidth. No corresponding exact the-
orem exists on the sphere. Instead, a rough rule of thumb for
smooth spherical fields is to allow for at least two or three pix-
els per beam width. Likewise, no exact multipole bandlimit ex-
ists for given a HEALPix pixelization; however, numerical ex-
periments suggest that multipoles above ` & 2.5Nside are poorly
resolved on the HEALPix grid. Combined, these rules of thumb
provide useful relationships between a given beam width and the
corresponding appropriate values of Nside and `max.

Figure 3 shows the beam of the Planck 27S radiometer
(Planck Collaboration IV 2014). The bottom panel shows the
full 4π beam, while the top panel shows a zoom-in on the north
pole. Clearly, this beam pattern is not azimuthally symmetric.
However, in this respect it is useful to distinguish between the
main beam, which is highlighted in the top panel, and the side-
lobes, which are highlighted in the bottom panel. Furthermore,
since convolution is a linear operation, contributions from the
main beam and sidelobes may be computed separately.

The sidelobes are caused by optical imperfections, typically
by diffraction around the main optical elements. In the case of
Planck, these are the primary and secondary mirrors (see Fig. 3).
As such, the resulting beam structures tend to be highly fre-
quency dependent, and also cover large angular scales. While
they clearly cannot be described as azimuthally symmetric in
any meaningful way, they are associated with relatively modest
bandlimits, `max, and this leads to acceptable computational costs
for treating this component.

The main beam, on the other hand, can often be described
reasonably well as azimuthally symmetric, when centered on the
north (or south) pole. Of course, the LFI 27S beam shown in the
top panel of Fig. 3 exhibits a substantial ellipticity of ε ≈ 1.3, but
this instantaneous beam profile is at least partially symmetrized
by averaging due to the scanning strategy. The remaining effects
of beam asymmetries may be accounted for, at least in terms
of power spectrum bias, by adjusting the transfer function b`
through simulations, as described by, e.g., Mitra et al. (2011).

For simplicity or because of low signal-to-noise, the
beam profile is also sometimes approximated in terms of a
two-dimensional Gaussian with some full-width-half-maximum
(FWHM), or σFWHM, in the following expressed in radians. In
the Gaussian case, one can derive an explicit expression for the
the beam transfer function in the form

b` = e−
1
2 `(`+1)

σ2
FWHM
8 ln 2 , (49)

where the factor 8 ln 2 simply accounts for the conversion be-
tween the square of the FWHM and the variance for a Gaussian.

Figure 4 compares the azimuthally symmetric beam transfer
functions of the three Planck LFI channels, co-added over all ra-
diometers, as well as the Gaussian approximations to the individ-
ual radiometer beam transfer functions. For reference, we also
show the HEALPix window transfer functions for Nside = 512
and 1024, which are the typical pixelizations used for LFI and
WMAP analysis.
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We see that the general azimuthal approximations tend to
have slightly heavier tails than the Gaussian approximations,
and this is important to account for when estimating the CMB
power spectrum, C`. At the same time, we also see that for
applications for which only percent-level accuracy is required,
the Gaussian approximations may very well be sufficient. In
the following analyses, we will adopt the general azimuthally
symmetric approximations for co-added frequency maps, which
will be used for component separation and CMB estimation pur-
poses, but Gaussian approximations for radiometer-specific sig-
nal modelling during time-domain processing, where the signal-
to-noise ratio per sample is low, and sub-percent precision is ir-
relevant. The reason for the latter approximation is simply that
the Planck collaboration only provides FWHM estimates for in-
dividual radiometers, not full transfer functions.

In the current work, we assume that the transfer functions
provided by the Planck collaboration are exact, and do not assign
dedicated stochastic parameters to them. This is neither a realis-
tic description, nor a testament to the accuracy of the provided
products, but only a statement of currently limited human re-
sources; a high-priority task for future work is to implement full
support for dynamic beam modelling and error propagation. As
presented in this work, however, beam convolution is assumed to
be a fully deterministic operation, dependent on officially avail-
able beam characterizations alone.

4.4. Gain and analog-to-digital conversion

While the instrument model in Eq. (47) is structurally complete
in terms of components, we still need to introduce a few gener-
alizations before we can apply it to our data. The first regards the
gain g, simply by reemphasizing that this should be interpreted
as a truly time-dependent object, gt.

To understand why this is the case, it is useful to consider its
origin and physical interpretation, and to focus the discussion we
will consider the special case of a perfect total-power receiver.
The output voltage of such a device is given by

P = GkTsys∆ν, (50)

where G is a unit-less gain factor, and ∆ν is the width of the
bandpass. The system temperature is defined as Tsys = Tant +
Trecv, where Tant = TCMB + Tfg is the antenna temperature, and
Trecv is the receiver temperature; the latter essentially defines the
intrinsic noise level of the receiver.

For a Planck LFI 30 GHz radiometer, the bandwidth is
6 GHz, and the receiver temperature is typically 10 K. The
antenna temperature is dominated by the CMB temperature,
TCMB = 2.7 K, as other sky components typically only make
up a few mK at most. Assuming, therefore, a system tempera-
ture of about 13 K, Eq. (50) predicts that the power measured
by this device is P = 1.1 pW or P = −90 dBm,7 assuming
no amplification (G = 1). However, current microwave detec-
tors are typically only able to reliably record power levels larger
than P & −30 dBm. For this reason, the signal level must be ac-
tively amplified by a factor of 60 dB or more between the optical
assembly and the detector. For Planck LFI, such amplification
is achieved through the use of high-electron-mobility transistors
(HEMTs).

HEMTs provide high gain factors, while adding only very
low levels of additional noise to the data. However, they are not

7 The unit dBm measures power ratios, x, in decibel relative to 1 mW,
i.e., x = 10 log10

P
1 mW .

perfectly stable in time. Rather, their effective gains exhibit time-
dependent drifts with typical overall variations at the O(10−6)
level, and correlations in time that are often well described by
a so-called 1/ f spectrum (see Sect. 4.5). Unless explicitly ac-
counted for in the model, these time-dependent gain fluctuations
can and will bias the derived sky model.

The gain defined by our original instrument model in
Eq. (47), denoted G, is in principle the same gain as in Eq. (50),
but with two important differences. First, while G is defined as
a pure power amplification, and therefore unit-less, G takes into
account the end-to-end conversion from a raw sky signal to final
recorded data values. As such, G has units of V K−1, in order to
be dimensionally correct.

Second, G additionally takes into account the digitization
process that converts analog signals to digital bits stored on
a computer. This process takes place in a so-called analog-to-
digital converter (ADC). An ideal ADC is perfectly linear. Un-
fortunately, many real-world ADCs exhibit important imperfec-
tions, for instance in the form of smooth nonlinear conversion
within given signal ranges, or, as for LFI, sharp jumps at specific
signal or bit values.

Overall, ADC errors are indistinguishable from gain fluc-
tuations in terms of their direct impact on the recorded data.
However, there is one critical difference between the two effects:
While gain fluctuations are stochastic and random in time, and
do not correlate with the sky signal, ADC errors are perfectly re-
producible, and depend directly on the sky signal. Consequently,
while the archetypical signature of unmitigated gain fluctuations
are coherent stripes or large-scale features in the final sky maps,
the corresponding unique signature of unmitigated ADC errors
is an asymmetry in the amplitude of the CMB dipole along its
positive and negative directions. This effect can be used to char-
acterize and mitigate ADC non-linearity, as done both for Planck
LFI and HFI (Planck Collaboration II 2020; Planck Collabora-
tion III 2020; Planck Collaboration Int. LVII 2020).

4.5. Instrumental noise

We complete our review of the instrument model by considering
the properties of the instrumental noise, n. This component may
be decomposed into two main contributions, called correlated
and white noise,

n = ncorr + nwn. (51)

Both terms may be approximated as Gaussian, but they have dif-
ferent covariances.

The dominant physical source of white noise is Johnson (or
thermal) noise, typically excited by thermal electron motions
within the electric radiometer circuits. This noise is temperature
dependent, and cryogenic cooling is usually required to achieve
sufficient sensitivity. The dominant source of the correlated noise
term are rapid gain fluctuations modulating the system tempera-
ture, Tsys, as discussed in Sect. 8.3.1.

Based on this decomposition, the standard deviation of the
total instrumental noise term for a sample of duration ∆t (i.e., σ0
in Eq. (35)) may be estimated through the so-called radiometer
equation,

σ0 = Tsys

√
1

∆ν∆t
+

(
∆g
g

)2

. (52)

Here, ∆g is the root-mean-square gain variation over ∆t, and
∆ν is as usual the receiver bandwidth. Intuitively speaking, this
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equation summarizes the following facts. First, the noise level is
proportional to the system temperature, in recognition of the fact
that Johnson noise scales with temperature. Second, the white
noise term is inversely proportional to the square root of both
bandwidth and integration time; this is simply by virtue of col-
lecting more photons, and noting that Gaussian errors add in
quadrature. Third and finally, the correlated noise component is
proportional to the overall gain fluctuation level. Typical values
of σ0 for the LFI radiometers range between 600 and 1700 µK
per sample in temperature units, or between 50 and 200 µV in
detector units. If Nobs independent observations are made of the
same sky pixel p, then the effective noise of the corresponding
pixel integrates down roughly as σp = σ0/

√
Nobs.

The different correlation structures of the white and cor-
related noise terms are most conveniently described in fre-
quency domain through the noise power spectrum density
(PSD), Pn( f ) =

〈
|n f |2

〉
, where n f are the Fourier coefficients

of nt. This PSD is often modelled in terms of a so-called 1/ f
profile, which takes the form

Pn( f ) = σ2
0

[
1 +

(
f
fk

)α]
. (53)

Here, fk is the knee frequency at which the variance of the cor-
related noise equals that of the white noise, and α is the slope of
the spectrum at low frequencies. Typical best-fit values for LFI
radiometers are fk ≈ 10 mHz and α ≈ −1. However, this model
is obviously only approximate; if for no other reasons, the real
spectrum has to flatten at low frequencies by energy consider-
ations, whereas the power predicted by this model would ap-
proach infinity at low frequencies.

5. Data

The instrument discussion has until this point been general, and
applicable to a wide range of different data sets. In this section,
we specialize our discussion to one particular combination of
data sets, with Planck LFI being the primary target of interest.
As discussed in Sect. 2, only this data set will be considered in
the time-domain, while external data sets will be considered in
the form of processed pixelized maps.

We note that the minimal sky model summarized in Sect. 3.6
includes seven distinct astrophysical components, three polar-
ized and four unpolarized. Considering that there are only three
LFI frequency channels, we immediately recognize that the LFI
data must be augmented with at least four external frequency
channels, just in order to make the model minimally constrained.
In the default analysis configuration, we therefore include select
observations also from Planck HFI (Planck Collaboration Int.
LVII 2020) and WMAP (Bennett et al. 2013), as well as from
some ground-based surveys. In this section, we provide a brief
overview of these data sets, and refer the interested reader to the
respective papers for full details.

The precise combination of data sets used in any particular
BeyondPlanck analysis will depend on the goal of the respective
application. For instance, the main scientific goal of the current
paper is to introduce the concept of Bayesian end-to-end CMB
analysis, and provide a first demonstration of this framework as
applied to the LFI observations. Consequently, we here only in-
clude a minimal set of external observations, allowing LFI to
play the dominant role, in particular with respect to CMB con-
straints. Specifically, in this paper we include only

– Planck 857 GHz to constrain thermal dust emission in inten-
sity;

– Planck 353 GHz in polarization to constrain polarized ther-
mal dust emission;

– WMAP 33, 41, and 61 GHz (called Ka, Q and V-bands, re-
spectively) in intensity at full angular resolution to constrain
free-free emission and AME;

– the same WMAP channels in polarization to increase the
signal-to-noise ratio of polarized synchrotron emission, but
only at low angular resolution, where a full noise covariance
matrix is available; and

– Haslam 408 MHz (Haslam et al. 1982) to constrain syn-
chrotron emission in intensity.

That is, we include neither intermediate HFI channels nor the
WMAP K-band (23 GHz) channel, because of their higher
signal-to-noise ratio relative to the LFI channels. The WMAP
W-band is excluded because of known systematics effects (Ben-
nett et al. 2013), and it does not have particularly unique features
with respect to the signal model that are not already covered by
other data sets.

We also note that Andersen et al. (2020), Svalheim et al.
(2020b), and Herman et al. (2020) focus on general foreground
constraints, and these papers therefore also consider additional
channels. The ultimate long-term goal of the global Bayesian
CMB analysis program in general is of course to integrate as
many data sets as possible into a single coherent sky model, and
thereby produce the strongest possible constraints on the true
astrophysical sky. One leading example of such an effort is the
Cosmoglobe8 project, which specifically aims to combine many
state-of-the-art experiments with the ones listed above, includ-
ing Planck HFI (Planck Collaboration III 2020), COBE-DIRBE
(Hauser et al. 1998) and FIRAS (Mather et al. 1994), PASIPHAE
(Tassis et al. 2018), SPIDER (Gualtieri et al. 2018), and many
more. The BeyondPlanck methodology presented here repre-
sents an ideal statistical framework for performing such global
data integration.

5.1. LFI instrument overview

5.1.1. Instrument configuration

We now provide a synthetic description of the LFI instrument
configuration, which directly impacts the structure of the LFI
data and the potential systematic effects addressed in the Be-
yondPlanck analysis. For more details on the LFI instrument,
its ground calibration and in-flight performance, see Bersanelli
et al. (2010), Mennella et al. (2011), and references therein; the
overall LFI programme is described by Mandolesi et al. (2010).

The heart of the LFI instrument is an array of 22 differen-
tial receivers based on high-electron-mobility transistor (HEMT)
low noise amplifiers. The instrument operates in three frequency
bands, nominally centred at 30, 44 and 70 GHz, with angular
resolutions of about 32′, 28′, and 13′ FWHM, respectively. The
front end of the receivers is cooled to 20 K, which dramatically
reduces the noise temperature of the HEMT amplifiers and of the
overall system. In each receiver, the signal coming from different
directions of the sky, intercepted by the telescope as the satellite
spins, is compared to a stable internal blackbody reference load
at 4 K. It is this differential scheme that allows the LFI to achieve
its excellent stability.

Radiation from the sky is coupled to 11 corrugated feed
horns, shown in Fig. 6. Each horn is followed by an orthomode
transducer (OMT), which splits the incoming radiation into two

8 http://cosmoglobe.uio.no

Article number, page 19 of 77

153



A&A proofs: manuscript no. ms

Fig. 5. Flight model of the Planck spacecraft. The satellite size is about
4.2 × 4.2 m, and its mass at launch was 1950 kg. Planck was launched
on May 14, 2009, and operated for 4.4 years from a Lissajous orbit
around the Lagrangian point L2 of the Sun–Earth system. Shown are
the approximate temperatures of different critical parts of the satellite
during nominal operation in space (see Planck Collaboration II 2011).

Fig. 6. Top view of the Planck focal plane. The central array contains
the HFI feed-horns, cooled to 4 K, feeding bolometric detectors cooled
to 0.1 K. The LFI horns in the outer part of the array are labelled with
numbers; they are cooled to 20 K. The LFI horn numbers 18–23, 24–26,
and 27–28 correspond to the 70 GHz, 44 GHz, and 30 GHz channels,
respectively.

perpendicular linear polarizations that propagate through two in-
dependent differential radiometers; see Fig. 7. The OMT pro-
vides exquisite polarization purity, with typical isolation of <
−30 dB. Each radiometer pair has a front-end module (FEM),

cooled to 20 K, and a back-end module (BEM), operated at
300 K. The FEM is connected to the BEM by four composite
wave-guides (two for each radiometer), thermally coupled to
the three Planck V-groove radiators to minimize parasitic heat
transfer to the cold focal plane (see Fig. 5). The cryogenically
cooled front-end modules include the first stage HEMT ampli-
fiers and the differencing system, while the back-end modules
provide further radio frequency amplification. Detection is made
via two square-law detector diodes for each radiometer.

After detection, an analog circuit in the data acquisition elec-
tronics is used to adjust the offset to obtain a nearly null DC
output voltage, and a programmable gain is applied on-board to
match the signal level to the analog-to-digital converter (ADC)
input range. After the ADC, data are digitally down-sampled,
re-sampled to match beam resolution (> 3 samples per beam),
compressed, and assembled into telemetry packets, which are
then downlinked to the ground station.

5.1.2. Stabilization

Cryogenic HEMT amplifiers exhibit excellent low-noise perfor-
mance, but are affected by significant instability in terms of gain
and noise-temperature fluctuations, typically modelled in terms
of a 1/ f spectrum as discussed in Sect. 4.5. The LFI system is
designed to efficiently reject such fluctuations in the radiometer
response. The main differential process responsible for radiome-
ter stabilization takes place in the front-end modules. The signals
from the sky and 4 K reference load are injected into a hybrid
coupler, which splits the two signals, and redirects them to both
of its output ports (see inset of Fig. 7). Then the two mixed sig-
nals are amplified by ∼30 dB by the two amplifier chains. Thus,
any fluctuation in the FEM amplifiers affects both the sky and
the reference load components in exactly the same way. Af-
ter amplification, a second hybrid coupler reconstructs the sky
and reference components, which now contain the same fluctu-
ations. Then the signals are transported by the wave-guides in
the warm back-end modules, where they are further amplified
and detected by the diodes. Finally, when taking the difference
between the two diodes, the FEM fluctuations cancel out. This
“pseudo-correlation” scheme reduces front-end fluctuations by a
factor of O(103).

However, instabilities downstream of the FEMs, particularly
those originating in the back-end amplifiers and in the detec-
tor diodes, would still affect the measurements. For this reason,
a further level of stabilization is built into the LFI design. A
phase shifter, alternating between 0◦ and 180◦ at a frequency
of 4096 Hz, is applied in one of the two amplification chains
within the front-end modules, as shown in Fig. 7. In this way,
the DC output from each diode rapidly alternates the sky and
reference signals, with opposite phase in the two detectors. By
taking the difference between time-averaged values of sky and
reference, any residual fluctuations on time scales longer than
∼ (1/4096) s = 0.244 ms are removed.

Of course, any non-ideality in the receiver components will
introduce some level of residual fluctuations. Further strategies
to suppress remaining instabilities and potential systematics in-
troduced by the receiver are described below.

5.1.3. LFI signal model

Based on the above description, the differential power output for
each of the four diodes associated with a feedhorn can be written

Article number, page 20 of 77

154



BeyondPlanck Collaboration: Global Bayesian analysis of Planck LFI

Fig. 7. Schematic of an LFI radiometer chain, consisting of a feedhorn
and OMT, and the two associated radiometers, each feeding two diode
detectors. The insets show details of a front-end module (top) and of a
back end module (bottom).

as the following special case of Eq. (50),

Pdiode
out,0 = a Gtot k ∆ν

[
Tsky + Tnoise − r (Tref + Tnoise)

]
, (54)

where Gtot is the total gain, k is the Boltzmann constant, ∆ν the
receiver bandwidth, and a is the diode constant. Tsky and Tref
are the sky and reference load antenna temperatures at the inputs
of the first hybrid and Tnoise is the receiver noise temperature,
averaged over an appropriate integration time. The gain modu-
lation factor, r, is a factor of order unity (0.8 < r < 1.0 de-
pending on channel) used to balance in software the temperature
offset between the sky and reference load signals. This has the
important effect of minimising the residual 1/ f noise and other
non-idealities in the differential data stream. In the DPC analy-
sis (Planck Collaboration II 2020) r was determined using the
approximation

r =
Tsky + Tnoise

Tref + Tnoise
≈ Vsky

Vref
, (55)

and we adopt the same procedure without modification in Be-
yondPlanck for now. However, we do note that the NPIPE anal-
ysis pipeline implements an alternative approach in which Vref
is low-pass filtered prior to differencing, and this reduces the
amount of high frequency noise in the final maps. Future Be-
yondPlanck versions can and should implement a similar solu-
tion.

Although somewhat counter-intuitive, the sensitivity of the
LFI radiometers does not depend significantly on the absolute
temperature of the reference load. In fact, to first order, the white
noise spectral density at the output of each diode is given by

∆T diode
0 =

2 (Tsky + Tnoise)√
∆ν

. (56)

However, a large imbalance between Tsky and Tref would have
the effect of amplifying residual fluctuations in the differential

signal. For this reason the LFI reference loads are cooled to about
4 K, exploiting the HFI pre-cooling stage.

The above description holds for the ideal case where all
front-end amplifiers and phase switches have perfectly balanced
properties. In presence of some level of mismatch, the separation
of the sky and reference load signals after the second hybrid is
not perfect and the outputs are slightly mixed. If the front-end
imbalance is small, Eq. (56) may be written as

(
∆T diode

)2 ≈
(
∆T diode

0

)2
(
1 ± εA1 − εA2

2
+ αεTn

)
, (57)

where εTn is the imbalance in front end noise temperature be-
tween the two radiometer arms, and εA1 and εA2 are the imbal-
ance in signal attenuation in the two states of the phase switch.
Eq. (57) shows that the output is identical for the two diodes
apart from the sign of the term (εA1 − εA2 )/2, representing the
phase switch amplitude imbalance. For this reason, the LFI sci-
entific data streams are obtained by averaging the voltage outputs
from the two diodes in each radiometer,

V rad
out = w1Vdiode 1

out + w2Vdiode 2
out , (58)

where w1 and w2 are inverse-variance weights calculated from
the data. Thus, the diode-diode anti-correlation is cancelled, and
the radiometer white noise becomes

∆T rad ≈ ∆T diode
0√
2

(
1 + αεTn

)1/2 . (59)

In Eqs. (57) and (59), ε � 1, while α is a term of order unity
defined by a combination of the input signals and noise temper-
ature of the radiometer; for details, see Eq. (8) in Mennella et al.
(2011).

In the current BeyondPlanck processing, we follow the
LFI DPC procedure for all these steps. Future versions of the
framework may also account for these pre-processing steps, and
jointly estimate r, α, εi, and wi, but this is left for future work,
simply due to the strong time limitations of the current project
(see Sect. 1.6).

5.1.4. Naming convention

As described in the previous section, LFI has 11 horns and as-
sociated OMTs, FEMs and BEMs; 22 radiometers (two for each
horn); and a total of 44 detectors (two for each radiometer). For
historical reasons, the 11 horns are labelled by numbers from 18
to 28 as shown in Fig. 6.

The radiometers associated with each horn are labelled as
“M” or “S” depending on the arm of the OMT they are connected
to (“Main” or “Side”, as shown in Fig. 7). Each radiometer has
two output diodes that are labelled with binary codes “00”, “01”
(radiometer M) and “10”, “11” (radiometer S), so that the four
outputs of each radiometer pair can be named with the following
sequence; M-00, M-01, S-10, S-11.

As the telescope scans, the observed region of the sky sweeps
across the focal plane in the horizontal direction as appearing in
Fig. 6. Since the reconstruction of the polarization information
requires at least two horns, every pair of horns aligned in the
scan direction are oriented such that their linear polarizations
are rotated by 45◦ from each other (with the exception of LFI-
24, which is an unpaired 44 GHz horn). Thus, LFI can produce
independent polarization measurements from the “horn pairs”
18–23, 19–22, 20–21 (at 70 GHz); 25–26 (at 44 GHz); and 27–
28 (at 30 GHz).
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5.2. Implementation details

Since the BeyondPlanck project aims to establish an open-
source, reproducible and externally extendable analysis frame-
work, it is no longer possible to rely on direct access to the exist-
ing LFI-DPC database, which both employs proprietary software
and runs on one specific computer. To circumvent this issue,
we convert the LFI TOD into a convenient HDF5 format (Gal-
loway et al. 2020a) that may be accessed using publicly available
tools. This, however, does lead to some adjustments in the scien-
tific pre-processing pipeline, which now uses this new interface.
At the same time, we have converted the scientific pipeline to
C++11, and a number of optimizations are applied at the same
time, exploiting the new possibilities given by that language.

5.2.1. Unprocessed Level-1 data

The extraction of time-ordered Level-1 data from the LFI-DPC
database and the conversion to HDF5 format only need to be per-
formed once in the LFI-DPC environment. We create one file for
each LFI horn for each Operational Day, i.e., the time between
two consecutive daily telecommunication periods. The extracted
file contains sky, reference load and quality flags for each of the
diodes of the horn and timing information, including On-Board
Time, Spacecraft Event Time (SCET) and Modified Julian Date
(MJD). It also contains attitude information that is critical for the
analysis; Pointing Period ID (PID); start and end time of each
Pointing Period; end time of the maneuver of each Pointing Pe-
riod; and number of data samples.

To optimize the computational time of Level-2 processing,
various deterministic operations are implemented during extrac-
tion. For instance, missing data are added back into the time
streams and flagged as bad data; this ensures that all the time-
lines for each frequency are of the same length. Also, planet tran-
sits are flagged, and instrumental flags are added to the extracted
data.

5.2.2. Pre-processed Level-2 data

In the DPC pipeline, the main pre-processing of the LFI data
occurs at the Level-2 stage (see Planck Collaboration II 2020
and references therein). The same is true in the BeyondPlanck
framework. First, the data are corrected for the effect of ADC
non-linearities and 1 Hz frequency spikes, as outlined in the fol-
lowing sections.

Then the appropriate detector pointing for each sample is
computed, based on auxiliary data and beam information. The
Level-2 pipeline also calculates the gain modulation factor, r,
from the data streams and applies it to minimize 1/ f noise;
see Eq. (55). The outputs from the two detector diodes of each
radiometer are then combined with appropriate noise weights,
to remove the effect of phase switch mismatch, as given by
Eq. (58).

As for Level-1 data, the output is one HDF5 file for each LFI
horn for each Operational Day. Each file contains the differenti-
ated signal, detector pointing (θ, φ, ψ) and quality flags for each
radiometer, time information (On-Board Time, SCET and MJD)
and the same attitude information as in the input data.

5.2.3. 1 Hz spike correction

The output signal of the LFI receivers exhibits a set of narrow
spikes at 1 Hz and harmonics with different amplitude and shape
for each detector. These subtle artifacts are due to a common-

mode additive effect caused by interference between scientific
and housekeeping data in the analog circuits of the LFI data
acquisition electronics. The spikes are present at some level in
the output from all detectors, but affect the 44 GHz data most
strongly because of the low voltage and high post-detection gain
values in that channel. The spikes are nearly identical in sky
and reference load samples, and therefore almost completely re-
moved by the LFI differencing scheme. However, a residual ef-
fect remains in the differenced data, which needs to be carefully
considered in the data processing.

These features are synchronous with the On-Board time,
with no measurable change in phase over the entire survey,
allowing construction of a piecewise-continuous template by
stacking the data for a given detector onto a one second interval.
In the DPC analysis the spikes were found to produce negligi-
ble effects in the 30 and 70 GHz channels, and were removed
only from the 44 GHz time-ordered data via template fitting. We
adopt the same procedure without changes.

5.2.4. Analog-to-digital conversion correction

The analog signal from each detector is processed by an analog-
to-digital converter (ADC), which ideally provides a digitized
output exactly proportional to the applied voltage. If the volt-
age step sizes between successive binary outputs of the ADC
are not constant, then the ADC introduces a nonlinear response
that leads to calibration errors. In differential measurements such
as those of LFI, small localized distortions due to ADC non-
linearity can have a significant impact, since the calibration re-
construction depends on the gradient of the ADC response curve
at the point at which the differential measurements are made.

A non-linearity of the ADC produces a variation in the white
noise level of a detector which does not correspond to a variation
in the input voltage level, as one would expect if the effect were
due to a gain shift. This subtle effect was observed in some of the
LFI radiometer data for the first time in flight, where drops of a
few percent were observed in the voltage white noise but not in
the output level over periods of few weeks (Planck Collaboration
III 2014). Because of their lower detector voltages, the 44 GHz
channels showed the strongest effect, reaching levels of 3 to 5 %.
The typical amplitude of the region where the non-linearity oc-
curs is on the order of 1 mV, corresponding to about three bits in
the ADC.

The ADC non-linearity effect has been characterised from
flight data and removed from the data streams. The correct re-
sponse curves is reconstructed by tracking how the noise ampli-
tude varies with the apparent detector voltage in the TOD. Un-
der the assumption that the radiometers are stable, the intrinsic
white noise is taken to be constant, so any voltage variations are
taken to be due to a combination of gain drift and ADC effects. A
mathematical model of the effect and the details of the correction
method are described in Appendix A of Planck Collaboration III
(2014). Again, we adopt these corrections without modification,
and leave full posterior sampling of ADC corrections to future
work.

5.3. Pixel-domain data

In addition to time-domain LFI data, we consider several exter-
nal data sets in the pixel domain, as described in the introduction
to this section, simply in order to be able to constrain the full
astrophysical sky model as defined in Sect. 3.6.
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5.3.1. Planck HFI data

The first external data set we consider is Planck HFI, primarily in
order to constrain thermal dust emission in the LFI frequencies.
The HFI measurements were taken during the first 29 months of
Planck observations, from August 2009 until January 2011, at
which time the helium coolant was depleted. The HFI instrument
includes a total of six frequency bands, centered on 100, 143,
217, 353, 545, and 857 GHz, respectively. The first four channels
are polarized, while the latter two are (at least nominally) only
sensitive to intensity.

While LFI employs coherent radiometers and HEMTs for
signal detection, HFI employs bolometers. One important differ-
ence between these two detector types is that while the former
records both the phase and the amplitude of the incoming elec-
tric field, the latter is sensitive only to the amplitude. In practice,
this difference translates into different sensitivity as a function
of frequency, as well as different instrumental systematics. Gen-
erally speaking, bolometers have lower noise levels than coher-
ent radiometers over relevant CMB frequencies, but they also
tend to be more susceptible to various systematic errors. For
instance, for the LFI 70 GHz radiometers the noise equivalent
temperature9 is 152 µKCMB s−1/2 (Planck Collaboration II 2016),
while it for the HFI 143 GHz bolometers is 57.5 µKCMB s−1/2

(Planck Collaboration VII 2016). At the same time, the size of
CMB detectors typically scales with wavelength, and it is there-
fore possible to fit a larger number of high frequency detectors
than low-frequency detectors into the same focal plane area. In
sum, HFI nominally has more than six times higher sensitivity
than LFI with respect to CMB fluctuations, as measured in terms
of white noise alone. However, a non-negligible fraction of this
sensitivity advantage is lost because of higher sensitivity to cos-
mic rays, ADC non-linearities, and long-duration bolometer time
constants (Planck Collaboration III 2020).

Several different HFI analysis pipelines were developed
within the nominal Planck collaboration period, as detailed
by Planck Collaboration VI (2014), Planck Collaboration VII
(2016), and Planck Collaboration III (2020). The two most
recent and advanced efforts are summarized in terms of the
SROLL2 (Delouis et al. 2019) and NPIPE (Planck Collaboration
Int. LVII 2020) pipelines. For BeyondPlanck, we adopt by de-
fault the NPIPE processing as our HFI data set, which is the most
recent among the various available options. However, we note
that most analyses here will only consider the highest frequency
channels (857 GHz in temperature and 353 GHz in polarization),
in order to constrain thermal dust emission, and the precise de-
tails of the HFI processing are largely irrelevant for these pur-
poses.

The HFI data are pre-processed as follows before integra-
tion into the BeyondPlanck pipeline. First, we note that the HFI
frequency channels have angular resolutions ranging between
9.7 arcmin at 100 GHz and 4.4 arcmin at 857 GHz. The natu-
ral HEALPix pixel resolution for HFI is thus either Nside = 2048
or 4096. While our computational codes do support full resolu-
tion analysis, such high resolution is computationally wasteful
for the purposes of LFI analysis. We therefore smooth the HFI
maps to a common angular resolution of 10′ FWHM (which is
still smaller than the 14′ beam of the 70 GHz channel), and we
re-pixelize each map at Nside = 1024. Overall, this reduces both
CPU and memory requirements for the component separation
phase of the algorithm by about one order of magnitude. Sec-

9 The noise equivalent temperature (NET) represents the noise stan-
dard deviation, σ0, expressed in thermodynamic units of µKCMB with
an integration time of ∆t = 1 s.

ond, we subtract estimates of both zodiacal light and the kine-
matic CMB quadrupole from each sky map prior to analysis,
following Planck Collaboration Int. LVII (2020).

5.3.2. Wilkinson Microwave Anisotropy Probe

Second, we consider observations from the Wilkinson Mi-
crowave Anisotropy Probe (WMAP; Bennett et al. 2013), pri-
marily in order to constrain synchrotron, free-free, and anoma-
lous microwave emission. WMAP was funded by the National
Aeronautics and Space Administration (NASA), and operated
for 9 years between 2001 and 2010. WMAP observed the mi-
crowave sky in five frequency bands, centered on 23, 33, 41,
61, and 94 GHz, with an angular resolution varying from 53′ at
23 GHz to 13′ at 94 GHz, and with sensitivities that range be-
tween 0.8 and 1.6 mK s−1/2.

Like LFI, the WMAP detectors are based on coherent HEMT
technology. However, there are (at least) two critical differences
between the practical implementation of the two experiments.
First, while the LFI detectors measure the difference between
the sky signal in a single direction and that from an internal 4 K
reference load, the WMAP detection chain is intrinsically differ-
ential. That is, each radiometer is coupled to two independent
feedhorns that are separated by an angle of 141◦ on the sky, and
each TOD sample is given by the difference between the signals
recorded by those two horns. For this reason, each WMAP chan-
nel is often referred to as a “differencing assembly” (DA), rather
than a radiometer. Second, while the basic Planck scanning strat-
egy is fixed by its single reaction wheel, supporting smooth rota-
tion only around a single axis, the WMAP satellite carried three
orthogonal reaction wheels that allow for much more tightly in-
terconnected scanning strategies. In sum, these differences lead
to independent instrumental systematics between the two instru-
ments and consequently to different strategies to minimise their
impact. The two data sets are thus complementary, and can be
used to break each other’s internal degeneracies.

As discussed above, we will in this paper only use enough
external data to break parameter degeneracies that cannot be re-
solved by Planck LFI alone, thereby leaving enough room to
allow this data set to provide the main CMB constraints. There-
fore, we include in the following only the WMAP channels be-
tween 33 and 61 GHz. In intensity, we use the WMAP 9-year full-
resolution maps with a diagonal noise covariance matrix, while
in polarization we use the low-resolution maps with full noise
covariance. No pre-processing is applied to any WMAP data be-
fore integration into the BeyondPlanck pipeline.

5.3.3. Low-frequency surveys

As discussed by Planck Collaboration X (2016), because of the
roughly similar shapes of the synchrotron, free-free and AME
SEDs between 20 and 70 GHz, Planck and WMAP are not able to
resolve these components on their own. Rather, it is critically im-
portant to complement these data with at least one low-frequency
survey in order to establish a statistically non-degenerate model.

In BeyondPlanck, we follow Planck Collaboration X (2016),
and include the celebrated 408 MHz survey by Haslam et al.
(1982). Although this is widely believed to suffer more from
instrumental systematic errors than comparable recent surveys,
such as S-PASS (Carretti et al. 2019) or C-BASS (King et al.
2014), it also has the distinct advantages of both being publicly
available and covering the full sky. This full-sky coverage was
achieved by combining observations taken by the Jodrell Bank
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MkI 76 m telescope, the Bonn 100 m telescope, and the Parkes
64 m telescope during the 1960’s and 1970’s. A second advan-
tage is its very low frequency, which allows for a very clean sep-
aration of synchrotron emission, with only a minor additional
contribution from free-free emission.

We adopt the reprocessed version of the Haslam map that
was presented by Remazeilles et al. (2015) for our analyses, and,
following Planck Collaboration X (2016), we model the uncer-
tainty of this map with a uniform standard deviation of 0.8 K per
pixel, added in quadrature to 1 % of the amplitude in that pixel.
Finally, we adopt the monopole and dipole corrections presented
by Wehus et al. (2017) to fix the largest angular scales.

Very recently, the S-PASS survey by Carretti et al. (2019)
was made publicly available. This provides a detailed map of
the southern celestial hemisphere in both intensity and polariza-
tion at 2.3 GHz. In principle, this map could play a similar role
to the 408 MHz survey for BeyondPlanck. However, its limited
sky fraction leads to significant complications. Additionally, the
S-PASS polarization map is significantly affected by Faraday ro-
tation (Krachmalnicoff et al. 2018; Fuskeland et al. 2019), which
require detailed modelling before inclusion into the main Be-
yondPlanck pipeline is possible.

6. Bayesian analysis and MCMC sampling

We have now defined an effective parametric model of the as-
trophysical sky in Sect. 3.6, and an effective instrument model
in Eq. (47). We now seek to constrain these models using
the data summarized in Sect. 5. Let us for convenience de-
note the combined set of all free parameters by ω, such that
ω ≡ {g,∆bp, ncorr, ai, βi,C`, . . .}. In BeyondPlanck, we choose
to work within the well-established Bayesian framework, and
as such, our main goal is to estimate the posterior distribution,
P(ω | d), where d denotes all available data, both in the form
of time-ordered LFI observations and pre-pixelized external sky
maps.

Clearly, this distribution involves billions of non-Gaussian
and highly correlated parameters. Figure 8 is an informal attempt
to visualize some of the main degeneracies of this distribution.
Thick arrows indicate particularly strong correlations, while thin
arrows indicate weaker ones. This chart is just intended to be
a rough illustration, based on our practical experience, rather
than a formal posterior exploration, and so it is obviously in-
complete. Still, it may serve as useful reminder for new readers
about how individual parameters affect other parts of the sys-
tem. To consider one specific example, the gain has a direct and
strong impact on both the CMB and foreground maps by virtue
of multiplying the TOD, and this impact goes both ways; if the
current CMB or foreground parameters are biased, then the esti-
mated gains will also be biased. The same observations also hold
with respect to the correlated noise and bandpasses, although at
a lower level. On the other hand, the gains are only weakly de-
pendent on the monopoles or sidelobes. The sidelobes do affect
the CMB dipole, however, which is a critically important com-
ponent for the gain estimation, and so there is a second-order de-
pendency. Similar observations hold for most other parameters;
the distribution is tightly integrated, and each parameter affects a
wide range of the full model, either directly or indirectly. This in-
tegrated nature of the full posterior distribution emphasizes the
importance of global end-to-end analysis with full propagation
of uncertainties, as implemented in the following.

To start our formal exploration of this full posterior distribu-
tion, we write down Bayes’ theorem,

P(ω | d) =
P(d | ω)P(ω)

P(d)
∝ L(ω)P(ω), (60)

where P(d | ω) ≡ L(ω) is called the likelihood; P(ω) is called
the prior; and P(d) is a normalization factor usually referred to
as the “evidence”. By virtue of being independent of ω, the ev-
idence is irrelevant for parameter estimation purposes, and we
ignore it in the current work, although we note that it is impor-
tant for model selection applications.

For a one-, two-, or three-dimensional parametric model, the
simplest way to numerically evaluate the posterior distribution
is often to compute the right-hand side of Eq. (60) over some
grid in ω. However, this approach quickly becomes computa-
tionally expensive in higher-dimensional parameter spaces, since
the number of grid points grows exponentially with the num-
ber of parameters. For models with more than three parameters,
it is common practice to resort to Markov Chain Monte Carlo
(MCMC) sampling techniques rather than grid techniques. The
main advantage of these techniques is that computing resources
are mostly spent on exploring the peak of the posterior, which is
the region in parameter space that actually matters for final pa-
rameter estimates. In contrast, gridding techniques spend most
of their time evaluating probability densities that are statistically
equivalent to zero. In this section, we will briefly review three
particularly important examples of such MCMC sampling tech-
niques, as they play a fundamental role in the BeyondPlanck
pipeline.

6.1. Metropolis sampling

By far the most commonly applied, and widely known, MCMC
algorithm is the Metropolis sampler (Metropolis et al. 1953). Let
ωi denote the ith sample in a Markov chain,10 and T (ωi+1 | ωi) be
a stochastic transition probability density for ωi+1 that depends
on ωi, but not on earlier states. Assume further that T is sym-
metric, such that T (ωi+1 | ωi) = T (ωi | ωi+1). The most typical
example of such a transition rule is a Gaussian distribution with
mean equal to ωi and with some predefined standard deviation
(or “step size”), σ.

With these definitions, the Metropolis sampling algorithm
can be summarized in terms of the following steps:

1. Initialize the chain at some arbitrary parameter set, ω0.
2. Draw a random proposal11 for the next sample based on the

transition rule, i.e., ωi+1 ← T (ωi+1 | ωi).
3. Compute the acceptance probability, a, defined by

a = min
(
1,

P(ωi+1 | d)
P(ωi | d)

)
(61)

4. Draw a random number, η, from a uniform distribution,
U[0, 1]. Accept the proposal if η < a; otherwise, set
ωi+1 = ωi.

5. Repeat steps 2–4 until convergence.

The critical component in this algorithm is the acceptance
rule in Eq. (61). On the one hand, this rule ensures that the chain

10 A Markov chain is a stochastic sequence of parameter states, {ωi}, in
which ωi only depends on ωi−1, but not earlier states.
11 The symbol “←” indicates setting the symbol on the left-hand side
equal to a sample drawn from the distribution on the right-hand side.
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Fig. 8. Schematic overview of the primary parameters and external data sets considered in the current BeyondPlanck analysis and their inter-
dependencies. This chart is intended to visualize the deeply integrated nature of a modern CMB analysis problem; changing any one of these
parameter can lead to significant changes in a wide range of other parameters, and tracing these joint uncertainties is critically important for
high-precision experiments.

is systematically pushed toward the posterior maximum by al-
ways accepting proposals that are more likely than the previous
step. In this sense, the Metropolis sampler can be considered a
nonlinear optimization algorithm that performs a random walk
in the multidimensional parameter space. However, unlike most
standard optimization algorithms, the method also does allow
samples with lower probability density than the previous state.
In particular, by accepting samples with a probability given by
the relative posterior ratio of the two samples, one can show that
the time spent at a given differential parameter volume is propor-
tional to the underlying distribution density at that state. Thus,
the multidimensional histogram of MC samples produced with
this algorithm converges to P(ω | d) in the limit of an infinite
number of samples.

6.2. Metropolis-Hastings sampling

We note that there is no reference to the proposal distribution T
in the Metropolis acceptance probability as defined by Eq. (61).
This is because we have explicitly assumed that T is symmetric.
If we were to choose an asymmetric transition distribution, this
equation would no longer hold, as proposals within the heavier
tail would be systematically proposed more often than proposals
within the lighter tail, and this would overall bias the chain.

For asymmetric transition distributions, we need to replace
Eq. (61) with

a = min
(
1,

P(ωi+1 | d)
P(ωi | d)

T (ωi | ωi+1)
T (ωi+1 | ωi)

)
, (62)

as shown by Hastings (1970). Without further changes, the al-
gorithm in Sect. 6.1 is then valid for arbitrary distributions T ,

and the algorithm is in this case called Metropolis-Hastings sam-
pling.

6.3. Gibbs sampling

While the Metropolis and Metropolis-Hastings samplers are
prevalent in modern Bayesian analysis applications, they do re-
quire a well-tuned proposal distribution T in order to be com-
putationally efficient. If the step size is too small, it takes a pro-
hibitive number of proposals to move from one tail of the distri-
bution to another, whereas if the step size is too large, then all
proposals are in effect rejected by the acceptance rate. The latter
issue is particularly critical in high-dimensional spaces, and for
this reason Metropolis-type samplers are usually only applied to
moderately high-dimensional parameter spaces, for instance 20
or 50 dimensions. For millions of dimensions, traditional non-
guided Metropolis sampling becomes entirely intractable.

In order to achieve acceptable efficiencies in such cases, one
must typically exploit additional information within the transi-
tion probability. For instance, the Hamiltonian sampler exploits
the derivative of the posterior distribution to establish proposals
(e.g, Liu 2008), while the Langevin Monte Carlo algorithm can
also incorporate second-order derivatives (Girolami & Calder-
head 2011).

Another effective way of improving computing efficiency is
to decompose complicated high-dimensional joint distributions
into its various conditional distributions, a process that is called
Gibbs sampling (Geman & Geman 1984). In this case, one ex-
ploits the shape of the posterior distribution itself to make pro-
posals, but only in the form of conditionals. To illustrate the pro-
cess, let us for the sake of notational simplicity consider a two-
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dimensional distribution P(α, β). In that case, the Gibbs sam-
pling transition probability takes the form

TGibbs(αi+1, βi+1 | αi, βi) = P(αi+1 | βi) δ(βi+1 − βi), (63)

where δ(x) denotes the Dirac delta function, which vanishes for
x , 0, but has a unit integral. The δ function in Eq. (63) ensures
that βi+1 = βi, i.e., that β is kept fixed.

This is an asymmetric proposal distribution, and the corre-
sponding acceptance probability is therefore given by inserting
Eq. (63) into the Metropolis-Hastings rule in Eq. (62):

a =
P(αi+1, βi+1)

P(αi, βi)
TGibbs(ωi | ωi+1)
TGibbs(ωi+1 | ωi)

(64)

=
P(αi+1, βi+1)

P(αi, βi)
P(αi | βi+1) δ(βi − βi+1)
P(αi+1 | βi) δ(βi+1 − βi)

(65)

=
P(αi+1, βi)
P(αi, βi)

P(αi | βi)
P(αi+1 | βi)

βi+1 = βi (66)

=
P(αi+1 | βi) P(βi)
P(αi | βi) P(βi)

P(αi | βi)
P(αi+1 | βi)

P(α, β) = P(α | β)P(β) (67)

= 1, (68)

where we have used the definitions of both conditional12 and
marginal13 distributions; the equations marked in gray indicate
which relation is used in a given step. From this calculation, we
see that when proposing samples from a conditional distribution
within a larger global joint distribution, the Metropolis-Hastings
acceptance rate is always unity. Consequently, there is no need
to even compute it, and this can save large amounts of comput-
ing time for complex distributions. However, one does of course
have to propose from the proper conditional distribution for this
result to hold.

It is also important to note that only a sub-space of the full
distribution is explored within a single Markov step with this al-
gorithm. To explore the full distribution, it is therefore necessary
to iterate through all possible conditionals, and allow changes in
all dimensions. Note, however, that there are no restrictions in
terms of order in which the conditionals are explored. Any com-
bination of sampling steps is valid, as long as all dimensions are
explored sufficiently to reach convergence.

The Gibbs sampling algorithm forms the main computational
framework of the BeyondPlanck analysis pipeline. However,
within this larger framework a large variety of different samplers
are employed in order to explore the various conditionals. For
convenience, Appendix A provides a summary of the most im-
portant samplers, while specific implementation details are de-
ferred to the individual companion papers.

We conclude this section by noting that Gibbs sampling only
works well for uncorrelated and weakly degenerate distributions.
For strongly degenerate distributions, the number of Gibbs it-
erations required to explore the full distribution becomes pro-
hibitive, as the algorithm only allows parameter moves parallel
to coordinate axes. In such cases, it is usually necessary either
to reparametrize the model in terms of less degenerate param-
eters; or, if possible, sample the degenerate parameters jointly.
A commonly used trick in that respect is to exploit the identity
P(α, β) = P(α | β)P(β), which tells us that a joint sample may
be established by first sampling β from its marginal distribution,
and then α from the corresponding conditional distribution as
before. The marginal sampling step ensures the Markov chain

12 Definition of a conditional distribution: P(α | β) ≡ P(α, β)/P(β)
13 Definition of a marginal distribution: P(β) ≡

∫
P(α, β) dα

correlation length becomes unity. This trick is used in several
places in the BeyondPlanck Gibbs chain, for instance for the
combination of instrumental gain and correlated noise (Gjerløw
et al. 2020), and for the combination of astrophysical component
amplitudes and spectral parameters in intensity (Andersen et al.
2020), both of which are internally strongly correlated.

7. Global model specification

The previous section provides a very general overview of our
analysis strategy. In this section, we provide a detailed specifica-
tion of the parametric BeyondPlanck model that is appropriate
for actual implementation and processing.

7.1. Global parametric model

Following the general model introduced in Sects. 3–4, we adopt
the following time-ordered data model,

d j,t = g j,tPtp, j

B
symm
pp′, j

∑

c

Mc j(βp′ ,∆
j
bp)ac

p′ + Basymm
j,t

(
sorb

j + sfsl
t

) +

+ncorr
j,t + nw

j,t.

(69)

Here j represents a radiometer label, t indicates a single time
sample, p denotes a single pixel on the sky, and c represents one
single astrophysical signal component. Further,

– d j,t denotes the measured data value in units of V;
– g j,t denotes the instrumental gain in units of V K−1

cmb
– Ptp, j is the NTOD × 3Npix pointing matrix defined in Eq. (36),

where ψ is the polarization angle of the respective detector
with respect to the local meridian;

– B j denotes the beam convolution in Eq. (46) in the form of
a matrix operator; note that for computational efficiency rea-
sons we only take into account beam asymmetries for the
sidelobes and orbital dipole in this paper;

– Mc j(βp,∆bp) denotes element (c, j) of an Ncomp × Ncomp mix-
ing matrix defined in Eq. (43), describing the amplitude of
component c as seen by radiometer j relative to some ref-
erence frequency j0 when assuming some set of bandpass
correction parameters ∆bp;

– ac
p is the amplitude of component c in pixel p, measured at

the same reference frequency as the mixing matrix M, and
expressed in brightness temperature units;

– sorb
j is the orbital CMB dipole signal in units of Kcmb, includ-

ing relativistic quadrupole corrections;
– sfsl

j denotes the contribution from far sidelobes, also in units
of Kcmb;

– ncorr
j,t denotes correlated instrumental noise, as defined by

Eqs. (51) and (53); and
– nw

j,t is uncorrelated (white) instrumental noise.

For notational convenience, we also define

ssky
j =

∑

c

Mc j(β,∆
j
bp)ac (70)

to be the sky model for detector j without beam convolution, but
integrated over the bandpass.

For external data sets, which are defined in terms of pre-
pixelized maps, this model simplifies to

d j,p = g jB
symm
pp′, j

∑

c

Mc j(βp′ ,∆
j
bp)ac

p′ + nw
j,p, (71)
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which is identical to the Commander2 data model considered by
Seljebotn et al. (2019).

The free parameters in Eq. (69) are {g,∆bp, ncorr, a, β}. All
other quantities are either provided as intrinsic parts of the orig-
inal data sets (e.g., the pointing matrix, the beam profile, and the
orbital dipole), or given as a deterministic function of already
available parameters (e.g., the mixing matrix and the far side-
lobe component). The only exception to this is the white noise
component, which is neither fitted explicitly nor given by prior
knowledge, but is simply left as a stochastic uncertainty in the
model.

In addition to the parameters defined by Eq. (69), our model
includes a handful of parameters that describe the statistical
properties of the stochastic random fields included in the model.
Specifically, we associate each of the astrophysical component
maps ac with a covariance matrix Sc, which in most cases is as-
sumed to be statistically isotropic. Expanding ac

p =
∑
`m ac

`mY`(p)
into spherical harmonics, this matrix may then be written as

S c
`m,`′m′ ≡

〈
ac
`mac,∗

`′m′
〉

= Cc
`δ``′δmm′ , (72)

where Cc
` denotes the angular power spectrum of component c.

(Here we have for notational simplicity assumed that the com-
ponent in question is unpolarized; the appropriate generaliza-
tion to polarization is straightforward, and will be discussed in
Sect. 8.3.8.) This power spectrum is a stochastic parameter on
the same footing as a or β, and may as such be included in the
model fitted to the data. Alternatively, the power spectrum may
be modelled in terms some smaller set of parameters, ξ, through
some deterministic function C`(ξ), in which case ξ is the set
of stochastic parameters included in the model. For notational
simplicity, we will only include the power spectrum in the var-
ious posterior distributions below, but we note that C` may be
replaced with ξ without loss of generality.

Finally, similar considerations hold for the two noise compo-
nents. First, the white noise component is assumed to be piece-
wise stationary and Gaussian distributed with vanishing mean
and a covariance matrix equal to Nw

tt′ = σ2
0δtt′ . In the follow-

ing, we will assume the stationary period to be given by PIDs,
and σ0 will be fitted independently for each period. Second, the
correlated noise component is also assumed to be piece-wise sta-
tionary and Gaussian distributed with zero mean, but with a non-
trivial covariance structure in time, for instance as given by the
1/ f model in Eq. (53). With this approximation, the total noise
PSD is modelled in terms of a total of three free parameters,
namely the white noise level σ0, a knee frequency fknee, and a
low-frequency spectral slope α. We denote the spectral noise pa-
rameters collectively as ξn.

So far, the discussion has been kept general, aiming to fit
all necessary parameters into one succinct and computationally
convenient framework. However, at this point it is useful to re-
mind ourselves that one of the astrophysical component carries
particular importance in this work, namely the CMB. This com-
ponent is accommodated in Eq. (69) in the form of a = acmb and
Mcmb = 1 in thermodynamic temperature units, with an angu-
lar CMB power spectrum defined as C` =

〈
|acmb|2

〉
. Computing

P(C` | d) (or P(ξ | d), where ξ represents a set of cosmological
parameters) properly marginalized over all relevant astrophys-
ical and instrumental parameters, is the single most important
scientific goal of the current algorithm.

In summary, the total set of free stochastic parameters
adopted in this work is ω ≡ {g,∆bp, ncorr, ξn, a, β,C`}, where
each symbol collectively represents a larger set of individual pa-
rameters, typically depending on radiometer, time, pixel, or com-

ponent. For notational convenience, we will usually suppress in-
dividual indices, unless explicitly required for context. Likewise,
we also note that in most cases, each of the parameters and quan-
tities discussed above is associated with its own technicalities,
which have been omitted in the above discussion. Such details
will be provided in dedicated companion papers, with appropri-
ate references given where appropriate. Finally, a full specifi-
cation of the astrophysical component model considered in this
analysis is provided in Sect. 3.6.

7.2. Deterministic quantities

Before considering the posterior distribution P(ω | d), it is use-
ful to introduce some extra notation regarding various quantities
that may either be derived deterministically from ancillary infor-
mation or from other parameters in our model. These quantities
are not stochastic variables in their own right within our model,
and are as such not associated with independent degrees of free-
dom, but they are simply computationally convenient auxiliary
variables.

7.2.1. Frequency maps and leakage corrections

The first derived quantity we consider are frequency maps,
which we will denote mν. In our framework, frequency maps
are not stochastic parameters, but instead they represent a deter-
ministic compression of the full data set from time-ordered data
into sky pixels, conditioning on any parameter or quantity that is
not stationary, such as the gain, correlated noise, and the orbital
dipole.

In order to construct frequency sky maps, we start by com-
puting the following residual calibrated TOD for each detector,

r(0)
j,t =

d j,t − ncorr
j,t

gt, j
−

(
sorb

j,t + sfsl
j,t

)
. (73)

According to Eq. (69), r j,t now contains only stationary sky sig-
nal and white noise, given the current estimates of all other pa-
rameters.

In principle, r(0)
j,t could be individually binned into a pixelized

map for each radiometer j given the pointing information in P j
tp.

Unfortunately, due to the poor cross-linking properties of the
Planck scanning strategy, it is very difficult to solve for three
independent Stokes parameters per pixel based on only informa-
tion from a single radiometer. In practice, four radiometers are
required in order to obtain well-conditioned maps with robust
statistical properties. In the following we will mostly consider
full-frequency maps, combining all four, six and twelve LFI ra-
diometers into respective 30, 44 and 70 GHz maps.

Unfortunately, combining multiple radiometers into a sin-
gle pixelized map carries its own complications. Since each ra-
diometer has its own separate bandpass and beam profile, the
observed sky will appear slightly different for each radiometer.
However, when creating a single joint frequency map, only one
single value per pixel is allowed. Any deviation from this mean
value will be interpreted within the data model as either corre-
lated or white noise, and consequently be filtered according to ξn
or down-weighted according to σ0 during processing, or be split
among the various other free parameters, including the CMB
map. This typically gives rise to artifacts proportional to the to-
tal signal amplitude, but modulated by the scanning strategy of
the instrument. These effects are often referred to as bandpass or
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beam mismatch contamination, respectively. Informally speak-
ing, this is also often referred to as “temperature-to-polarization
leakage,” in recognition of the fact that the temperature signal
is orders of magnitude brighter than the polarization signal, and
therefore even a small bandpass or beam difference can induce a
large spurious polarization signal.

Fortunately, with the model described above, which includes
a full and explicit model of the astrophysical sky signal as part of
its parameter space, it is possible to correct for such leakages. As
described by Svalheim et al. (2020a), we adopt a very straight-
forward approach by simply subtracting a correction from each
detector TOD, prior to map binning, of the form

δsleak
j,t = P j

tpB j
pp′

(
ssky

jp′ −
〈
ssky

jp′
〉)
, (74)

where ssky
j denotes the sky model as seen by detector j, account-

ing for separate bandpass profiles, and angle brackets indicate
an average over all radiometers included in the map. For com-
putational efficiency reasons, the beam is here approximated as
azimuthally symmetric, which allows the average over detector
indicated by brackets in the equation to be performed pixel-by-
pixel. However, since δsleak is already a difference between two
very similar sky models with slightly different bandpasses, the
error due to asymmetric beams is a second-order effect, and com-
pletely negligible compared to instrumental noise.

In order to correct for bandpass and beam leakage effects, we
modify Eq. (73) accordingly,

r j,t =
d j,t − ncorr

j,t

gt, j
−

(
sorb

j,t + sfsl
j,t + δsleak

j,t

)
. (75)

After applying this correction, all detector TODs exhibit the
same net sky signal, up to the accuracy of the instrument model,
which itself is sampled over within the Markov chain. At the
same time, the mean signal is not affected by this correc-
tion, independent of the accuracy of the instrument model, as〈
δsleak

〉
= 0 when averaged over all detectors.

With calibrated and cleaned TOD ready at hand which con-
tain exclusively equalized signal and white noise for each de-
tector, optimal mapmaking is performed simply by solving the
corresponding normal equations pixel-by-pixel (see, e.g., Ap-
pendix A.2 or Ashdown et al. 2007a),

∑

j∈ν
Pt

j(N
w
j )−1P j

 mν =
∑

j

Pt
j(N

w
j )−1d j. (76)

For our pointing matrix definition and white noise covariance
matrix, this equation may for a single pixel be written explicitly
as


∑ 1
σ2

0, j

∑ cos 2ψ j,t
σ2

0, j

∑ sin 2ψ j,t
σ2

0, j
∑ cos 2ψ j,t

σ2
0, j

∑ cos2 2ψ j,t
σ2

0, j

∑ cos 2ψ j,t sin 2ψ j,t
σ2

0, j
∑ sin 2ψ j,t

σ2
0, j

∑ sin 2ψ j,t cos 2ψ j,t
σ2

0, j

∑ sin2 2ψ j,t
σ2

0, j




T
Q
U

 =



∑ d j
σ2

0, j∑ d j cos 2ψ j,t
σ2

0, j∑ d j sin 2ψ j,t
σ2

0, j



, (77)

where the sums run over both detector j and all time samples
t that point toward pixel p. The associated inverse white noise
pixel-pixel covariance matrix, N−1

pp′ , is given simply by the in-
verse of the matrix on the left-hand side of Eq. (76).

It is important to note that the frequency maps defined by
Eq. (76) have a slightly different statistical interpretation than
those delivered by earlier CMB analysis pipelines, for instance
from the Planck DPCs or WMAP science team. With our def-
inition, mν represents one possible realization of the frequency

sky map assuming perfect knowledge about the correlated noise,
gain, bandpass, leakage effects, among others; the only unmiti-
gated stochastic quantity is instrumental white noise. The uncer-
tainties due to all those other effects are instead accounted for
by the fact that we produce an entire ensemble, mi

ν, each with
different combinations of systematic effects. For full error prop-
agation, it is thus important to analyze the full set of available
frequency maps, not just one single realization. In contrast, tra-
ditional frequency maps represent an approximation to the over-
all maximum likelihood solution, and error propagation can only
be achieved through analysis of end-to-end simulations.

We conclude this section by emphasizing that sleak as defined
above is not a separate stochastic parameter within our model. It
neither increases the total uncertainty in the system, nor does it
induce new parameter degeneracies; it is a simple determinis-
tic correction that removes a known bias in co-added frequency
maps.

7.2.2. Spurious leakage maps

The correction for spurious leakages from bandpass and beam
mismatch defined in Eq. (74) is only exact to the extent that the
assumed bandpass and beam profiles are accurate. In order to
monitor the efficiency of the leakage correction, it is therefore
useful to establish a dedicated goodness-of-fit statistic for this
correction. For this purpose, we adopt the “spurious map” ap-
proach pioneered by Page et al. (2007), and later adapted within
various pipelines, including Planck Collaboration II (2020) and
Planck Collaboration Int. LVII (2020).

The central idea underlying this approach is to modify the
pointing matrix to allow for a set of additional temperature maps,
each corresponding to the difference between the temperature
sky as seen by radiometer j and the temperature sky as seen by
the mean of the detectors at that frequency. However, to prevent
the linear mapmaking equation from becoming degenerate, one
can at most include Ndet − 1 such spurious maps for a configu-
ration involving Ndet detectors. Thus, we generalize the pointing
model for a single observation in terms of the Stokes parameters
and spurious maps as follows,

s j = T + Q cos 2ψ j + U sin 2ψ j +

Ndet−1∑

i=1

S i δi j. (78)

Given this definition, the mapmaking equation in Eq. (76) gen-
eralizes straightforwardly, and for the special case of three de-
tectors, the contribution of a single sample from detector j takes
the schematic form


1 cos 2ψ sin 2ψ δ1 j δ2, j
cos 2ψ cos2 2ψ cos 2ψ sin 2ψ cos 2ψ δ1 j cos 2ψ δ2, j
sin 2ψ sin 2ψ cos 2ψ sin2 2ψ sin 2ψ δ1 j cos 2ψ sin 2ψ δ2, j
δ1 j cos 2ψ δ1i sin 2ψ δ1 j δ1 j 0
δ2 j cos 2ψ δ2i sin 2ψ δ2 j 0 δ2 j





T
Q
U
S 1
S 2


=



d
d cos 2ψ
d sin 2ψ

d δ1 j
d δ2 j


. (79)

For WMAP, it is in fact possible to solve this equation pixel-
by-pixel, due to the highly interconnected WMAP scanning strat-
egy (Page et al. 2007). The resulting Stokes parameter maps
solved jointly with S were therefore released as primary mission
products (Bennett et al. 2013). Unfortunately, the same is not
possible for Planck without inducing an unacceptable increase
in the overall noise level, as the coupling matrix in Eq. (79) is
poorly conditioned over most of the sky. However, the resulting
S maps are still very useful for monitoring purposes, and we will
in fact use these maps to optimize a small number of bandpass
parameters, for which a high level of noise is of no concern; see
Svalheim et al. (2020a) and Sects. 4.2 and 8.3.4 for further de-
tails.
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7.2.3. Orbital dipole

The third derived quantity we will need is the orbital dipole, sorb
j,t .

Including a relativistic quadrupole correction, this has a closed
form as given by

sorb
j,t =

TCMB

c

(
vsat · n̂j,t + q(vsat · n̂j,t)2

)
, (80)

where

q =
x(e2x + 1)

e2x − 1
; x =

hν
2kTCMB

(81)

is the frequency dependency of the relativistic quadrupole
term. The CMB temperature is in our analysis fixed to
TCMB = 2.7255 K, following Fixsen (2009). Finally, c is the
speed of light, h is Planck’s constant, k is Boltzmann’s constant,
vsat is the satellite velocity, and n̂j,t is the pointing vector of de-
tector j at time t. The satellite velocity is known with an ab-
solute precision better than 1 cm s−1 (Planck Collaboration Int.
LVII 2020). An efficient convolution algorithm for this compo-
nent that takes into account the full 4π beam is described by
Galloway et al. (2020b).

It is important to note the critical role of this particular sig-
nal term. Depending only on the velocity of the satellite (which
is known to exceedingly high precision) and the CMB temper-
ature (which is known to a precision of 0.02 %; Fixsen 2009),
it provides the best absolute calibration source in microwave as-
tronomy, if not all of astronomy. For BeyondPlanck, as for both
Planck and WMAP, this signal is therefore used to determine the
overall absolute calibration of the entire data set.

7.2.4. Far sidelobe corrections

The last derived quantity we will need at this stage is the far
sidelobe correction, sfsl, as defined in Sect. 4.3. As shown by
Planck Collaboration IV (2016), the Planck LFI optics have sev-
eral significant sidelobes at large angles from the optical axis.
The most important is due to spillover around the main reflec-
tor, and located about 85◦ from the main beam. The second most
important is due to spillover around the secondary reflector, and
located about 20◦ from the main beam. To account for these, we
convolve the parametric sky model with the (near-)4π beam pro-
file, B, of each radiometer (regions closer than 5◦ from the main
beam are excluded),

sfsl
j,t =

∫

4π
[R(Ωt)B(Ω)] ssky

j (Ω) dΩ, (82)

where R(Ωt) is a rotation matrix that rotates the beam as speci-
fied by the satellite pointing at time t. To evaluate this integral,
we employ an algorithm that is algebraically equivalent to the
conviqt approach described by Prézeau & Reinecke (2010),
but implemented in terms of spin harmonics, as described by
Galloway et al. (2020b).

We stress, however, that uncertainties in the far-sidelobe
model are not yet accounted for, and this represents a significant
model uncertainty in the current analysis. Generalizing the para-
metric model in Eq. (69) to allow for new beam-related degrees
of freedom is an important goal for future algorithm develop-
ment.

8. The BeyondPlanck Gibbs sampler

8.1. Global posterior distribution

Given the global parametric model defined in Sect. 7.1, and the
ancillary quantities summarized in Sect. 7.2, we are now finally
ready to consider the full global BeyondPlanck posterior dis-
tribution, P(ω | d), and describe the computational algorithms
required to map it out. In practice, this entails writing down ex-
plicit expressions for the likelihood and priors in Eq. (60), as
well as specifying an explicit Gibbs chain that is able to explore
the posterior distribution efficiently.

Starting with the likelihood, L(ω), we first note that the data
model defined in Eqs. (69)–(71) is given as a linear sum of var-
ious components, all of which are specified precisely in terms
of our free parameters ω. This applies even to the correlated
noise component, ncorr, which for the purposes of the likelihood
is fully equivalent to any of the other physical components. As
such, we may symbolically write d = stot(ω) + nw, where stot(ω)
is the sum of all model components in Eq. (69), whether they
have a cosmological, astrophysical or instrumental origin. With
this notation, we immediately see that

P(d | ω) ∝ P(nw | ω) ∝ exp

−
1
2

(
d − stot(ω)

σ0

)2 , (83)

since nw = d − stot(ω), P(nw) ∝ N(0, σ2), and stot is determinis-
tically given by ω.

Next, the prior P(ω) should encapsulate all our prior knowl-
edge about any of the model parameters. For instance, we may
use this term to introduce information regarding the instrumen-
tal gain from temperature measurements of the 4 K load onboard
the Planck satellite during the calibration stage; or we can use it
to impose prior knowledge regarding the CIB zero-level ampli-
tude at each frequency during component separation; or we may
introduce a prior on the Hubble constant during cosmological
parameter estimation; or we may use it to regularize posterior
volume effects through the application of a Jeffreys ignorance
prior (Jeffreys 1946). A detailed breakdown of the priors used in
this particular analysis will be presented in association with the
respective steps.

8.2. Overview of Gibbs chain

As already discussed, the posterior distribution defined by
Eq. (60) involves millions of tightly correlated and non-Gaussian
parameters, and it is clearly unfeasible to optimize or sample
from it directly. We therefore resort to the Gibbs sampling al-
gorithm described in Sect. 6.3: We compute a Markov chain of
correlated samples by initializing on some arbitrary parameter
combination, ω0, and then iteratively sample from each condi-
tional distribution from the full distribution. In practice, most
runs are initialized on the outcome of an earlier analysis, in or-
der to save burn-in time.

The BeyondPlanck Gibbs chain may be written schemati-
cally as follows,

g ← P(g | d, ξn,∆bp, a, β,C`) (84)
ncorr ← P(ncorr | d, g, ξn,∆bp, a, β,C`) (85)
ξn ← P(ξn | d, g, ncorr, ∆bp, a, β,C`) (86)

∆bp ← P(∆bp | d, g, ncorr, ξn, a, β,C`) (87)
β ← P(β | d, g, ncorr, ξn,∆bp, C`) (88)
a ← P(a | d, g, ncorr, ξn,∆bp, β,C`) (89)

C` ← P(C` | d, g, ncorr, ξn,∆bp, a, β ), (90)

Article number, page 29 of 77

163



A&A proofs: manuscript no. ms

where the conditional variables have been vertically aligned for
clarity only. As usual, the symbol← means setting the variable
on the left-hand side equal to a sample from the distribution on
the right-hand side. For convenience, in the following we also
define the notation “ω \ ξ” to imply the set of parameters in ω
except ξ.

Note that the first conditional in this Gibbs chain,
P(g | d, . . .) represents a marginal distribution with respect to
ncorr. As such, g and ncorr are in effect sampled jointly in the Be-
yondPlanck Gibbs chain (Gjerløw et al. 2020; Ihle et al. 2020),
using the properties discussed in Sect. 6.3. The reason for this
choice is that these two parameters are particularly strongly de-
generate, and joint sampling therefore leads to a much shorter
overall correlation length than strict Gibbs sampling. This out-
weighs by far the somewhat higher computational cost per it-
eration that is required for sampling the gain from its marginal
distribution.

The same trick is applied when sampling astrophysical com-
ponent parameters, a and β in the case of intensity maps. In this
case, we first sample β marginalized over a, and then a condi-
tionally on β (Andersen et al. 2020). Since a is a set of linear
parameters, the integral over a may be computed analytically, as
first exploited for CMB component separation purposes in the
Miramare code (Stompor et al. 2009; Stivoli et al. 2010). For
polarization, we still sample β conditionally on a, as described
by Svalheim et al. (2020b), because the low-resolution WMAP
data with full covariance matrix prohibits smoothing to a com-
mon angular resolution, as needed for the marginal sampling ap-
proach.

We will now describe each of these distributions in turn, with
the main goal being to build intuition regarding each distribu-
tion. For specific implementational details we refer the interested
reader to companion papers.

At this point, we note that if a joint maximum likelihood es-
timate is required as opposed to a sample set, the same method-
ology applies as described below, with the exception that one
should then maximize each conditional, rather than sample from
it. The algorithm then becomes equivalent to a (slow but com-
putationally convenient) steepest descent nonlinear optimizer. In
our codes, we have implemented support for both modes of op-
eration.

8.3. Specification of conditional sampling steps

8.3.1. Gain and calibration sampling

We start our review of the various Gibbs sampling steps with the
gain, gt. In this paper, we only summarize the main central steps,
and we refer the interested reader to Gjerløw et al. (2020) for full
algorithmic details.

The gain is among the most critical parameters in our model
in terms of the overall resulting data quality, and even relative er-
rors at the O(10−4) level are highly significant. At the same time,
it is also one of the parameters we have the least prior informa-
tion about, as it is entirely specific for each individual instru-
ment. To estimate the gain robustly, we therefore exploit the fol-
lowing observations: First, we note that the orbital CMB dipole
(see Sect. 7.2.3) depends only the satellite velocity, which is
known to a precision of 10−6 (Godard et al. 2009), and the CMB
monopole value, which is known to a precision of 0.02 % (Fixsen
2009). The orbital dipole therefore by far provides the most ro-

Fig. 9. Processing masks used for low-level TOD processing. The gray
regions show the main processing mask used for gain and correlated
noise sampling (with 30 GHz shown in lightest gray, and 70 GHz in
darkest gray), which remove 27, 19, and 23 % of the sky for 30, 44 and
70 GHz, respectively. The black regions show the bandpass correction
sampling mask, which only removes 4.7 % of the sky.

bust constraints on the mean calibration.14 However, since the
Earth’s orbital velocity is 30 km s−1 and the CMB monopole is
2.7255 K, the absolute amplitude of the orbital dipole is only
270 µK, which is small compared to typical signal and noise
variations. As a result, the orbital dipole is not strong enough
to directly determine the gain alone on short time scales.

In contrast, the amplitude of the solar CMB dipole is 3 mK,
about ten times brighter than the orbital dipole. Of course, the
true solar CMB dipole parameters are unknown, and must be
estimated jointly with everything else; but we do know that all
detectors observe the same solar dipole. We also know that its
frequency spectrum is given by a perfect blackbody with tem-
perature TCMB. Together, these two facts provide a strong handle
on relative gain variations, both between detectors and in time.

First, we note that the fundamental data model in Eq. (69)
may for each detector be written in the form

dt = gt stot
t + ncorr

t + nw
t (91)

where

stot
t = Ptp

[
Bsymm

pp′ ssky
p′ + Basymm

pp′
(
sorb

t + sfsl
t

)]
(92)

is the total sum of all true astrophysical signals entering through
the optical assembly of the instrument. Noting that both the gain
and correlated noise a priori are unknown quantities with no and
weak priors, respectively, it is clear from the structure of Eq. (91)
that these two parameters are highly degenerate: significant vari-
ations in g can be accounted for by adjusting ncorr with only a
small penalty in terms of total goodness-of-fit through the noise
power spectrum, ξ.

Recognizing the importance of this degeneracy, and the
resulting sensitivity to potential modelling errors, we decom-
pose the full time-dependent gain function into three compo-
nents, and sample each of these with a special-purpose sampler.
Specifically, we write the full gain for detector i in the form
gi

t = g0 + ∆gi + δgi
t, where g0 is the gain averaged both over all

detectors within a given frequency map and over time; ∆gi is the
mean gain differential for detector i averaged over time, with the
additional requirement that

∑
i ∆gi = 0; and δgi

t represents the
time dependence in gain, with the additional requirement that∑

t gi
t = 0 for each i. In addition, when sampling the these gain

14 The term “calibration” refers in this paper to the time average of the
gain.
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parameters, we marginalize over the correlated noise compo-
nent, as discussed in Sect. 8.3.1, in order to minimize the Gibbs
chain correlation length. In total, the data model used for gain
sampling therefore reads

di
t = (g0 + ∆gi + δgi

t)stot
t + ntot

t , (93)

where ntot
t = ncorr

t + nwn
t is the total noise contribution with a full

covariance matrix given by ξn.
Formally speaking, the statistically optimal sampling algo-

rithm for any of the three gain parameters is given by correlating
the full sky signal with the observed data. In effect, this direct ap-
proach was adopted by the LFI DPC pipeline (Planck Collabora-
tion II 2020). A significant disadvantage of this direct approach,
however, is sensitivity to foreground and bandpass mismatch er-
rors. Instead, we adopt the following three-step approach, which
is structurally similar to the NPIPE algorithm (Planck Collabo-
ration Int. LVII 2020).

First, we sample g0 with the orbital CMB dipole alone as
calibration source, based on the residual

ri
t ≡ di

t − ĝ(stot
t − sorb) − (∆ĝi + δĝi

t)sorb
t = g0sorb

t + ntot
t , (94)

where the symbol “^” denotes the respective estimate from the
previous Gibbs iteration. Noting that ntot is a Gaussian field with
covariance N and sorb is a deterministic quantity, the sampling
algorithm for g0 is given by that of a univariate Gaussian distri-
bution as described in Appendix A.1,

g0 =

∑
i sorb,t

i N−1
i rorb

i∑
i sorb,t

i N−1
i sorb

i

+
η√∑

i sorb,t
i N−1

i sorb
i

, (95)

where the sum runs over all detectors in the frequency map, and
η ∼ N(0, 1). We note that this expression represents a formal vio-
lation of the Gibbs chain, since g0 in reality affects both stot and
sorb. By fitting only to sorb we effectively gain robustness with
respect to modelling errors at the cost of increased statistical un-
certainty.

Note that the noise covariance matrices in Eq. (95) in-
clude both correlated and white noise contributions; this is al-
gebraically equivalent to marginalizing over ncorr as described
above. In constrast, in a classic Gibbs sampling algorithm we
would subtract ncorr from ri in Eq. (96), and then only include
the white noise component in Ni. This, however, would lead to
a much longer Markov correlation length, since the joint uncer-
tainties between g0 and ncorr then would have to be explored by
sampling, rather than algebraically.

Second, we sample the detector dependent calibration fac-
tors, ∆gi, based on the residual

ri
t ≡ di

t − (g0 + δĝi
t)stot

t = ∆gistot
t + ntot

t , (96)

for each detector, which now includes contributions from both
the solar CMB dipole and astrophysical foregrounds, and there-
fore supports a significantly higher signal-to-noise ratio than the
orbital dipole alone. At the same time, we impose the additional
linear constraint that
∑

∆gi = 0, (97)

such that possible contamination in this step does not affect the
absolute mean calibration of the full frequency channel. The total
system may be solved using the Lagrange multiplier technique
(e.g., Bertsekas 1996) with a Lagrangian of the form

L(∆gi, λ) =
∑

i

(
ri − ∆gistot

)t
N−1

i

(
ri − ∆gistot

)
+λ

∑

i

∆gi, (98)

where λ is a Lagrange multiplier. The maximum posterior so-
lution is found by solving the linear equations resulting from
setting ∂L/∂xi = 0 with xi = {∆gi, λ}.

Third and finally, the time-dependent gain fluctuations are
sampled starting from the residual

ri
t ≡ di

t − (g0 + ∆gi) stot
t = δgistot

t + ntot
t , (99)

where δgi
t is assumed to be constant within each PID period, but

free to vary between consecutive PIDs. Ideally, δgi
t should be

sampled from a multivariate Gaussian distribution, taking into
account their known 1/ f power dependency. In the current im-
plementation, however, we adopt a similar solution as the LFI
DPC pipeline (Planck Collaboration II 2020). That is, we first es-
timate δgi

t independently for each time segment, and then smooth
the resulting gain estimates with a moving boxcar average. In
contrast, NPIPE does not smooth the estimates (Planck Collabo-
ration Int. LVII 2020).

To prevent foreground modelling errors from affecting the
various gain estimates, we apply the processing masks indicated
in gray in Fig. 9 in each of the above equations. Any sample
that falls within the masked region is omitted from the corre-
sponding inner product, and does not contribute to the overall
estimate. The same applies to any sample that may be flagged
by the instrument database. Removing individual samples, how-
ever, does introduce a slight computational complication because
of the Ntot = Ncorr + Nwn operator, which denotes a dense noise
covariance matrix that includes both correlated and white noise.
Application of this operator at full temporal TOD resolution is
computationally expensive. However, we note that since the gain
is defined only by a single value per PID, small-scale fluctuations
can be averaged down with minimal loss of information in all the
above equations. We therefore down-sample each time-ordered
data object to 1 Hz before evaluating the above equations, and
this reduces the overall computational cost for gain sampling by
almost two orders of magnitude; see Gjerløw et al. (2020); Ihle
et al. (2020) for further details.

Finally, we note that several discrete events took place dur-
ing the Planck observations, for instance maneuvers or cooler
maintenance, and many of these led to sharp jumps in the LFI
gain (Planck Collaboration II 2020). To avoid smoothing across
such steps, we boxcar average independently over each continu-
ous PID range between two events. A total of 23 events are in-
cluded in this manner. However, we do note that this represents a
significant unmodelled uncertainty in the current BeyondPlanck
analysis: The presence of unknown jumps can contaminate the
final resulting polarization maps at significant level. Indeed, as
discussed in Sect. 9.5, unmodelled gain jumps are viable candi-
dates for explaining one of the main residual systematic effect in
the 44 GHz channel, namely strong stripes visible in the South-
ern Galactic hemisphere. Automatically identifying jumps as an
intrinsic step of the sampling algorithm is an important task for
future work.

8.3.2. Correlated noise sampling

Since the gain is sampled from a marginal distribution with re-
spect to correlated noise, not a conditional distribution, it is es-
sential to sample the correlated noise immediately following the
gain; otherwise the Gibbs chain would end up in an internally in-
consistent state. However, as far as the actual sampling algorithm
for the correlated noise is concerned, this is a normal conditional
with respect to the gain, akin to any other standard Gibbs step,
and was first described in a CMB setting by Wehus et al. (2012).
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The same algorithm has now also, for the first time, been used to
solve the CMB mapmaking problem by Keihänen et al. (2020).

To derive the appropriate sampling equation for ncorr, we re-
turn to the full data model in Eq. (69), and note that it may be
written on the form

rt ≡ dt − gt stot
t = ncorr

t + nw
t , (100)

where stot
t is defined in Eq. (92). As discussed in Sect. 7.1, ncorr is

assumed to be Gaussian distributed with zero mean and covari-
ance Ncorr, while the white noise term is uncorrelated Gaussian
with variance σ2

0. Eq. (100) therefore also describes a correlated
Gaussian distribution, and the sampling equation is in this case
given by Eq. (A.10) with a template matrix T = 1, a signal co-
variance matrix S = Ncorr, a noise covariance matrix N = Nw,
and data d = r.

Let us first consider the ideal case of a single PID with no
missing data due to either instrument flags or processing mask.
In that case, Eq. (A.10) can be solved very conveniently in the
Fourier domain, and the appropriate sampling equation for the
kth Fourier mode reads

nk =
rk + η1σ

2
0/

√
Pcorr

k + η2σ0

1 + σ2
0/P

corr
k

. (101)

For this case, we note that the computational cost is equivalent
to two Fourier transforms of the full time-ordered data.

As usual, the first term in the numerator of Eq. (101) is sim-
ply a Wiener filtered version of the residual, r. As such, it repre-
sents a biased estimate of ncorr, with a noise suppression factor
given by the relative inverse signal-to-noise ratio, Pcorr

k /σ2
0. The

two last terms are stochastic random fluctuations that ensure that
the resulting sample has the appropriate covariance structure.

Equation (101) only applies to data with no missing time
samples, as the Fourier transforms require continuous inputs. In
practice, however, we drop all samples that are removed by ei-
ther the instrument flags or by the processing mask shown in
Fig. 9. In this case, the optimal solution is therefore given by
Eq. (A.10), where rows and columns corresponding to masked
samples are set to zero in N. The resulting equation is therefore
solved efficiently by a Conjugate Gradient (CG) technique, as
described by Keihänen et al. (2020). As reported by Galloway
et al. (2020a), and summarized in Table 2, this particular step
accounts for about 40 % of the total computational cost of the
BeyondPlanck Gibbs sampler, and it is as such by far the most
expensive single component in the entire analysis.

In the current framework, correlated noise estimation plays
the role of the traditional CMB mapmaking problem with cor-
related noise in a traditional pipeline. In this respect, it is worth
noting that the correlated noise sample is constructed based on
the signal-subtracted data, r, alone. Under the assumption of a
perfect signal model, inaccuracies in the correlated noise model
can therefore not introduce any signal bias. Using the analogy
of traditional destriping codes (e.g., Maino et al. 1999; Keihä-
nen et al. 2004, 2005, 2010), the signal subtraction plays the
same role in the Gibbs sampling approach as the projection op-
erator Z = I − P(PtN−1P)−1PtN−1 does for destriping, shielding
any stationary signal from the noise filter. The main fundamental
difference between the two approaches lies in the fact that while
the traditional destriper only exploits information from a single
frequency channel at any given time, the Gibbs sampling ap-
proach simultaneously exploits information from all frequencies
to construct a joint signal model, which then is used to shield the
signal during correlated noise estimation. The Gibbs sampling

approach is thus mathematically equivalent to destriping all fre-
quencies at once. The effect of this global correlated noise esti-
mation will become evident later, in the form of lower correlated
noise residuals in the joint approach.

Second, it is important to note that the correlated noise solu-
tion resulting from Eq. (101) is moderately robust against model
errors, whether they are due to foreground modelling errors or
inaccuracies in the bandpass or beam profile. The reason is sim-
ply that Eq. (101) is a Wiener filter, and therefore has greatly
suppressed power in any frequency mode for which Pcorr

k � σ2
0.

Intuitively, this means that any feature that cannot be readily
identified in the raw time-ordered data as compared with σ0, will
only be weakly affected by the correlated noise component. Mi-
nor errors in the signal model, beam or bandpass profiles are
therefore mostly negligible.

There are, however, two important exceptions to this general
rule. First, some point sources, such as Tau A or the Galactic cen-
ter, are sufficiently bright that uncertainties in the beam or fore-
ground model can be large compared to the white noise level. If
so, the resulting errors will typically translate into bright stripes
passing through the respective source, extending along the scan-
ning path of the satellite. To avoid this, it is critically important
to mask all bright sources as part of the processing mask, and
replace those regions with a proper constrained realization as
described above.

The second important exception is the CMB dipole. This sig-
nal is both bright, with a peak-to-peak amplitude of about 3 mK,
and concentrated at a very low frequency that corresponds to the
satellite spin rate of 1/60 Hz. This is typically comparable to (or
lower than) the correlated noise knee frequencies (Planck Col-
laboration II 2020). Furthermore, the ring-based Planck scan-
ning strategy provides minimal modulation of the dipole signal
on frequencies beyond the spin frequency. The combination of
these facts leads to a strong degeneracy between the CMB dipole
parameters, the time-dependent gain, and the correlated noise.
Indeed, experience shows that Planck is, for all practical pur-
poses, unable to break this degeneracy through statistical power
alone. Instead, various strong priors are typically imposed to reg-
ularize these degeneracies. For instance, the LFI DPC processing
impose the requirement that mD · m = 0, where mD is a map of
the CMB dipole and m is the sky map; this effectively leaves the
full instrumental noise component aligned with the CMB dipole
in the final sky map (Planck Collaboration V 2016). Addition-
ally, the LFI pipeline makes no explicit corrections for bandpass
mismatch during gain calibration. For the HFI 2018 DPC pro-
cessing, the dominant assumption is that the gain is fully inde-
pendent of time, and the only source of apparent gain fluctua-
tions are ADC non-linearities (Planck Collaboration III 2020).
For NPIPE, two important assumptions are that polarized fore-
grounds at frequencies between 44 and 217 GHz may be fully
modelled in terms of the signal observed by 30 and 353 GHz,
and that CMB polarization may be ignored during calibration
(Planck Collaboration Int. LVII 2020). Obviously, none of these
assumptions are formally correct, and they will necessarily lead
to systematic biases at some level.

In BeyondPlanck, we adopt a different approach to the prob-
lem, by actually exploiting information beyond Planck. Specif-
ically, as described in Sect. 5, we will in the following perform
a joint analysis of WMAP and Planck observations, and thereby
take advantage of information in one experiment to break de-
generacies in the other. Most notably, the WMAP scanning strat-
egy covers 70 % of the sky every hour, as compared to less than
1 % per hour for Planck. This strategy is thus obviously better
suited for measuring the very largest angular scales on the sky,

Article number, page 32 of 77

166



BeyondPlanck Collaboration: Global Bayesian analysis of Planck LFI

despite higher white noise. On the other hand, the differential
structure of the WMAP differencing assemblies leads to particu-
larly large uncertainties for some specific modes, including E`=5
and B`=3 (Jarosik et al. 2011). In BeyondPlanck we therefore
choose to combine Planck and WMAP data while taking into ac-
count the full covariance information of each experiment, and
thereby optimally leverage the individual strengths of each ex-
periment. Still, we emphasize the importance of visually inspect-
ing binned sky maps of ncorr for dipole-like residuals, which is
the archetypical signature of calibration errors; such residuals
may occur if the assumed signal model is inadequate for the data
set in question.

8.3.3. Noise PSD sampling

The third conditional distribution, P(ξn | d, ω \ ξn), in the Be-
yondPlanck Gibbs chain describes the noise power spectrum
density parameters, Pk and σ0, collectively denoted ξn. In the
following, we will make the assumptions that ξn is constant
within each PID and uncorrelated between PIDs. Being closely
connected to the previous sampling step, the following proce-
dure was also first presented for CMB applications by Wehus
et al. (2012).

To sample from P(ξn | d, ω \ ξn), we recall that ncorr ∼
N(0,Ncorr). Therefore,

P(ξ | d, ω \ ξn) ∝ P(ξ | ncorr) (102)

∝ e−
1
2 nt

corrN
−1
corr ncorr

√|Ncorr|
, (103)

where Ncorr = Ncorr(ξn). To sample from this distribution, we
could for instance run a Metropolis sampler over ξn, using
Eq. (103) to define the acceptance probability. However, at this
stage we introduce an approximation to the exact solution, trad-
ing a small amount of statistical optimality for increased robust-
ness to modelling errors and minimal parameter degeneracies.
Specifically, we decouple the white noise variance from the cor-
related noise model simply by defining

σ2
0 ≡

Var(rt − rt−1)
2

, (104)

where we define

rt ≡ dt − stot
t − ncorr

t (105)

to be the residual time stream after subtracting both the current
total sky signal and correlated noise estimates. Thus, we take the
variance of the difference between any two neighboring residual
samples to be our white noise variance. On the one hand, this
represents the single most robust estimate of the total white noise
level one can form from a finite data set. On the other hand, it
is of course only an approximation to the true white noise level,
since the correlated noise component may also happen to include
a flat and non-negligible power spectrum density at the highest
frequency mode. This situation typically arises more often for
bolometers (as for instance employed by the Planck HFI detec-
tors) than for coherent detectors (as employed by the Planck LFI
detectors and considered here), but the principle is the same both
cases.

Thus, we define any flat component of the correlated noise
to be part of the white noise, and the correlated noise is con-
sequently defined as the difference between the total noise and
the white noise. For error propagation into other parameters in
the model, only the sum of the two components is significant.

This split is thus essentially just a computational trick that elim-
inates internal degeneracies between the two noise components,
and maximizes the relative contribution of the white noise com-
ponent. This has two main numerical advantages. First, not-
ing that white noise marginalization is performed algebraically,
while correlated noise marginalization is done through sampling,
a high relative white noise fraction leads to a shorter overall
Markov chain correlation length for all steps in the algorithm.
Second, by fixing the white noise level, we break degeneracies
within the ξn parameters, which otherwise lead a very long cor-
relation length between σ0, α, and fknee, making making conver-
gence assessment difficult.

Given this definition of the white noise variance, the corre-
lated noise level may now be sampled from Eq. (103) by fixing
Nw. Specifically, as discussed by Ihle et al. (2020), the condi-
tional posterior may be written in Fourier space as

− ln P(ξn) =
∑

ν>0


|ncorr
ν |2

σ2
0

(
ν

νknee

)α + lnσ2
0

(
ν

νknee

)α , (106)

up to an irrelevant constant, where ncorr
ν are the Fourier coeffi-

cients of the correlated noise estimate, ncorr. We sample from this
distribution with a simple inversion sampler (see Appendix A.3),
iteratively Gibbs sampling over α and νknee. Masking and in-
painting is handled by the ncorr sampling step described in
Sect. 8.3.2. Additionally, only frequencies below a fixed upper
frequency limit (defined by twice the DPC estimate of fknee) is
included when sampling α and νknee, to avoid potential signal
leakage and modelling errors from contaminating the correlated
noise estimates; for further details, see Ihle et al. (2020).

Before concluding this section, we note once again that un-
certainties due to modelling errors as such are not meaningfully
accounted for in a traditional Bayesian analysis. This point is im-
portant for LFI noise estimation, because Ihle et al. (2020) find
that the 1/ f noise model is not an adequate statistical descrip-
tion for the LFI 30 and 44 GHz frequency channels. In partic-
ular, they identify significant noise excess at intermediate tem-
poral frequencies, between 0.1 and 1 Hz, which correspond to
angular scales between 6 and 60◦ on the sky given the Planck
scanning strategy. As such, this excess noise is highly relevant
for large-scale polarization estimation with the 30 and 44 GHz
channels. Generalizing the 1/ f noise model to account for this
excess noise is a top priority issue for future work. On the other
hand, we do find that the 1/ f model appears to be good descrip-
tion of the noise at 70 GHz, and by far most of the LFI-specific
CMB science has been derived from this particular channel (e.g.,
Planck Collaboration V 2020).

8.3.4. Bandpass sampling

Next, we consider the bandpass correction conditional distribu-
tion, P(∆bp | d, ω \ ∆bp), and in the following we will consider
the most basic form of bandpass correction, namely a linear shift
as defined by Eq. (45); see Svalheim et al. (2020a) for further de-
tails.

Similar to the gain case, we find it useful to decompose the
full bandpass shift for detector j as follows,

∆
j
bp = ∆̄bp + δ

j
bp. (107)

Here the first term is the average over all radiometers within a
given frequency channel and the second term is constrained by∑

j δ
j
bp = 0. The motivation for this decomposition is that the two
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terms impact the data in qualitatively different ways. The average
bandpass shift, ∆̄bp, change the overall effective frequency of the
full frequency channel, and is as such highly degenerate with the
foreground SED parameters; a given bandpass frequency shift
may often be counteracted by adjusting the values of the syn-
chrotron or thermal dust spectral indices. This mean bandpass
shift does not in general change the polarization properties of
the resulting frequency map. The relative bandpass corrections,
however, have a strong impact in terms of polarization through
temperature-to-polarization leakage, as discussed in Sect. 4.2
and by Svalheim et al. (2020a).

For this reason, we have implemented two different sampling
algorithms for these parameters. First, the mean bandpass cor-
rection is sampled with the full time-domain residual on the form

r j = d j − ncorr
j − G jP jB

asymm
j

(
sorb

j + sfsl
j

)
(108)

= G jP jB
symm
j

∑

c

Mc j(β,∆
j
bp)ac + nw

j . (109)

Clearly, this residual is highly nonlinear in ∆bp, and no ana-
lytic distribution or sampler exist. We therefore once again re-
sort to the Metropolis sampler described in Sect. 6.1. Specifi-
cally, we propose small variations to the current mean bandpass
shift (while keeping the relative differences between radiome-
ters fixed); we compute the resulting mixing matrices M and
sky maps for the new proposals; and we finally then apply the
Metropolis acceptance rule as given by the resulting χ2. Only
samples within the small processing mask in Fig. 9 are included
in the χ2. Since mixing matrix updates are computationally ex-
pensive, bandpass corrections are among of the most difficult
parameters to explore within the entire model. However, as dis-
cussed by Svalheim et al. (2020a), the degeneracies between
CMB, free-free, AME and ∆̄bp are too strong to support a robust
determination of ∆̄bp when including only LFI and WMAP data.
In the final BeyondPlanck production runs, we therefore adopt
priors based on the Planck 2015 analysis (Planck Collaboration
X 2016), which used HFI data to break these degeneracies. In
practice, we only apply an overall mean correction of 0.3 GHz
to the 30 GHz channel, and no mean corrections to the 44 and
70 GHz channels. In future analyses also including the full HFI
set, these priors will obviously be removed.

For the relative bandpass corrections, δbp, we adopt an al-
ternative approach that is specifically tuned to increase robust-
ness in the final polarization maps. Specifically, after propos-
ing changes to each of the detector-specific bandpasses (under
the constraint that their sum vanishes), we compute the resulting
IQUS map that was defined in Eq. (79) for both the old and new
parameter values. Next, we define a special purpose χ2 of the
form

χ2 =

Ndet−1∑

j=1

∑

p

(
S j(p)
σ j(p)

)2

, (110)

where S j(p) is the spurious map corresponding to radiometer j
in pixel p, and σ j(p) is the associated uncertainty resulting from
the IQUS solution. This χ2 defines the Metropolis acceptance
probability as follows,

a = min
(
1, e−

1
2 (χ2

prop−χ2
i−1)

)
, (111)

where χ2
prop and χ2

i−1 are the χ2’s of the proposed and previous
parameter states, respectively.

Overall, this approach builds on the same fundamental ideas
as the IQUS approach pioneered by WMAP (Page et al. 2007),

but using vastly fewer free parameters: Rather than fitting one
free parameter per pixel, this algorithm introduces only one ad-
ditional free parameter per radiometer. To achieve acceptable
precision, it instead uses the current foreground model to pre-
dict the resulting corrections in each pixel. Thus, while the di-
rect IQUS method is not applicable for Planck due to its poorly
interconnected scanning strategy, our approach implements the
same basic idea but without excessively increasing the overall
white noise level of the final maps. For further discussion of the
method, we refer the interested reader to Svalheim et al. (2020a).

8.3.5. Diffuse component spectral parameter sampling

The fifth conditional distribution in the BeyondPlanck Gibbs
chain concerns the foreground SED parameters, P(β | d, ω \ β).
Noting that the linear amplitudes a and spectral parameters β are
in general highly degenerate for high signal-to-noise models, we
employ the same computational trick for intensity sampling as
for the gain and correlated noise, and sample these jointly. In
practice, this is achieved by first sampling β from the marginal
probability distribution with respect to a, and then a condition-
ally on β. For specific details regarding the following algorithm,
we refer the interested reader to Andersen et al. (2020). For
polarization, we employ a standard Metropolis sampler that is
conditional on the foreground amplitudes; see Svalheim et al.
(2020b) for details.

For CMB component separation applications, the two-step
marginal sampling approach was first described by Stompor
et al. (2009) and later implemented in the Miramare code by
Stivoli et al. (2010). To see how their methodology connects with
our notation, as defined by Eq. (69), we can write the relevant
residual in the following form,

r j =
(
d j − ncorr

j

)
/g j −

(
sorb

j + ssl
j + smono

j

)

= g jP jB js
sky
j (β) + nw

j . (112)

The left-hand side in this equation is identical to the residual
in Eq. (73), which is the input to the binned mapmaker defined
by Eq. (76). Under the assumption of azimuthally symmetric
beams,15 B j, this expression may therefore be rewritten in terms
of binned sky maps on the form

mν = Aν(β)a + nw
ν , (113)

where A(β) ≡ BνMν(β) is an effective mixing matrix that ac-
counts for both beam convolution and astrophysical component
SEDs. Given this expression, the marginal log-posterior for β
then reads (Stompor et al. 2009)

P(β | m) ∝ exp


∑

ν

(
At
νN
−1
ν mν

)t (
At
νN
−1
ν Aν

)−1 (
At
νN
−1
ν mν

) .

(114)

However, the derivation of this expression relies on an assump-
tion of identical beam responses across all frequency channels,
and it is therefore necessary to smooth all input maps to a com-
mon angular resolution before evaluating this expression. We
therefore use this expression only for intensity sampling, cou-
pled to a tuned Metropolis sampler.

15 In the current BeyondPlanck implementation, we assume az-
imuthally symmetric beams for all component separation steps, follow-
ing all previous CMB analysis pipelines.

Article number, page 34 of 77

168



BeyondPlanck Collaboration: Global Bayesian analysis of Planck LFI

For polarization, we employ a likelihood given by the origi-
nal residual defined by Eq. (113),

−2 ln P(β | m, a) =
∑

ν

(
mν − Aν(β)a

σν(p)

)2

(115)

where σν(p) is the standard deviation map of channel ν.
When estimating the spectral index of synchrotron emission,

we partition the sky into four large disjoint regions, and sam-
ple one constant value of βs per region, while still allowing for
smooth transitioning between regions. Sky partitioning allows
us both to tune the signal-to-noise ratio per fitted parameter, and
also to reduce the overall computational cost. All other free spec-
tral parameters are fitted using a single constant value across the
full sky. For both temperature and polarization, we employ tuned
Metropolis samplers to explore the posterior distribution (Ander-
sen et al. 2020; Svalheim et al. 2020b).

Finally, we note that even with low-dimensional spectral pa-
rameter models, it is useful to impose additional priors on β to
stabilize the fits. Specifically, we consider two types of priors in
the following. First, in order to be able to pre-compute efficient
mixing matrix lookup tables for each parameter, we impose a
hard uniform prior on each parameter as discussed in Sect. 8.3.8.
Second, we impose informative Gaussian priors on β, with pa-
rameters informed from the literature; see Andersen et al. (2020)
and Svalheim et al. (2020b) for further details.

8.3.6. Diffuse component amplitude sampling

Since we sample β from a marginal distribution with respect to a
for the intensity case, we must also sample P(a | d, ω\a) directly
following β. The relevant data model for a is (similar to β) given
by Eq. (113), but this time interpreted as a function of a instead
of β. As applied to CMB estimation, this model was first intro-
duced into the CMB literature by Jewell et al. (2004); Wandelt
et al. (2004); Eriksen et al. (2004), and later generalized to joint
CMB power spectrum estimation and astrophysical component
separation by Eriksen et al. (2008). With the uniformized nota-
tion defined above, the same formalism applies both to CMB and
diffuse astrophysical foregrounds, just with different parametric
forms for the mixing matrices, M, signal covariance matrices, S,
and optional priors.

Noting that nw
ν represents Gaussian white noise and

∑
ν BνMν

is a deterministic linear operation given ω \ a, the appropri-
ate sampling equation for a is yet again given by the multi-
variate Gaussian sampler in Eq. (A.10) with a template matrix
T =

∑
ν BνMν, i.e.,

(
S−1 +

∑

ν

Mt
νB

t
νN
−1
ν BνMν

)
a =

∑

ν

Mt
νB

t
νN
−1
ν mν + S−1µ +

∑

ν

Mt
νB

t
νN
−1/2
ν ην + S−1/2η0.

(116)

Here we have included the signal covariance matrix, S = S(C`),
which is a prior that depends on the angular power spectrum of
the respective component. If no spatial prior is desired, S−1 may
simply be set to zero.

Equation (116) arguably represents the single most challeng-
ing step in the entire BeyondPlanck analysis pipeline in terms
of computational complexity. Fortunately, an efficient iterative
solver was recently developed by Seljebotn et al. (2019) for pre-
cisely this equation, and this algorithm forms the computational

engine of Commander2 (see Sect. 2.2). The main new idea in
that work is the use of a pseudo-inverse preconditioner coupled
to a Conjugate Gradient (CG) solver that easily supports multi-
resolution observations, as required for Eq. (116). For specific
details, we refer the interested reader to Seljebotn et al. (2019).

Computationally speaking, the main complicating factor as-
sociated with Eq. (116) is the application of an analysis mask.
For CMB likelihood estimation purposes, it is necessary to ex-
clude pixels with particularly bright astrophysical foregrounds
by setting N−1

ν = 0, in order not to contaminate the resulting
CMB map. Unfortunately, this makes the coefficient matrix on
the left-hand side of Eq. (116) poorly conditioned, and the result-
ing CG search expensive. At the same time, we are also scien-
tifically interested in the properties of astrophysical foregrounds
inside the Galactic mask, and simply discarding all this useful
information is clearly undesirable.

Rather than directly applying a processing mask, we there-
fore instead choose to solve Eq. (116) twice. First, within the
main Gibbs loop (as defined in Sect. 8.2) we solve Eq. (116)
imposing neither a spatial prior on the CMB component, nor
an analysis mask. In this configuration the CG search converges
typically within O(102) iterations, which corresponds to a com-
putational cost that is smaller than the TOD processing steps by
one order of magnitude (Galloway et al. 2020a). The resulting
CMB sky map samples correspond to prior-free, full-sky CMB
maps, similar to those produced by classic component separation
algorithms; see, e.g., Planck Collaboration IX (2016) and Planck
Collaboration IV (2020).

However, in order to produce the clean full-sky CMB
map and power spectrum samples that are required for high-
resolution CMB likelihood estimation purposes (see Sect. 8.3.8
and Colombo et al. 2020), we additionally solve Eq. (116) with
S−1 and a mask, but condition on all non-CMB parameters. Sta-
tistically speaking, this is equivalent to writing the full joint pos-
terior distribution in Eq. (60) in the form

P(aCMB, ω \ aCMB | d) = P(aCMB | d, ω \ aCMB)P(ω \ aCMB | d),
(117)

and using the first main Gibbs loop to draw samples from the
second factor on the right-hand side, and the second solution of
Eq. (116) to sample from the first factor.

Formally speaking, we note that this approach is only ap-
proximate, since C` should in principle also be conditioned upon
in the second factor in Eq. (117). The penalty of not doing so is
slightly more noise in the non-CMB parameters, since the prior-
free CMB sky map sample is less smooth than it is with the prior.
However, the practical benefits gained by separating the TOD
processing steps from the CMB likelihood estimation step more
than outweighs a small increase in statistical uncertainties for
several reasons: 1) it greatly reduces overall computational costs
for the joint Gibbs chain; 2) it allows CMB estimation from in-
dividual frequency channels or channel combinations; and 3) it
allows rapid exploration of different analysis masks and/or cos-
mological models without having to rerun the costly TOD pro-
cessing steps. Thus, this split plays the same role in the Beyond-
Planck pipeline as the split between mapmaking and likelihood
estimation does in a traditional CMB analysis pipeline.

We employ a similar trick also for low-resolution likelihood
analysis, and re-sample CMB multipoles below ` ≤ 64, while
conditioning on all higher multipole CMB modes and other pa-
rameters. In this case, we do not impose the C` prior term, but
rather set S−1 = 0 as in the original analysis. This allows us to
generate tens of thousands of low-resolution samples at a greatly
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reduced computational cost, and derive a well-converged brute-
force low-` likelihood from a relatively limited number of full-
scale samples. For further details, see Sect. 9.5, Colombo et al.
(2020), and Paradiso et al. (2020).

For two of the astrophysical foregrounds, namely free-free
emission and AME, we use informative priors to stabilize the
model (Andersen et al. 2020). For free-free emission, we adopt
the Planck 2015 model (Planck Collaboration X 2016) as a spa-
tial template for the prior mean, while the AME prior is based
on the Planck HFI 857 GHz map, but with a free scaling fac-
tor, under the assumption that the AME surface brightness cor-
relates strongly with thermal dust emission (Planck Collabora-
tion X 2016). In both cases, the signal covariance matrices are
empirically tuned to allow sufficient variations to statistically fit
the data, while at the same time not introducing too many un-
constrained degrees-of-freedom.16

8.3.7. Compact source sampling

The two previous sections described sampling algorithms for dif-
fuse components (such as CMB, synchrotron or thermal dust
emission) in terms of their amplitude and SED parameters.
These algorithms are strongly tuned toward global modelling in
terms of spherical harmonics expansions through the use of com-
putationally efficient spherical harmonics transforms. However,
as discussed in Sect. 3.4.1, a multitude of compact objects also
scatters the sky, and some of these are extremely bright. For-
mally speaking, these may of course also be described in terms
of a spherical harmonics decomposition, since the instrumen-
tal beam ensures that they are indeed bandwidth limited in the
observed data. However, in practice this would require an ex-
tremely high bandwidth limit for the diffuse components, and
this is therefore impractical because of the high associated com-
putational costs.

Instead, we follow Planck Collaboration IV (2020), and in-
dividually model the brightest compact sources based on a pre-
existing catalog of object candidates. Each source candidate is
mathematically modelled spatially as a delta function convolved
with the instrumental beam evaluated at the source location, and
with a power-law SED given by an amplitude, asrc, and a spec-
tral index, α. For Planck frequencies, we take into account the
full asymmetric beam profiles as evaluated with FEBeCOP (Mi-
tra et al. 2011), while for non-Planck frequency maps, we adopt
azimuthally symmetric beams.

The conditional posterior for the ith compact object is given
by subtracting all diffuse components and all other compact ob-
jects from the map-based data model in Eq. (113), such that the
effective residual at frequency ν reads

ri = mν −
∑

c,i

BνMc
νac, (118)

where c runs both over all diffuse components and all compact
objects except the i’th source. The likelihood then takes the form

−2 ln P(ai, αi | m, ω \ {ai, αi}) =
∑

ν



mν − Uνai

(
ν

νptsrc

)α−2

i
ti
ν

σν(p)



2

,

(119)
16 Note that S plays a fully analoguous role in a multi-variate Gaussian
prior as the usual standard deviation in a univariate Gaussian prior, and
can be used to adjust the strength of the prior.

where νptsrc is the reference frequency adopted for the point
source component, ti

ν is the spatial (pre-computed) beam tem-
plate for the current source, and Uν is the unit conversion factor
for frequency ν. (As usual, bandpass integration is suppressed in
the notation for readability, but is of course taken into account in
the actual calculations, as described in Sect. 4.2.)

In addition, we impose a Gaussian prior on the spectral index
of P(α) = N(−0.1, 0.3)2, motivated by Bennett et al. (2013), and
a positivity prior on the amplitude, ai ≥ 0.

The full conditional posterior is sampled using a Metropolis
sampler for (ai, αi), running 100 MCMC steps for each source,
while completing 3 full scans through the full source set per full
Gibbs cycle. This step represents a relatively minor computa-
tional cost, due to extensive pre-computation of both effective
beam and bandpass profiles.

8.3.8. C` and cosmological parameter sampling

The final conditional distribution in the BeyondPlanck Gibbs
chain concerns the angular power spectrum, C`, of each com-
ponent, possibly as parameterized in terms of a smaller number
of general parameters. In the following, we will actually apply
this only to the angular CMB power spectrum, but we note that
the formalism applies without changes to any other statistically
isotropic component, for instance the CIB.

Before we start the discussion, we remind the reader that,
as mentioned in Sect. 8.3.6, we apply three different different
sampling steps for the CMB amplitude map:

1. full-resolution solution of Eq. (116) with no spatial CMB
prior, S−1

CMB = 0; the resulting samples are primarily used for
CMB prior-free component separation and deriving unbiased
frequency maps, but not directly for cosmological parameter
estimation;

2. low-resolution solution of Eq. (116) with no spatial CMB
prior,17 S−1

CMB = 0, but only including multipoles ` ≤ 64,
and conditioning on all other parameters; typically, 50
low-resolution samples are drawn based on each high-
resolution sample. These samples form the basis for the low-
` temperature-plus-polarization CMB likelihood described
below.

3. full-resolution solution of Eq. (116) with a spatial CMB
prior, S−1

CMB , 0, where C` is sampled with an inverse
Wishart sampler as summarized below. The resulting sam-
ples form the basis for our high-` temperature likelihood.

In practice, the first step is run together with the full Gibbs anal-
ysis, including both TOD and component separation steps, while
the other two are performed by re-running the code after the
main run has been completed. From the point of view of CMB
estimation alone, the primary purpose of the main Gibbs run is
thus to derive an ensemble of frequency maps and correspond-
ing astrophysical sky models, that later can be re-sampled with
respect to CMB parameters.

Low-resolution temperature-plus-polarization likelihood
From step 2 above, we typically have a sample set of O(104)
CMB-only samples, each corresponding to one possible com-
bination of TOD, foreground and high-` CMB parameters.
Clearly, the information contained in this sample set may be
combined into an effective CMB likelihood in many different

17 In practice, we do formally apply a prior also in this case, but with a
sufficiently large numerical value that S−1

CMB ≈ 0.
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ways, each with its own algorithmic advantages and disadvan-
tages. For instance, they could form the basis of a highly robust
cross-spectrum estimator, by analysing two halves of the data
set at a time, and cross-correlating the resulting CMB map; for a
recent example of such cross-spectrum approach applied to the
Planck data, see, e.g., Planck Collaboration V (2020).

However, since our main goal of this paper is to introduce the
end-to-end Bayesian approach as such, rather than deriving the
most sensitive CMB likelihood possible, we prefer in this paper
to stay as close as possible to the exact Bayesian solution. And,
practically speaking, that corresponds most closely to a Gaussian
multivariate distribution on the form,

P(C` | ŝCMB) ∝ e−
1
2 ŝt

CMB(S(C`)+N)−1 ŝCMB

√|S(C`) + N| , (120)

where ŝCMB represents a CMB-plus-noise map and N is its corre-
sponding effective noise covariance map.18 Since we at this point
have access to a full ensemble of low-resolution CMB samples
that span the full allowed posterior volume, we may estimate
these quantities as

ŝCMB =
〈
si

CMB

〉
(121)

N =
〈
(si

CMB − ŝCMB)(si
CMB − ŝCMB)t

〉
, (122)

where brackets indicate average over the sample set. In the limit
of an infinite number of samples, these quantities will converge
to the Gaussian approximation of the full pixel-based CMB pos-
terior.

This approach is conceptually very similar to that adopted by
both the Planck LFI DPC Planck Collaboration V (2020) and the
WMAP science team Hinshaw et al. (2013) for low-` likelihood
estimation, both of which rely on brute-force likelihood estima-
tion according to Eq. (120). However, there is one critically im-
portant difference: with our approach, all sources of uncertainty
that are sampled over in the Gibbs chain with ω are seamlessly
propagated to the CMB likelihood, including gain and bandpass
uncertainties; foreground uncertainties; correlated noise etc. For
the traditional approaches, typically only correlated noise and
overall calibration is accounted for in the covariance matrix.

An important question regarding the practicality of Eq. (120)
is how many samples are required for convergence. As discussed
by Sellentin & Heavens (2016), an absolute minimum criterion
for a sampled n × n covariance matrix simply to be invertible is
that Nsamp > n. However, this is by no means sufficient to obtain
a robust estimate, and, more typically, numerical experiments
indicate that many times this is required for matrices of moderate
size and relatively weak correlations; the precise value, however,
is something that must be tested on a case-by-case matrix.

In any case, since we have a relatively limited number of
samples available, it is of great interest to compress the rele-
vant information in ŝCMB into as few spatial modes as possible,
while still retaining the lion’s share of its full information con-
tent. With this in mind, we note that the main scientific target for
low-` likelihood estimation for Planck is the reionization optical
depth, τ. In this case, τ typically only depends on the first 6 or
18 We note that this expression does not correspond to the exact
Bayesian solution, strictly speaking, because the true uncertainty of a
given pixel may be non-Gaussian due to the presence of both fore-
grounds and TOD corrections. To account for this, cosmological param-
eters should ideally be sampled within the full-resolution Gibbs chain,
for instance using the algorithms proposed by Racine et al. (2016); this,
however, is left for future work, and we adopt a Gaussian approximation
for now.

8 multipoles, because of the limited sensitivity of the instrument
(Planck Collaboration V 2020). As such, a first natural compres-
sion is to retain only modes with ` ≤ 8, which corresponds to
a total of 3(`max + 1)2 ≈ 240 modes. However, many of these
modes fall within a typical analysis mask (Colombo et al. 2020),
and therefore carry no statistical weight in the final answer.

One particularly convenient method of isolating the actually
useful modes is through Karhunen-Loève compression, as dis-
cussed by Tegmark et al. (1997) and Gjerløw et al. (2015). This
approach essentially corresponds to retaining the eigen-vectors
of S + N with the highest eigenvalues, where S is evaluated
for a typical model of interest. Adopting the notation of Gjer-
løw et al. (2015), we organize the eigenmodes with eigenvalues
higher than some user-specified threshold row-by-row into a pro-
jection operator, P, and apply this to the CMB samples derived
above. The compressed data and covariance matrix then reads

s̃CMB = PŝCMB (123)

Ñ = PNPt (124)

S̃ = PSPt. (125)

Adopting a multipole threshold of `max = 8 and a signal-to-noise
threshold of 10−6 typically leaves around 170 spatial modes in
the full data set, for which we that convergence is typically
reached with about 30 000 fast samples, corresponding to 600
full samples including all systematic effects; see Sect. 9.5.3 and
Colombo et al. (2020). The computational cost of a single likeli-
hood evaluation is also correspondingly reduced because of this
compression, and only takes a few hundredths of a second.

High-resolution Blackwell-Rao estimator The above estimator
can only be employed at low angular resolution because of its
strong dependence on the size of the covariance matrix. For high
angular resolution analysis, we use another well-established so-
lution, namely the Blackwell-Rao estimator (Chu et al. 2005),
which works very well for high signal-to-noise data. In practice,
we only use this for temperature analysis in the current paper,
since the signal-to-noise ratio for high-` polarization is very low
with only LFI and WMAP data. However, we keep the following
presentation general, such that it can be used for both tempera-
ture and polarization analysis for other experiments.

To derive the appropriate sampling algorithm for
P(C` | d, ω \C`) from first principles, we first note that
P(C` | d, ω \C`) = P(C` | aCMB); if the true CMB map, sCMB, is
perfectly known, then no further knowledge regarding the mea-
sured data can possibly provide more useful information about
the angular CMB power spectrum, C`. Second, as discussed in
Sect. 3.2, we assume that the CMB fluctuation field is isotropic
and Gaussian distributed, and its probability distribution is
therefore given by Eq. (12). Noting that individual a`m’s are
statistically independent by the assumption of isotropy, we can
therefore write

P(C` | aCMB) ∝ P(aCMB | C`)P(C`) (126)

=
∏̀

m=−`

e−
1
2 a†

`mC−1
` a`m

√|C` |
P(C`) (127)

=
e−

2`+1
2 tr(σ`C−1

` )

|C` | 2`+1
2

P(C`), (128)
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where a`m = {aT
`m, a

E
`m, a

B
`m} and

C` ≡


CTT
` CT E

` CT B
`

CT E
` CEE

` CEB
`

CT B
` CEB

` CBB
`

 ; (129)

σ` ≡ 1
2` + 1

∑̀

m=−`


(aT
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`m (aT
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`m (aT
`m)∗aB

`m
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`m)∗aT

`m (aE
`m)∗aE

`m (aE
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`m
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`m (aB
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`m (aB
`m)∗aB

`m

 . (130)

We typically adopt uniform priors on C` (although for a discus-
sion of non-uniform priors, see Wandelt et al. 2004 and Larson
et al. 2007), and the distribution in Eq. (128) is then known as the
inverse Wishart distribution, which has a very simple sampling
algorithm (Larson et al. 2007):

1. Draw 2`−n Gaussian random vectors, ηi, from the empirical
covariance matrix (2`+1)σ`, each of length n, where n is the
dimension of C`;

2. Compute the outer product of these vectors, ρ` =
∑2`−n

i=1 ηiη
t
i;

3. Set C` = σ`/ρ`.

Note that if C is block-diagonal, as for instance is the case if
CT B
` = CEB

` = 0, then this algorithm should be applied sepa-
rately block-by-block. Also, if binning is desired, for instance
to increase the effective signal-to-noise ratio of a given power
spectrum coefficient, this is most conveniently done in terms of
D` = C` `(` + 1)/2π; for details, see Larson et al. (2007).

In the current work, which applies this only to the CMB tem-
perature power spectrum, we only bin multipoles above ` ≥ 600,
where we apply uniform binning of ∆` = 50. To improve the
Monte Carlo mixing in the low signal regime, we interleave
the straight inverse Wishart sampler with the joint (a`m,C`)
re-scaling MCMC sampler introduced by Jewell et al. (2009),
where the proposal rule is defined as

anew
`m =

√
Cnew
`

Cold
`

aold
`m . (131)

Essentially, this proposal corresponds to a move along the diag-
onal of the joint (a`m,C`) space, and is efficient wherever these
two parameters are highly degenerate, which is the case in the
low signal-to-noise regime. However, we do note that for final
cosmological parameter constraints, we will only use the LFI-
based likelihood presented here up to ` < 600, and rather use the
HFI-based Planck 2018 likelihood at higher multipoles, where
appropriate.

The above algorithm describes an efficient Gibbs-based ap-
proach to CMB power spectrum sampling, as originally sug-
gested by Wandelt et al. (2004). The product from this proce-
dure is a set of joint samples (sCMB,C`)i. However, the algo-
rithm does not specify how to constrain cosmological parame-
ters from these samples. Indeed, many different approaches may
be adopted for this purpose, each making different assumptions
and choices with regard to computational cost and robustness to
systematic errors. Some approaches presented in the literature
include

– the Blackwell-Rao estimator (Chu et al. 2005): Direct aver-
aging overσ` samples given the analytic smoothing kernel in
Eq. (128). Exact, but converges slowly in low signal-to-noise
regime. Used by WMAP low-` TT likelihood (Hinshaw et al.
2013).

– the Gaussianized Blackwell-Rao estimator (Rudjord et al.
2009): Multivariate Gaussian approximation to the above,
following a Gaussian change-of-variable defined by univari-
ate marginal distribution. Converges much faster than direct
Blackwell-Rao estimator, and is highly accurate for typical
masks. Used by Planck low-` TT likelihood (e.g., Planck
Collaboration V 2020).

– joint Metropolis-Hastings sampling of {a`m,C`} (Jewell et al.
2009; Racine et al. 2016): Efficient in both low and high
signal-to-noise regimes; may be applied to both C` and cos-
mological parameter estimation.

The first two of these methods define a CMB power spectrum
likelihood function, L(C`), which then must be coupled to a
cosmological parameter estimation code. We employ the widely
employed CosmoMC (Lewis & Bridle 2002) code for this purpose,
as detailed in Paradiso et al. (2020). In contrast, when applied to
cosmological parameter estimation, the third method requires a
means to convert between cosmological parameters and angular
power spectra, such as CAMB (Lewis et al. 2000). In this paper, we
adopt the Gaussianized Blackwell-Rao estimator as our default
solution, and leave the full integrated MCMC sampling approach
for future work.

8.4. Computational requirements and optimization

The end-to-end algorithm summarized in the last few sections
represents a significant computational challenge, both in terms of
fundamental hardware requirements and in terms of software op-
timization. In this section we briefly review some critical compu-
tational features implemented in the current code, while in-depth
presentations are provided by Galloway et al. (2020a) and Ger-
akakis et al. (2020). In addition, we highly recommend the inter-
ested reader to consult the source code.19 At the same time, we
emphasize that these codes are most definitely works in progress,
and still undergo rapid development. Nearly every single compo-
nent and function have room for further improvement and opti-
mization. However, it is our hope and intention that by provid-
ing all codes to the general community under an open-source
license, new collaborations, efforts and ideas will emerge, and
this will leading to more mature, efficient and generally applica-
ble code.

With these caveats in mind, Table 2 summarize the overall
computational cost of the current implementation, both in terms
of initialization and cost per sample. These benchmarks were
obtained by running the pipeline on a single compute node with
72 Intel Xeon E7-8870 2.10 GHz cores and 1.5 TB of RAM. All
time related costs are provided in units of wall-time, and must
therefore be multiplied with 72 to convert to CPU time.

Overall, the computational complexity of the BeyondPlanck
Gibbs sampler is determined by three fundamentally different
types of operations. First, the low-level analysis is dominated by
TOD memory management. Second, the high-level amplitude
sampling step is dominated by spherical harmonic transforms.
Third, the spectral index sampling step is dominated by map-
based operations, typically either spherical harmonic transforms
or χ2 evaluations. Efficient parallelization of each of these three
types of operations is therefore the critical design driver for the
current implementation. We now briefly review how the Beyond-
Planck pipeline optimizes each of these aspects, and refer the
interested reader to Galloway et al. (2020a) for further details.
19 The BeyondPlanck software is available under a GNU Pub-
lic Library (GPL) open-source license at https://github.com/
Cosmoglobe/Commander.
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Table 2. Computational resources required for end-to-end BeyondPlanck processing. All times correspond to wall-clock duration while running
on a single 72-core node. All times are also approximate, and vary by . 5 % from sample to sample; the values reported correspond to one specific
but arbitrarily selected sample. We also note that the TOD processing stage is memory-bus limited, and the reported run-times are therefore
significantly correlated between various operations.

Item 30 GHz 44 GHz 70 GHz Sum

Data volume
Uncompressed data volume . . . . . . . . . . . . . . . . . . . 761 GB 1 633 GB 5 522 GB 7 915 GB
Compressed data volume/RAM requirements . . . . 86 GB 178 GB 597 GB 861 GB

Processing time (cost per run)
TOD initialization/IO time . . . . . . . . . . . . . . . . . . . . 176 sec 288 sec 753 sec 1217 sec
Other initialization . . . . . . . . . . . . . . . . . . . . . . . . . 663 sec
Total initialization . . . . . . . . . . . . . . . . . . . . . . . . . 1880 sec

Gibbs sampling steps (cost per sample)
Data decompression . . . . . . . . . . . . . . . . . . . . . . . . 36 sec 105 sec 252 sec 393 sec
TOD projection (P operation) . . . . . . . . . . . . . . . . . . 33 sec 49 sec 248 sec 330 sec
Sidelobe evaluation (ssl) . . . . . . . . . . . . . . . . . . . . . . 58 sec 85 sec 337 sec 480 sec
Orbital dipole (sorb) . . . . . . . . . . . . . . . . . . . . . . . . . 45 sec 61 sec 343 sec 449 sec
Gain sampling (g) . . . . . . . . . . . . . . . . . . . . . . . . . . 13 sec 10 sec 71 sec 94 sec
Correlated noise sampling (ncorr) . . . . . . . . . . . . . . . 355 sec 390 sec 2393 sec 3138 sec
TOD binning (Pt operation) . . . . . . . . . . . . . . . . . . . 22 sec 34 sec 442 sec 498 sec
Loss due to poor load-balancing . . . . . . . . . . . . . . . . 62 sec 305 sec 135 sec 502 sec
Sum of other TOD steps . . . . . . . . . . . . . . . . . . . . . 32 sec 135 sec 139 sec 306 sec
TOD processing cost per sample . . . . . . . . . . . . . . 656 sec 1074 sec 4666 sec 6396 sec
Amplitude sampling, P(a | d, ω \ a) . . . . . . . . . . . . . 527 sec
Spectral index sampling, P(β | d, ω \ β) . . . . . . . . . . . 1080 sec
Other steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 sec
Total cost per sample . . . . . . . . . . . . . . . . . . . . . . . 8168 sec

8.4.1. Low-level optimization

Starting with the low-level TOD-oriented operations, we first
note in Table 2 that the full data volume of four years of Planck
LFI observations is 8 TB. This number includes all science and
housekeeping data. A single read of the full data set from spin-
ning disks on a typical intermediate-sized high-performance
computing (HPC) cluster therefore requires a few hours of wall
time, assuming O(1 GB s−1) read speed. While acceptable as a
one-time initialization cost, integrating such expenses into the
Gibbs loop clearly leads to impractical run times. A first re-
quirement for efficient end-to-end TOD processing is thus that
the entire data set may be stored in RAM. Likewise, noting that
the memory bus from the RAM to the CPU is relatively slow
compared to CPU operations, a corollary requirement is that the
overall memory footprint should be aggressively minimized.

With these observations in mind, we first choose to read only
those parts of the data that are strictly required for the analysis
in question; all unnecessary housekeeping data are omitted. For
each Planck LFI radiometer the only retained quantities there-
fore include 1) differenced detector voltages, dt (one float per
sample); 2) pointing, Pt (three double precision values per sam-
ple); and 3) flags, ft (one integer per sample). Nominally, a total
of 32 bytes/sample/radiometer are required to store the TOD in-
formation.

However, as detailed by Galloway et al. (2020a), because
the pointing and flags are both very smooth functions of time,
they lend themselves to highly efficient compression. We exploit
this by transforming and discretizing each relevant quantity into
integers; taking the difference between consecutive samples to
minimize their dynamic range; and finally Huffman compress-
ing (Huffman 1952) the resulting time streams, i.e., we assign
bit patterns of variable lengths to each integer according to their
relative frequency. The average number of bits per sample is
thus reduced by a factor of 5–6. These compressed TOD ar-

rays are then stored in memory PID-by-PID, and only decom-
pressed when needed. The total data volume is in this way re-
duced from 8 TB to 861 GB, which fits into the RAM of a sin-
gle modern compute node. The decompression cost accounts for
about 5 % of the total analysis wall time, which we consider well
worth the memory savings. However, as discussed by Galloway
et al. (2020a), this compression does have notable implications
in terms of the overall Gibbs sampling structure, as the full de-
compressed TOD set can never be stored in memory at once, nor
is it possible to store multiple copies of the TOD. Accordingly,
careful relative ordering of the various Gibbs sampling steps is
necessary. In practice, four full scans are made through the en-
tire TOD within each Gibbs iteration, where each scan corre-
sponds to sampling one global TOD-related parameter, namely
three three gain components (see Sect. 8.3.1) and the bandpass
correction parameter; none of these can be sampled simultane-
ously without breaking the Gibbs chain.

Next, the low-level parallelization scheme for TOD pro-
cessing is organized according to PIDs, such that each com-
puting core processes a distinct subset of PIDs. Load balanc-
ing is achieved by first measuring the effective computing time
for each PID, and then distributing them according to cost in a
round-robin manner among the various computing cores.

Inspecting the costs of individual steps in Table 2, we see
that that dominant TOD operation is associated with sampling
ncorr, which makes intuitive sense: While most operations scale
linearly in the number of samples, O(Ntod), the correlated noise
step requires two Fourier transforms, and therefore scales as
O(Ntod log Ntod). To optimize this step, we first of all employ
the FFTW library (Frigo & Johnson 2005) for all FFT operations.
Second, we note that the speed required for a single FFT trans-
form depends sensitively and highly non-linearly on Ntod. Values
of Ntod that happen to factorize into particularly favorable combi-
nations of primes may happen to be, say, three to five times faster
than neighboring values. We exploit this by first measuring the
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time required per FFT for every length between 1 and 106, and
construct a table of optimal lengths, with at least one value per
100th sample. At read time, we then truncate the length of each
PID until it equals the closest lower optimal length. As such, we
lose on average one second of data per PID, corresponding to
about 0.03 % of the total data volume, while gaining a factor of
three or more in overall TOD processing time.

After the FFT-based operations, the dominant TOD opera-
tions are the sidelobe and orbital dipole evaluations, as well as
the pointing projections operators, P and Pt. Here it is worth not-
ing that the TOD analysis is currently memory-bus limited. That
is, the cost is associated simply with transferring data from RAM
into the CPU. As such, the specific algorithmic details of each
step are largely irrelevant, and the important factor is simply the
total data volume. To improve the performance of these steps,
the best approach would be to run across multiple nodes, which
thereby increase the number of memory buses available. On the
other hand, this also leads to lower performance for the CPU
dominated operations, and most notably the spherical harmonics
transforms. A future optimal solution should implement a better
tuned parallelization strategy where SHTs are parallelized within
nodes, while TOD operations are parallelized across nodes; this
is left for future development.

Next, the two TOD projection operators warrant a few com-
ments. First, we recall that P converts a map into a time stream.
This represents a computational challenge in itself, because each
core then needs access to all pixels in the map. However, actually
storing the full map per core would require substantial amounts
of memory. To solve this, we exploit a MPI-3 shared memory
feature, and only store one copy of the map per compute node,
rather than one per core. However, we do observe that the mem-
ory access speed associated with these shared-memory arrays is
typically five times slower than for local arrays, and further op-
timizations are therefore possible.

In contrast, the Pt operation co-adds samples in a time-
stream into a map. In terms of practical code, this is a more com-
plex operation than P, since all cores need to update the values
stored in each sky map pixel, not only read them. This can easily
lead to race conditions in which different cores simulatenously
write to the same parts of memory, resulting in corrupt data, and
a direct shared array approach is therefore impractical. At the
same time, allocating a full sky map per core is not an option
due to the same memory constraints discussed above. As a com-
promise, we instead first scan the full pointing stored by each
core, and accumulate a list of all locally observed pixels. Due
to the sparse Planck scanning strategy, this typically amounts to
only 5–10 % of all pixels for each core. Allocating and maintain-
ing a sub-map of this limited size is acceptable in terms of total
memory footprint. Co-addition over cores is then achieved using
a combination of shared arrays within each computing node, and
a single MPI_ALLREDUCE operation between nodes. Clearly, fur-
ther optimization is very likely possible also with respect to this
operation.

8.4.2. High-level parallelization and optimization

Next, we consider optimization of the high-level routines, and
in particular of the amplitude and spectral index sampling steps.
These are largely overlapping in terms of essential low-level rou-
tines, and so we will also discuss them jointly.

The single most important computational routine involved
in these operations is the spherical harmonics transform, needed
both for solving the Wiener filter defined by Eq. (116) and for
smoothing maps to a common angular resolution as required for

Eq. (114). Indeed, the importance of this operation is so criti-
cally important that we base our entire map parallelization strat-
egy of our codes around it. With this in mind, we adopt the
libsharp2 (Reinecke & Seljebotn 2013) spherical harmonics
library for all harmonic transforms, which is the most efficient
library for this purpose available today. This library is based on
a deep parallelization level in both pixel and harmonic space,
distributing both constant-latitude rings and constant-m harmon-
ics across different cores. We adopt these parallelization conven-
tions without modification.

The second most important operation involved in these op-
erations is multiplication with the mixing matrix, M(β; ∆bp). As
described in Sect. 4.2, this expression involves integration of an
ideal parametric SED with the bandpass of each instrumental de-
tector. It also varies from pixel-to-pixel, depending on the local
properties of the spectral parameters, β. For this reason, we pre-
compute the full mixing matrix prior to each full amplitude sam-
pling step, pixel-by-pixel. Taking advantage of the libsharp
parallelization scheme, which distributes rings across all avail-
able cores, the memory requirements for this is fairly limited.
Furthermore, employing the spline-based library discussed in
Sect. 4.2, the actual evaluation of this matrix only carries a cost
equal to a polynomial evaluation per pixel. However, it is im-
portant to note that actually changing the bandpass correction
parameters, ∆bp, requires a full re-evaluation of the underlying
splines, as well as all higher-level mixing matrices, and this par-
ticular operation is therefore very computationally intensive. As
a result, it is done as infrequently as possible.

Finally, as described above, many of the various sampling
steps are carried out with a standard Metropolis sampler. Al-
though conceptionally and implementationally straightforward,
this sampler does have the drawback of requiring specific tuning
of the step size to be efficient. For most of these samplers, we
therefore typically run a short tuning chain during the first itera-
tion, if the computational cost of the sampler is limited (which,
for instance, is the case for the point source sampler), or insert a
pre-calculated proposal matrix into the run through a parameter
file (which, for instance, is the case for the bandpass correction
sampler). Such tuning is essential to achieve acceptable mixing
for the overall chain.

9. Results

We are now finally ready to present the main results resulting
from applying the algorithms summarized in Sects. 7–8 to the
data combination described in Sect. 5. For the analysis shown
here, we produce a total of six independent Monte Carlo Markov
chains of samples drawn from the posterior distribution P(ω|d),
as described in Sect. 8.2. Each chain has different length but in-
cludes at least 225 samples, and we discard the first 25 samples
for burn-in. For applications where comparison between chains
is useful, we thus retain 200 samples from each chain, for a total
of 1200 accepted samples, while for applications where sam-
ple order does not matter, we use the full set of accepted sam-
ples. With a computational cost of 2.3 wall hours/sample (see
Table 2), this set took about three weeks of continuous run time
to produce on six nodes, for a total computational cost of 220 000
CPU hours. Although not directly comparable, it is still interest-
ing to note that the production of the Planck FFP8 simulation
set required a total of 25 million CPU hours, and the cost of
constructing only a single component of a single Monte Carlo
realization of the 70 GHz channel cost 9360 CPU-hours (Planck
Collaboration XII 2016). The full analysis shown in the follow-
ing thus carries a total computational cost that is equivalent to
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Fig. 10. Time-ordered data segment for the 30 GHz LFI 27M radiometer. From top to bottom, the panels show 1) raw calibrated TOD, d/g; 2) sky
signal, ssky; 3) calibrated correlated noise, ncorr/g; 4) orbital CMB dipole signal, sorb; 5) leakage mismatch correction, sleak; 6) sidelobe correction,
ssl; and 7) residual TOD, dres = (d − ncorr)/g − ssky − sorb − sleak − ssl. Note that the units differ between panels by a factor of 1000, such that each
panel spans either a range of 30 mK or 30 µK depending on the respective signal amplitude.

O(10) Planck FFP8 70 GHz simulations. This clearly demon-
strates the computational feasibility of the Bayesian end-to-end
approach, and the algorithms shown here do not require the use
of a massive super-computer center to be useful. At the same
time, it is also clear that future work should concentrate on in-
creasing the concurrency of the current implementation through
better parallelization schemes, such that the wall time can be re-
duced to hours or days, as opposed to weeks and months, when
more resources are available.

The rest of the section is organized as follows. We first re-
view the various low-level instrumental parameters in Sect. 9.1.

In Sect. 9.2 we consider the impact of the various time-domain
corrections in the pixel domain, as well as the resulting fre-
quency maps after taking these corrections into account. We dis-
cuss goodness-of-fit in Sect. 9.3, before presenting astrophysical
sky model parameters in Sect. 9.4 and CMB posterior distribu-
tions in Sect. 9.5. We note that this presentation is not intended to
be comprehensive, but rather aims to provide a broad overview
of the full process, and build intuition regarding the interpreta-
tion and interplay between the various components. Individual
results are discussed in detail in the companion papers listed in
Table 1.
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9.1. Instrumental parameters

We start our review by inspecting the data and model at the low-
est level, and for this purpose we select the 30 GHz channel as
a reference test case, for which the foreground contamination is
the largest, and therefore the calibration challenge the hardest.
The top panel of Fig. 10 shows a 3 minute chunk of the 30 GHz
LFI 27M TOD, in which the only pre-processing steps are differ-
encing with the 4 K load signal and ADC corrections (see Sect. 5
for details). In addition, for comparison purposes, we scale the
entire TOD segment by the inverse gain, converting the signal
from volts to µK; we recall, however, that the gain model is con-
stant over this whole section of data, and this does therefore not
affect the visual structure, but only the plotting scale. Each panel
in Fig. 10 is plotted with a range of either 30 mK or 30 µK, to al-
low direct visual comparison within groups of similar quantities.

In this plot, we can readily identify by eye many of the fea-
tures discussed in Sect. 7. First, we see a slow sinusoidal os-
cillation with a peak-to-peak amplitude of about 3 mK; this is
the signature of the solar CMB dipole modulated by the Planck
scanning strategy. The second most obvious feature is a sharp
peak at t ≈ 15 sec (and periodically repeating with 60 sec inter-
vals), as well as a smaller peak at t ≈ 45 sec. These correspond
to pointings where the satellite points toward the Galactic plane,
either near the center or near the anti-center. Beyond that, the
only other visually significant fluctuations are due to instrumen-
tal noise.

The second panel shows the total sky signal model projected
into time-domain, Pssky. Here we can see the same signal fea-
tures noted above, both the solar dipole and the Galactic plane
crossings, only with much higher signal-to-noise, as the total sky
model is derived from the full data set, not just the 30 GHz LFI
27M radiometer. Indeed, here we also note some smaller fluctua-
tions superimposed on the dipole signal, and these are primarily
higher-order CMB temperature fluctuations. Comparing the am-
plitude of these fluctuations with the noise level seen in the top
panel provides some intuition regarding the amount of data co-
addition that is required in order to measure true CMB temper-
ature variations, and the corresponding requirements regarding
instrument stability.

The third panel shows the (calibrated) correlated noise com-
ponent, ncorr/g; the calibration is performed here only in order
to be able to compare its magnitude with the signal components
in units of µK. Overall, we see that the correlated noise spans
roughly the same range as the sky signal component, but exhibits
a distinct 1/ f type correlation structure in time, and it does not
depend on the pointing. In combination, these two facts allow
separation of correlated noise from true sky signal.

The fourth panel shows the orbital CMB dipole, caused by
the satellite’s motion around the Sun, sorb. Although its ampli-
tude appears visually small in this plot compared to the signal
and correlated noise terms in the second and third panels, it is
important that recall that there are no free parameters or uncon-
trolled uncertainties associated with this particular component. It
is therefore possible to correlate its apparent amplitude with the
raw data over the entire mission, and thereby derive one absolute
calibration value.

The fifth panel shows the bandpass and beam leakage correc-
tion, sleak, computed as the difference between the sky signal as
observed by the 30 GHz LFI 27M radiometer and the mean over
all 30 GHz radiometers. Note that the scale of this panel is a fac-
tor of one thousand smaller than those of the previous panels.
In this plot, we see the impact of the bandpass mismatch in the
form of broad spikes centered on the Galactic plane. The mag-
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Fig. 11. Example of TOD parameters Gibbs chain for the 30 GHz LFI
27M radiometer. From top to bottom, the panels show normalized re-
duced χ2 for a single Pointing Period; gain for the same PID in units
of mV K−1; bandpass correction in MHz; white noise level, σ0; corre-
lated noise slope, α; and correlated noise knee frequency, fknee. The six
different colored curves correspond to six independent Gibbs chains.

nitude of this effect can reach several tens of µK at low Galactic
latitudes, but is almost negligible at high Galactic latitudes. The
rapid fluctuations are due to beam mismatch between the various
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30 GHz detectors, and correspond to CMB fluctuations observed
through slightly different beam solid angles. The standard devi-
ation of this component is on the order of 1 µK.

The sixth panel shows the contribution from the far side-
lobes, ssl. Overall, the two dominant structures in this function
are a slow dipole modulation, caused by the solar and orbital
CMB dipoles, and a weak imprint of the Galactic plane cross-
ings at about 60 and 120 sec. For this particular combination of
radiometer and PID, the overall magnitude of the sidelobe cor-
rection is rather limited, although in other cases it may be an
order of magnitude brighter than what is seen here.

The bottom panel in Fig. 10 shows the residual resulting
from subtracting each of the model terms in Eq. (69) from the
raw data. Ideally, this should be uncorrelated stationary Gaus-
sian noise with a standard deviation equal to σ0. This hypothesis
will be tested explicitly in Sect. 9.3, where we compute the χ2

per PID for each radiometer throughout the mission. In prac-
tice, however, correlated features may appear in this residual,
and these translate into a bias in the sky map. In this particular
example, we see a notable residual near the Galactic plane cross-
ings, which eventually should be masked in higher-level analy-
ses.

Figure 10 represents one single Gibbs sample in the full
chain. In contrast, Fig. 11 shows samples from all six Gibbs
chains for the instrumental parameters for the same PID, but
this time plotted as a function of Gibbs iteration. For perfect
Markov chain mixing, these should all scatter around a well-
defined mean value with a short correlation length.

The top panel shows the normalized reduced χ2 for a single
PID (arbitrarily selected to be PID = 5000), as defined by

χ2 ≡
∑Ntod

t=1

(
dt−stot

t
σ0

)2
− Ntod

√
2Ntod

. (132)

Recalling that the χ2 distribution with n degrees of freedom con-
verges towards a Gaussian with mean equal to n and variance
equal to 2n, this quantity should be approximately distributed as
N(0, 1) for ideal data, with deviations measured in units of σ.
We adopt this χ2 as a convenient goodness-of-fit measure.

Regarding the χ2 values plotted in the top panel of Fig. 11,
we see that the mean value is χ2 ≈ 2.5, which thus indicates
that the Gaussian white noise null hypothesis is rejected by more
than 2σ for this particular PID. This is an early indication that
something is indeed wrong with the noise model, and we will
return to this observation below.

The second panel shows the gain g for the same PID. In
this case, the Markov correlation length appears to be perhaps
20 samples by eye, while the burn-in phase is very short. Con-
sidering that we have only 1200 full Gibbs samples available,
this implies that the number of independent gain samples per
PID is rather limited, and probably around 50. However, this is
still sufficient to provide a useful estimate of the true underlying
distribution, and the marginal posterior may be summarized as
g = 77.95±0.02 mV K−1. Even when adopting a conservative es-
timate of only 30 independent samples, the sampling uncertainty
accounts for less than 20 % of the quoted uncertainty. For further
discussion of the gain posteriors, see Gjerløw et al. (2020).

The third panel shows the bandpass shift, ∆bp, for the 30 GHz
LFI 27M radiometer. As already noted in Sect. 4.2, this param-
eter is the single most difficult quantity to estimate in the en-
tire framework, because of the highly non-Gaussian and global
nature of its impact; virtually all stochastic variables in the en-
tire model depend on the instrumental bandpass in one form or
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Fig. 12. A single Gibbs sample for the 30 GHz LFI 28M radiometer as
a function of PID. From top to bottom the panels show 1) normalized
reduced χ2; 2) gain, g; 3) white noise level,σ0; 4) correlated noise slope,
α; and 5) correlated noise knee frequency, fknee.

another, and changes in this parameter therefore take a substan-
tial amount of time to propagate throughout the model. Further-
more, the sampling algorithm used for this parameter is a basic
Metropolis sampler, simply because of a lack of better alterna-
tives. The result is a long correlation length of about 50 samples,
resulting in perhaps as few as 20 uncorrelated samples. Still,
even with this crude sampler, we do see that the six chains mix
reasonably well, and it is possible to establish a useful estimate
for the marginal posterior, which in this case may be summa-
rized as ∆bp = 342 ± 6 MHz. However, in this case the sampling
uncertainty accounts for at least 30 % of the error bar. For fur-
ther discussion of the bandpass posteriors, see Svalheim et al.
(2020a).

The three last panels show the three noise PSD parameters,
σ0, α and fknee, for the same radiometer. These are much bet-
ter constrained, because of the large number of samples within
each PID. However, there are still obvious internal correlations
between the three parameters, such that a low value of σ0 leads
to high values of α and fknee, which makes intuitive sense. It is
also worth noting that for other parameters in the model, only
the actual noise PSD matters, as defined by the combination of
these parameters. For further discussion of the noise posteriors,
see Ihle et al. (2020).

Figure 12 shows corresponding values as a function of PID
for one single Gibbs sample, this time for the 30 GHz LFI 28M
radiometer. The top panel shows the normalized reduced χ2, as
defined by Eq. (132). As discussed above, this function should
ideally be independent between PIDs, and distributed according
to N(0, 1). This plot is therefore a powerful monitor for iden-
tifying unmitigated and non-stationary instrumental systematic
effects in a given radiometer. We see that the χ2 excess noted
above for a single 27M PID was not a fluke, but rather a typi-
cal example: As discussed by Ihle et al. (2020), all 30 GHz and
44 GHz radiometers exhibit a χ2 excess per PID at the 2–3σ
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Fig. 13. Comparison of the mean PSD of d − ssky for the 44 GHz LFI
26S radiometer, each of which are averaged over two PID ranges. Note
the excess seen in the frequency range between 0.1 and 1 Hz for PIDs
between 32 000 and 33 000; this noise contribution cannot be described
by a simple 1/ f model.

level, strongly suggesting a break-down of the assumed noise
model for these channels.

The second panel shows the gain for the same 28M radiome-
ter as a function of PID. Here we see clear evidence of a sys-
tematic oscillation with a period of one year, and a maximum
variation of about 1–2 % throughout the mission. The oscillatory
behaviour is primarily due to variations in the incoming solar ra-
diation during the year, effectively changing the heating of the
instrument depending on its precise orientation with respect to
the Sun. In addition, we also see evidence for a handful of dis-
crete jumps; these are caused by known events, such as satel-
lite maneuvers or cooler maintenance, as summarized in Planck
Collaboration I (2016). We note that this list of discrete jumps
is currently inserted by hand into the analysis, and no automatic
searches are performed. Undetected jumps may therefore con-
taminate higher-level analyses, and, as already noted, this issue
may represent one of the most important outstanding questions
with regards to the 44 GHz channel in the current analysis.

The three bottom panels of Fig. 12 show corresponding plots
of the three noise parameters as a function of PID. The same
features as observed in the gain are seen also here, although with
lower signal-to-noise ratio. Overall, it is visually obvious that
the noise properties of this channel are not stationary throughout
the mission, but rather vary significantly in time. In particular,
the white noise level varies by 3–4 % throughout the mission,
and mirrors the gain variations seen above. For the slope, α, the
most noteworthy feature are overall steeper values between PIDs
11 000 and 15 000; as shown by Ihle et al. (2020), these can be
traced to changes in the thermal environment of the satellite us-
ing house-keeping data.

Returning to the systematic χ2 excess noted above, Fig. 13
compares the power spectral density (PSD) of d − ssky for the
44 GHz LFI 26S radiometer, as averaged over two different PID
ranges. Ideally, this should follow a 1/ f noise profile, and for
PIDs between 12 000 and 13 000 this appears to be a reasonable
assumption. However, later in the mission there is a clear excess
noise contribution at intermediate frequencies, between 0.1 and
1 Hz, that clearly cannot be described as 1/ f noise. Ihle et al.
(2020) shows that this particular radiometer abruptly changes
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behaviour around PID 20 000, after which this term becomes
dominant. For this reason, we choose to exclude the 26S ra-
diometer entirely from the BeyondPlanck analysis during the
second half of the mission. Furthermore, to avoid temperature-
to-polarization leakage we also exclude the 26M radiometer. In
total, this reduces the total available data volume at 44 GHz by
17 %, and the resulting BeyondPlanck 44 GHz frequency map is
therefore also correspondingly more noisy than the correspond-
ing DPC and NPIPE maps. While this data cut should, at least
in theory, result in a more accurate noise characterization for
the BeyondPlanck maps, we do emphasize that all other 30 and
44 GHz radiometers also exhibit similar noise excesses, although
at quantitiatively lower levels than 26S. In order to actually es-
tablish a statistically acceptable noise description of these chan-
nels, the assumed 1/ f noise model will need to be generalized
to account for excess noise at intermedate frequencies. This is
clearly a top priority for next-generation processing
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map; 2) correlated noise, ncorr; 3) the orbital dipole, sorb; 4) bandpass and beam mismatch leakage; and 5) sidelobe corrections, ssl. The bottom
row shows the final sky map obtained by subtracting all these correction terms from the raw TOD, while the second to last row shows the residual
map obtained when also subtracting a model of the sky, ssky, from the TOD prior to map binning. Some components, as indicated in the respective
labels, have been smoothed to an angular resolution of 1◦ FWHM. All units are µKCMB.
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We now return to our review of the instrumental parameter
posterior distributions. In that respect, we note that some low-
level parameters are global in nature, and do not map into PID
space. The most prominent example of this is the set of band-
pass corrections, ∆bp, which are summarized in Fig. 14 in terms
of the marginal posterior mean and standard deviation for each
radiometer. As described by Svalheim et al. (2020a), the overall
shift within each frequency is fixed by comparing the estimates
reported by Planck Collaboration X (2016) against the current
data set. Doing so, we find that an overall frequency shift of
0.3 GHz is indeed required for the 30 GHz channel, in agree-
ment with Planck Collaboration X (2016), whereas both the 44
and 70 GHz are compatible with no shift. In contrast, the rel-
ative distribution of bandpass corrections within a frequency is
determined through minimizing the so-called spurious S -maps
discussed in Sect. 7.2.2, and this is only mildly dependent on the
details of the foreground model. While the absolute bandpass
correction for a given channel is directly dependent on the fore-
ground model, the polarization leakage only depends on it to sec-
ond order, and may therefore be estimated much more directly
from a single data set. At the same time, we do note that the un-
certainties in the bandpass parameters depend sensitively on the
amplitude of the foregrounds. As a result, the relative bandpass
uncertainties are small at 30 GHz, where the foregrounds are
bright, while they are large at 70 GHz, where the foregrounds
are weak.

One visually striking result seen in this plot is the fact that
the first 44 and 70 GHz radiometer (24M and 18M, respectively)
have a much larger (and negative) correction than other radiome-
ters. To provide some intuition regarding this result, Fig. 15
shows a comparison between the individual 70 GHz radiometer
bandpass profiles as measured on ground, zooming in on their
high frequency tails. The thick solid black curve shows the 18M
radiometer. Here we see that this particular radiometer exhibits
large oscillations near the high frequency cutoff, with an ampli-
tude of order unity. No other radiometer shows nearly as strong
fluctuations. One possible hypothesis for this result is that spu-
rious standing waves may have been induced by the test equip-
ment itself. Irrespective of its origin, this effect serves as a useful
example of the utility of global analysis, by highlighting a previ-
ously unnoticed instrumental effect in terms of the final marginal
posterior distribution. At the same time, this result also under-
lines the importance of choosing a physically meaningful para-
metric model; in this particular case, a parametric model imple-
menting smooth apodization of the tails may be far better moti-
vated than a simple shift model, as adopted in the current analy-
sis. Such models should be explored further in future work.

Next, we consider the spatial structure of each of the various
TOD model terms in pixel space, and Fig. 16 shows each of the
TOD objects binned into a 3-component Stokes IQU sky map
for one arbitrarily selected sample (specifically, sample number
101 from the first chain).

The top panel shows the raw TOD binned into a sky map, and
provides intuition regarding the overall quality of the data before
applying any corrections. Indeed, for the temperature component
it is very difficult to spot major artifacts of any kind; the most
notable feature is a few correlated noise stripes in the lower left
quadrant. For polarization, the dominant effect is the alternating
sign along the Galactic plane as a function of longitude, which
is due to bandpass mismatch.

The second panel shows the correlated noise component. The
most notable features in this map are coherent stripes along the
satellite scanning path. It should also be noted that this compo-
nent is the one that is the least constrained from a-priori con-

siderations among all TOD components, and therefore acts as a
“trash can” for possible unmodelled errors; this is the first place
one expects to see residuals from modelling errors. And, indeed,
we do see hints of artifacts in these maps, perhaps most notably
in the Stokes Q parameter: There is a broad bright region near
the South Ecliptic Pole. Comparing this with the other panels
in the same figure, this feature appears qualitatively similar to
all three of the orbital, sidelobe, and leakage corrections. The
common denominator among these three terms is their direct de-
pendency on the assumed beam model. As reported by Planck
Collaboration II (2020), about 1 % of the Planck 30 GHz solid
angle has not been accounted for by the current state-of-the-art
GRASP model for the LFI 30 GHz channel, and this missing
power could at least in principle account for some of the excess
structure seen in ncorr.

The third row shows the orbital dipole. For a single PID, this
signal is defined by a perfect dipole along the scanning ring with
an amplitude of about 270 µK, convolved with the 4π LFI beam.
However, when the same ring is observed six months apart, the
phase of the signal is reversed, and the total sum is then both
small and difficult to predict. Also, although the intrinsic sig-
nal is entirely unpolarized, convolution with far-sidelobes alge-
braically couples this model to the polarization sector as well.

The fourth row shows the bandpass and beam leakage cor-
rection. This effect is clearly the strongest among all polariza-
tion corrections, with amplitudes exceeding many tens of µK in
the Galactic plane, while still being almost entirely negligible
in temperature. Morphologically speaking, the archetypal signa-
ture of bandpass mismatch is a variable sign along the Galactic
plane, tracing the specific orientation of the detector polariza-
tion angles as the different detectors observe at slightly differ-
ent effective frequencies. At high latitudes, this map is domi-
nated by temperature-to-polarization leakage resulting from dif-
ferent radiometers observing the signal model with different
beam FWHMs; large angular scales are dominated by CMB
dipole leakage, while small angular scales are dominated by
foregrounds and CMB temperature fluctuations.

The fifth row shows the impact of sidelobe pickup. In tem-
perature, the two dominant features are, first, a large-scale pat-
tern broadly aligned with the solar CMB dipole resulting from
interactions with the intermediate sidelobes, and, second, in-
dividual rings created by the far sidelobes hitting the Galactic
plane. The same features are also seen in polarization, but now
a more complicated pattern arises due to the additional modula-
tion by the relative orientation of the polarization angles at any
given time.

The second to last row shows the TOD residuals binned into
a sky map. For most of the sky, this is consistent with white
noise, but clear residuals are seen in the Galactic plane, reflect-
ing the structures seen in the bottom panel of Fig. 10. This indi-
cates that the adopted foreground and/or instrument model is not
statistically adequate in these very bright regions of the sky. Sub-
sequent CMB-oriented analyses will clearly need to mask these
regions prior to power spectrum or parameter estimation.

The last row shows the final co-added frequency map. To
assess the overall impact of the various correction terms, this
may be directly compared with the raw map shown in the top
row.

A complete survey of similar maps for all three LFI frequen-
cies is provided by Suur-Uski et al. (2020), and for the most part
these are qualitatively similar to those presented here. However,
there is one special case that warrants a dedicated discussion,
namely the correlated noise map for the 44 GHz channel. This is
shown in Fig. 17, after smoothing to an effective angular reso-
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Fig. 17. Correlated noise map, ncorr, for the 44 GHz frequency channel,
smoothed to an effective angular resolution of 5◦ FWHM. Reproduced
from Suur-Uski et al. (2020).

lution of 5◦ FWHM. The most striking features in this map are
strong stripes extending from the right-most edge through most
of the Southern Galactic hemisphere. The origin of these stripes
has not been robustly identified, and this is an area of intense
on-going research. However, we have found that by reducing the
gain smoothing window (see Sect. 8.3.1 and Gjerløw et al. 2020)
by a factor of two, making the gain model more flexible, these
stripes vanish from ncorr (Gjerløw et al. 2020). However, that
also introduces large gain fluctuations in periods of low CMB
Solar dipole amplitude, and this is not an acceptable solution for
production analysis. Still, based on preliminary work, it seems
likely that these strong 44 GHz stripes are associated with short-
comings in the current gain model, and this will require further
work to resolve. Furthermore, excess χ2 values in the Southern
Galactic hemisphere represents the biggest challenge with re-
spect to full-sky CMB polarization reconstruction for Beyond-
Planck, and this is thus clearly a top priority issue. In the cur-
rent analysis, we only use data covering the Northern Galactic
hemisphere to derive final low-` CMB polarization constraints.

9.2. Frequency maps

We now turn our attention to co-added frequency maps, as solved
for deterministically through Eq. (76). For many users, these rep-
resent the most convenient form of the BeyondPlanck products,
and we provide these maps both in the form of individual sam-
ples, each corresponding to one possible realization of all mod-
elled systematic effects, and as more traditional posterior mean
and standard deviation maps,

m̂ν =
〈
mi
ν

〉
(133)

σν(p) =

√〈(
mi
ν(p) − m̂ν(p)

)2
〉
, (134)

where brackets indicate averaging over Monte Carlo samples.
Note that σν, as defined here, only accounts for systematic un-
certainties per pixel, not white noise uncertainties as defined by
the diagonal of the inverse coupling matrix in Eq. (76), σwn

ν (p).
To obtain the full uncertainty, these two terms must be added in
quadrature,

σtot
ν (p) =

√
σν(p)2 + σwn

ν (p)2. (135)

We stress, however, that analysis of these posterior mean maps
is likely to be sub-optimal for most scientific applications, and
will not exploit the full power of the BeyondPlanck framework.
Instead, we highly recommend users to analyze the full ensemble
of individual posterior samples; that is by far the most robust
and statistically correct method for propagating BeyondPlanck
uncertainties into any higher-level analysis.

With these caveats in mind, Fig. 18 shows the posterior mean
maps m̂ν for each frequency and each Stokes parameter. The po-
larization maps have been smoothed to an angular resolution of
1◦ FWHM to reduce noise. Note that the BeyondPlanck temper-
ature maps retain the CMB dipole, similar to NPIPE Planck Col-
laboration Int. LVII (2020), but contrary to the Planck 2018 and
WMAP frequency maps. Leaving this component in the maps en-
sures that the full information content of the data is available for
subsequent component separation and calibration applications.

Figure 19 shows the corresponding posterior standard devi-
ation maps, σν, as defined above, after smoothing to a common
angular resolution of 2◦ FWHM. These maps summarize the
combined effect of the various systematic corrections made to
the frequency maps, and are are such morphologically rich. The
most striking features include:

1. dipole variations in the 30 GHz intensity map, reflecting un-
certainties in the absolute calibration of this channel;

2. excess variance for rings aligned with the Galactic plane, re-
flecting the higher uncertainties in the time-variable gain re-
sulting from the processing mask;

3. excess variance along the Galactic plane, reflecting the
higher uncertainties here due to gain and bandpass varia-
tions;

all of which are super-imposed on the general Planck scanning
pattern, which itself reflects correlated noise variations. We also
note that the upper limit of the temperature color scale is only
2.1 µK, which indicates that these variations are much lower
than the intrinsic variance of the CMB temperature fluctuations,
which is about 50 muK on these angular scales, and minor de-
tails in the systematic model are therefore unlikely to affect final
cosmological results. In contrast, the standard deviation of the
polarization maps at high Galactic latitudes is typically about
0.5 µK, which is of the same order of magnitude as the expected
polarization imprint from cosmic reionization.

Next, Fig. 20 shows the corresponding white noise standard
deviation maps. These maps are fully specified by the detector
white noise level σ0, the time-variable gains gt, and the num-
ber of observations per pixel. They do not account for any cou-
pling to astrophysical foregrounds or instrumental effects be-
yond those listed above, and, as a result, these maps are struc-
turally much cleaner than the systematic uncertainty maps.

The above figures concern the average frequency map poste-
rior distribution. It is also interesting to consider variations be-
tween individual Monte Carlo samples, as they often more easily
convey spatial correlations between individual modes. Figure 21
is an example of this, showing the difference between two fre-
quency map samples, smoothed to a common angular resolution
of 7◦ FWHM. Here we clearly see correlated noise stripes along
the Planck scan direction in all three frequency channels, but
significantly more pronounced in the 30 GHz channel than in the
other two frequencies. We also see fluctuations along the Galac-
tic plane, which are dominated by uncertainties in the bandpass
correction parameters, ∆bp. Clearly, modelling such correlated
fluctuations in terms of a single standard deviation per pixel
is unlikely to be adequate for any high-precision analysis, and,
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Fig. 18. Posterior mean maps for each LFI frequency. Rows show, from top to bottom, the 30, 44 and 70 GHz frequency channels, while columns
show, from left to right, the temperature and Stokes Q and U parameters. The polarization maps have been smoothed to a common angular
resolution of 1◦ FWHM to visually reduce the noise level.
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Fig. 19. Posterior standard deviation maps for each LFI frequency. Rows show, from top to bottom, the 30, 44 and 70 GHz frequency channels,
while columns show, from left to right, the temperature and Stokes Q and U parameters. Note that these maps do not include uncertainty from
instrumental white noise, but only variations from the TOD-oriented parameters included in the data model in Eq. (69).
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Fig. 20. White noise standard deviation maps for a single arbitrarily selected sample. Rows show, from top to bottom, the 30, 44 and 70 GHz
frequency channels, while columns show, from left to right, the temperature and Stokes Q and U parameters. Note that the 70 GHz maps are scaled
by a factor of 2, to account for the fact that this map is pixelized at Nside = 1024, while the two lower frequencies are pixelized at Nside = 512.
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Fig. 21. Difference maps between two frequency map samples, smoothed to a common angular resolution of 7◦ FWHM. Rows show, from top to
bottom, the 30, 44 and 70 GHz frequency channels, while columns show, from left to right, the temperature and Stokes Q and U parameters.
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Fig. 22. Differences between BeyondPlanck and 2018 or NPIPE frequency maps, smoothed to a common angular resolution of 2◦ FWHM.
Columns show Stokes T , Q and U parameters, respectively, while rows show pair-wise differences with respect to the pipeline indicated in the
panel labels. A constant offset has been removed from the temperature maps, while all other modes are retained. The 2018 maps have been scaled
by their respective beam normalization prior to subtraction.
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Fig. 23. Comparison between angular auto-spectra computed from the BeyondPlanck (black), Planck 2018 (blue), and NPIPE (red) full-frequency
maps. Rows show different frequencies, while columns show TT , EE, and BB spectra. All spectra have been estimated with PolSpice using the
Planck 2018 common component separation confidence mask (Planck Collaboration IV 2020).

again, we strongly recommend analysis of the full map ensemble
when using the BeyondPlanck products for external analysis.

Figure 22 shows differences between the BeyondPlanck fre-
quency maps and those presented in the Planck 2018 and NPIPE
data releases. To ensure that this comparison is well defined,
the 2018 maps have been scaled by the uncorrected beam ef-
ficiencies, and the best-fit Planck 2018 solar dipole has been
added to each map, before computing the differences. Overall,
we see that the BeyondPlanck maps agree with the other two
pipelines to . 10 µK in temperature, and to . 4 µK in po-
larization. In temperature, we see that the main difference be-

tween NPIPE and BeyondPlanck is an overall dipole, while dif-
ferences with respect to the 2018 maps show greater morpho-
logical differences. The sign of the NPIPE dipole differences
changes with frequency. This result is consistent with the origi-
nal characterization of the NPIPE maps derived through multi-
frequency component separation in Planck Collaboration Int.
LVII (2020); that paper reports a relative calibration difference
between the 44 and 70 GHz channel of 0.31 %, which corre-
sponds to 10 µKin the map-domain. Overall, in temperature Be-
yondPlanck is thus morphologically similar to NPIPE, but it im-
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Fig. 24. Same as Fig. 23, but zooming in on the noise-dominated high-` multipole range.

proves a previously reported relative calibration uncertainty be-
tween the various channels by performing joint analysis.

In polarization, the dominant large-scale structures appear to
be dominated by effectively different offset determinations per
PID, which may originate from different gain or correlated noise
solutions. It is worth noting that the overall morphology of these
difference maps is structurally similar between frequencies, and
that the apparent amplitude of the differences falls with fre-
quency. This strongly suggests that different foreground mod-
elling plays a crucial role. In this respect, two observations are
particularly noteworthy: First, while both the Planck 2018 and
NPIPE pipelines incorporate component separation as an exter-
nal input as defined by the Planck 2015 data release (Planck Col-
laboration X 2016), BeyondPlanck performs a joint fit of both

astrophysical foregrounds and instrumental parameters. Second,
both the LFI DPC and the NPIPE pipeline consider only Planck
observations alone, while BeyondPlanck also exploits WMAP
information to establish the sky model, which is particularly im-
portant to break scanning-induced degeneracies in polarization.

Regarding the 44 GHz channel, two main features stand out
in the difference maps in Fig. 22. First, these difference maps
obviously exhibit a much higher white-noise level than the cor-
responding 30 or 70 GHz maps. This is because we exclude data
from both the 44 GHz LFI 26M and 26S radiometers for the sec-
ond half of the mission, as discussed above. Second, we see the
same coherent stripes extending through the Southern Galactic
hemisphere as seen in the correlated noise map in Fig 17, with
clearly different amplitudes in the 2018 and NPIPE differences.
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Fig. 25. Ratios between the angular auto-spectra shown in Fig. 23, adopting the BeyondPlanck spectra as reference. Planck 2018 results are
shown as blue lines, while NPIPE results are shown as red lines. Values larger than unity imply that the respective map has more power than the
corresponding BeyondPlanck spectrum.

This shows that at least two out of the three different processing
pipelines struggle with this particular problem, whatever its true
origin may be.

Finally, and as already noted, the dominant high-latitude
structures in the 70 GHz residual maps are morphologically very
similar to the 30 GHz differences. This suggesting a foreground-
related common mode error in one or more of these maps.

We now turn our attention to the angular power spectrum
properties of the BeyondPlanck frequency maps. Figure 23
shows auto-correlation spectra as computed with PolSpice
(Chon et al. 2004) outside the Planck 2018 common component
separation confidence mask (Planck Collaboration IV 2020),

which accepts a sky fraction of 80 %. All these spectra are clearly
signal-dominated at large angular scales (as seen by the rapidly
decreasing parts of the spectra at low `’s), and noise-dominated
at small angular scales (as seen by the flat parts of the spectra at
high `’s); note that the “signal” in these maps includes both CMB
and astrophysical foregrounds. Overall, the three pipelines agree
well at the level of precision supported by the logarithmic scale
used here; the most striking differences appear to be variations in
the high-` plateau, suggesting notably different noise properties
between the three different pipelines.

We therefore zoom in on the high-` parts of the spectra in
Fig. 24. Here the differences become much more clear, and easy

Article number, page 53 of 77

187



A&A proofs: manuscript no. ms

r30T r30Q r30U

r44T r44Q r44U

r70T r70Q r70U

−3 3µK

Fig. 26. Posterior mean total data-minus-model residual maps dν− sν for BeyondPlanck LFI 30 (top), 44 (middle), and 70 GHz (bottom). All maps
are smoothed to a common angular resolution of 2◦ FWHM.

to interpret. And in general we note two different trends. First,
we note that the overall noise levels of the BeyondPlanck 30 and
70 GHz maps are slightly lower than in the Planck 2018 maps,
but also higher than NPIPE, although the latter holds less true
for 30 GHz than for 70 GHz. The BeyondPlanck 44 GHz map
clearly has higher noise than either of the other two, as discussed
above. Second, we also note that the BeyondPlanck spectra are
notably flatter than the other two pipelines, and in particular than
NPIPE, which shows a clearly decreasing trend toward high mul-
tipoles.

These differences are further elucidated in Fig. 25, which
simply shows the power spectrum ratios between Planck 2018
and NPIPE, respectively, and BeyondPlanck. Again, we see that
the three codes generally agree to well within 1 % in TT in the
signal-dominated regimes of the spectra, but diverge in the noise-
dominated regimes. Indeed, at the highest multipoles for 30 and
70 GHz NPIPE typically exhibits 10–15 % less white noise than
BeyondPlanck, while BeyondPlanck exhibits 10 % less noise
than Planck 2018. As discussed in Planck Collaboration Int.
LVII (2020), NPIPE achieves lower noise than Planck 2018 pri-
marily through three changes. First, NPIPE exploits the so-called
repointing periods in the Planck scanning strategy, i.e., the pe-
riods during which the spin axis of the satellite moves, which
account for about 8 % of the total data volume. Second, NPIPE
smoothes the reference load LFI data prior to TOD differencing,
as described in Sect. 5.1.3, and this results in a similar noise re-
duction. Third, NPIPE includes data from the so-called “ninth
survey” at the end of the Planck mission, which accounts for
about 3 % of the total data volume. In contrast, BeyondPlanck
currently uses the repointing data, but neither smooths the ref-
erence load (essentially only because of limited time for imple-
mentation and analysis), nor includes the ninth survey. The rea-

son for the latter is that we find that the TOD χ2 statistics during
this part of the mission show greater variation from PID to PID,
suggesting less stability of the instrument. To be cautious, these
data are therefore also omitted for now, similar to the horn 26
data, but may be included later.

These effects explain the different white noise levels. How-
ever, they do not (necessarily) explain the different slopes of the
spectra, which instead indicate that the level of correlated noise
is significantly lower in the BeyondPlanck maps as compared to
the other two pipelines. The main reason for this is as follows:
While Planck 2018 and NPIPE both destripe each frequency map
independently, BeyondPlanck effectively performs joint corre-
lated noise estimation using all available frequencies at once, as
described in Sect. 8.3.2. This happens when conditioning on the
current sky model during the correlated noise estimation phase,
as opposed to applying the destriping projection operator Z in-
dependently to each channel. Thereby, the 30 GHz channel is in
effect helped by the 70 GHz channel to separate true CMB fluc-
tuations from its correlated noise, while the 70 GHz channel is
helped by the 30 GHz channel to separate synchrotron and free-
free emission from its correlated noise. And both 30 and 70 GHz
are helped by both WMAP and HFI to separate thermal and spin-
ning dust from correlated noise. Of course, this also means that
the correlated noise component are correlated between frequency
channels, and it is therefore imperative to actually use the Monte
Carlo samples themselves to propagate uncertainties faithfully
throughout the system.20

20 It should of course be noted that the traditional pipelines also exhibit
a correlated noise component between different frequencies, simply be-
cause they use the same foreground sky model to estimate bandpass
corrections at different frequencies. This, however, is very difficult to
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Fig. 27. Temperature (left) and polarization (right) confidence masks used for BeyondPlanck CMB analysis. In the right panel, the white-plus-
gray region defines the BeyondPlanck “full-sky” mask with an accepted sky fraction of 74 %, while the white-only region defines the default
BeyondPlanck mask with an accepted sky fraction of 36 %. The sky fraction of the temperature mask is fsky = 0.69.

9.3. Residual maps and masking

Having characterized the frequency maps, we will soon turn our
attention to the astrophysical and cosmological products as de-
fined by the sky model in Sect. 3.6. However, before doing so,
we consider in this section the overall goodness-of-fit of the
sky model, potentially unmodelled systematics, and masking re-
quired for CMB analysis.

The most detailed and informative summary of goodness-
of-fit of a given sky model is provided through pixel-by-pixel
residual maps, rν = mν − sν. These are shown in Fig. 26 for the
LFI channels; for a discussion of all residuals included in the
current analysis, we refer the interested reader to Andersen et
al. (2020) (for temperature analysis) and Svalheim et al. (2020b)
(for polarization analysis).

Starting with the temperature residual maps, we first of all
see an imprint of the Galactic plane. This is expected, since the
adopted foreground model is quite minimal, and the fits rely on
strong priors from external observations; although the current
data combination obviously has the statistical strength to iden-
tify model errors, it is for instance not strong enough to robustly
distinguish between synchrotron spectral index variations from
spatial variations in the free-free electron temperature. In partic-
ular, the morphology seen in the temperature residuals in Fig. 26
matches well that of Galactic dust emission, which suggests a
mild deficiency in the AME model used for the current pro-
cessing. Further data from experiments like C-BASS (Jew et al.
2019) and QUIJOTE (Génova-Santos et al. 2016) is obviously
needed to refine these models, and as a result, a Galactic mask
needs to be imposed before performing high-precision CMB
analysis. However, we do note that the magnitude of these resid-
uals is modest, with typical peak-to-peak amplitudes smaller
than 3 µK at Galactic latitudes higher than a few degrees.

At high Galactic latitudes, we see clear point source residu-
als in the 30 GHz channel. We note that many radio sources are
intrinsically variable, and such variability is not accounted for in
the current model.

Turning our attention to the polarization maps, we note that
both the 30 and 70 GHz residual maps appear quite clean, and
are dominated by white noise, although some slight hints of
large-scale systematics may be seen. We recall that similar struc-
tures were seen in the sample-to-sample difference maps shown
in Fig. 21, and these uncertainties are thus at least partially ac-
counted for in the model; whether they are fully accounted for,

both quantify or propagate, because of the substantial cost of including
full component separation within a forward simulation pipeline.

will only be clear after a full χ2 analysis, which will be presented
later.

However, while the 30 and 70 GHz channels appear clean,
the 44 GHz channel exhibits some stronger artifacts, with a mor-
phology that was already pointed out in Sect. 9.2; there are some
PID ranges with incorrect large-scale corrections that result in
stripes seen near the right edge of the map. Although the nature
of these stripes is still not understood, we note that their pres-
ence did not become visually clear until after the completion of
the current BeyondPlanck processing, and only with these re-
sults in hand do we now have the necessary tools to track them
down. Given that limited progress on understanding the prob-
lems regarding the 44 GHz channel was made during the official
Planck analysis period, we consider this identification an impor-
tant, if preliminary, success of the current methodology, and a
demonstration of usefulness for identifying and isolating low-
level systematic effects.

These effects all correspond to unmodelled systematics in the
current BeyondPlanck processing, and must be expected to con-
taminate the final high-level results at some level. At the same
time, their actual impact may be small for any given specific ap-
plication. In general, each higher-order analysis should therefore
be accompanied with an appropriately defined goodness-of-fit
assessment, typically involving χ2 calculations that account for
the full uncertainties as described by the Markov Chain ensem-
ble.

However, some effects are more striking than others, and re-
quire special attention. The most prominent example of such
is the Galactic plane, which obviously needs to be masked for
precision CMB applications. For temperature, we construct a
mask using both the residual map information shown here; com-
bined with pair-wise difference maps evaluated between differ-
ent algorithms (following Planck Collaboration IV 2020); and
finally a point source mask. The full procedure is summarized
in Colombo et al. (2020). For polarization, we adopt the prod-
uct of the Planck 2018 common confidence mask and the 9-year
WMAP polarization analysis mask as our baseline to remove the
Galactic plane. However, in recognition of the residuals seen in
the 44 GHz channel, covering much of the Southern Galactic
hemisphere, we also define a special mask that leaves unmasked
only the northern Galactic hemisphere. We will refer to these two
masks as the “full-sky” and default masks, respectively, which
have accepted sky fractions of 74 and 36 %. These are shown in
Fig. 27. Both masks will be considered for CMB analysis, but as
we will see, the full-sky mask results in large χ2 excesses that
effectively prohibits robust CMB inference.
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Fig. 28. Posterior mean maps of the aplitude of each of the four intensity foreground components included in the BeyondPlanck analysis. (Top
left:) Synchrotron amplitude, evaluated at 30 GHz and smoothed to 2◦ FWHM resolution. (Top right:) Free-free amplitude, evaluated at 40 GHz
and smoothed to 30′ FWHM resolution. (Bottom left:) AME amplitude, evaluated at 22 GHz and smoothed to 2◦ FWHM resolution. (Bottom
right:) Thermal dust amplitude, evaluated at 545 GHz and smoothed to 10′ FWHM resolution. Note that the color bars vary between panels. See
Andersen et al. (2020) for further discussion of these maps.

9.4. Astrophysical component posteriors

We now turn our attention to the astrophysical component pos-
teriors. However, before presenting the results, we recall that a
main design feature of the current analysis was to let the LFI data
play the main role in the CMB reconstruction. In practice, this
means that neither the CMB-dominated HFI frequencies, nor the
WMAP K-band observations, are included in the analysis. As a
result, we note that the derived foreground posterior constraints
shown here are significantly weaker than those presented by the
Planck team in Planck Collaboration X (2016), Planck Collabo-
ration IV (2020), and Planck Collaboration Int. LVII (2020). Full
joint analysis of all data sets is left for future work.

With that caveat in mind, Fig. 28 shows the posterior mean
maps for each of the four modelled temperature foregrounds,
namely synchrotron, free-free, AME, and thermal dust emission.
As discussed by Andersen et al. (2020), these are consistent with
earlier results of the same type (Planck Collaboration X 2016),
but with notably higher uncertainties, because of the more lim-
ited data set employed here.

Similarly, Fig. 29 shows the posterior mean amplitude for
polarized synchrotron emission, and Fig. 30 summarizes the pos-
terior mean (left panel) and standard deviation (right panel) for
the power-law index of polarized synchrotron emission. In this
case, it is worth pointing out that the Planck team never pub-

lished a joint polarized synchrotron solution that included both
Planck and WMAP observations, for the simple reason that these
data sets could never made to agree statistically to a satisfac-
tory degree when analyzed separately; when attempting to fit a
single synchrotron spectral index across both data sets, the re-
sulting constraints were clearly nonphysical, and led to large χ2

excesses.
Thus, the BeyondPlanck analysis represents the first reduc-

tion of the Planck LFI data set for which a joint foreground po-
larization analysis withWMAP yields statistically meaningful re-
sults. However, as shown by Svalheim et al. (2020b), even the
combination of the two data sets does not constrain the spec-
tral index very strongly, and for this reason we choose to fit
only a small number of independent spectral indices across the
sky. Specifically, we partition the sky into four disjoint regions,
corresponding to the Galactic Center (GC), the Galactic Plane
(GP), the North Galactic Spur (NGS), and High Galactic Lati-
tudes (HGL), and treat each region separately. Adopting Planck
Collaboration X (2016) as a reference, we enforce a Gaussian
prior of βs ∼ N(−3.1, 0.12). Finally, each spectral index sample
is smoothed with a Gaussian beam of 10◦ FWHM to avoid edge
effects.

For the GP and NGS regions, which both have significant
signal-to-noise ratio with respect to polarized synchrotron emis-
sion and low systematic effects, we fit βs using the full posterior
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Fig. 29. Posterior mean maps of polarized synchrotron amplitude derived from BeyondPlanck, evaluated at 30 GHz and smoothed to an angular
resolution of 1◦ FWHM. The two columns show Stokes Q and U parameters, respectively; see Svalheim et al. (2020b) for further discussion of
these maps.
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Fig. 30. Posterior mean and standard deviation maps for the spectral index of polarized synchrotron emission, βs. Note that βs is fitted in terms of
four disjoint regions, each with a constant value but smoothed with a 10◦ FWHM Gaussian beam to avoid edge effects. The effect of this smoothing
is seen in both the mean and standard deviation maps.

distribution as described in Sect. 8.3.5. However, for the HGL
region, in which the effective synchrotron signal-to-noise ratio is
very low, we simply marginalize over the prior, and exclude the
likelihood term. The reason for this is simply that unconstrained
degeneracies with other parameters, such as the gain, tend to bias
βs toward high values (βHGL

s ≈ −2.5; see Svalheim et al. 2020b)
when fitted freely.

We also do the same for the GC region, for which
temperature-to-polarization leakage and bandpass effects are
particularly important, and the synchrotron signal may also be
biased by Faraday rotation. When fitting this region freely, we
find an effective spectral index of βGC

s ≈ −4, which is also clearly
unphysical. Rather than letting these unmodelled systematic ef-
fects feed into the other components, we marginalize over the
physically motivated prior.

This leaves us with two main regions usable for scien-
tific interpretation, and these may be seen as blue regions
in the standard deviation map in Fig. 30. Specifically, we
find βGP

s = −3.14 ± 0.05 and βNGS
s = −3.19 ± 0.05, respectively

(Svalheim et al. 2020b). On the one hand, we note that these
values are broadly consistent with previous temperature-only
constraints, such as those reported by Planck Collaboration X
(2016), who found βs = −3.1. On the other hand, our results
show no compelling evidence for a significant spectral steepen-

ing from low to high Galactic latitudes, as for instance reported
by (Kogut 2012) and Fuskeland et al. (2014, 2019). Rather,
our results are qualitatively more similar to those derived us-
ing WMAP polarization data alone by Dunkley et al. (2009),
who found a difference of only ∆βs = 0.08 between low and
high Galactic latitudes. In this respect, it is worth noting that the
low Galactic latitudes are particularly sensitive to both system-
atic and astrophysical modelling errors, both in temperature and
polarization. For a full discussion of these results, we refer the
interested reader to Svalheim et al. (2020b).

9.5. CMB posteriors

Finally, we arrive at the main scientific target application of
the paper, the CMB posteriors. We start with a discussion of
the CMB dipole in Sect. 9.5.1, before presenting the CMB
fluctuation maps in Sect. 9.5.2. The BeyondPlanck CMB low-
` power spectrum and likelihood are discussed in Sect. 9.5.3,
and the high-` power spectrum and likelihood are discussed in
Sect. 9.5.4. Finally, cosmological parameters are presented in
Sect. 9.5.5.
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Fig. 31. Posterior mean CMB BeyondPlanck temperature map, smoothed to an angular resolution of 14′ FWHM.

Table 3. Comparison of Solar dipole measurements from COBE, WMAP, and Planck.

Galactic coordinates

Amplitude l b
Experiment [ µKCMB] [deg] [deg] Reference

COBEa,b. . . . . . . . . 3358 ± 23 264.31 ± 0.16 48.05 ± 0.09 Lineweaver et al. (1996)
WMAP c. . . . . . . . 3355 ± 8 263.99 ± 0.14 48.26 ± 0.03 Hinshaw et al. (2009)
LFI 2015 b . . . . . . 3365.5 ± 3.0 264.01 ± 0.05 48.26 ± 0.02 Planck Collaboration II (2016)
HFI 2015 d . . . . . . 3364.29 ± 1.1 263.914 ± 0.013 48.265 ± 0.002 Planck Collaboration VIII (2016)
LFI 2018 b . . . . . . 3364.4 ± 3.1 263.998 ± 0.051 48.265 ± 0.015 Planck Collaboration II (2020)
HFI 2018 d . . . . . . 3362.08 ± 0.99 264.021 ± 0.011 48.253 ± 0.005 Planck Collaboration III (2020)
NPIPE a,c. . . . . . . . 3366.6 ± 2.6 263.986 ± 0.035 48.247 ± 0.023 Planck Collaboration Int. LVII (2020)
BeyondPlanck e . . 3359.5 ± 1.9 263.97 ± 0.09 48.30 ± 0.03 Section 9.5

a Statistical and systematic uncertainty estimates are added in quadrature.
b Computed with a naive dipole estimator that does not account for higher-order CMB fluctuations.
c Computed with a Wiener-filter estimator that estimates, and marginalizes over, higher-order CMB fluctuations jointly with the dipole.
d Higher-order fluctuations as estimated by subtracting a dipole-adjusted CMB-fluctuation map from frequency maps prior to dipole evaluation.
e Estimated with a sky fraction of 68 %. Error bars include only statistical uncertainties, as defined by the global BeyondPlanck posterior frame-

work, and they thus account for instrumental noise, gain fluctuations, parametric foreground variations etc. However, they do not account for
prior or model selection uncertainties; see Sect. 9.5.1 for a discussion of these priors.

9.5.1. The CMB solar dipole

In the BeyondPlanck framework, the CMB dipole is in princi-
ple estimated on completely the same footing as any other mode
in the CMB sky, and is represented in terms of three spherical
harmonic coefficients in sCMB. No special-purpose component
separation algorithms are applied to derive the CMB dipole, nor
does any individual frequency play a more important role than
others, except for as dictated by the relative level of instrumental
noise in each channel.

However, as discussed by Ihle et al. (2020), Gjerløw et al.
(2020), and Suur-Uski et al. (2020), this apparent algorithmic
simplicity does not imply that robust CMB dipole estimation is
by any means easy in the BeyondPlanck procedure. Indeed, the
CMB dipole is quite possibly the single most difficult parameter
to estimate in the entire model, simply because it both affects,
and relies on, a wide range of other parameters in the model.
Some of the most important degeneracies are the following:
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Fig. 32. CMB dipole parameters as a function of sky fraction.Gray
bands indicate 68 % posterior confidence regions.

1. Absolute calibration – g0 is the single most important pa-
rameter for a robust solar dipole determination, as it directly
scales the amplitude of the CMB map. This parameter is it-
self constrained from the orbital dipole, which is both rela-
tively weak in terms of absolute amplitude, and for signifi-

cant parts of the mission it is aligned with, and thereby ob-
scured by, the Galactic plane.

2. Astrophysical foregrounds – foregrounds have in general
both non-zero dipole and higher-order moments with un-
known parameters, and must be estimated jointly with the
CMB dipole. However, considering that the current data set
includes five astrophysical components, each with a free
value in each pixel, and we only have eight different fre-
quency maps, the full system is quite poorly constrained; it
is therefore possible to add a significant dipole to the CMB
map, and subsequently subtract appropriately scaled dipoles
from each of the foreground maps, with only a minimal
penalty in terms of the overall χ2. In practice, we see particu-
larly strong degeneracies between the CMB, AME and free-
free components, when exploring the full system without pri-
ors, leading to massive and obviously nonphysical marginal
uncertainties.

3. Correlated noise – ncorr is only weakly constrained through
its PSD parameters, and is therefore able to account for a
wide range of modelling errors, including calibration errors.
In particular, incorrectly estimated gains will leave a spuri-
ous dipole-like residual in the time-ordered data. Since this
spurious residual clearly is detector-dependent, it will typi-
cally be interpreted by the algorithm as correlated noise, and
thereby excite a dipolar structure in ncorr.

4. Large-scale CMB quadrupole, foreground and bandpass
corrections – while the CMB polarization quadrupole is
predicted by current ΛCDM models to have a very small
quadrupole, with a variance of typically less than 0.05 µK2,
there is nothing in the current parametric model that explic-
itly enforces this. This particular mode therefore opens up a
particularly problematic degeneracy for Planck through cou-
pling with the gain and bandpass shift as follows: An error in
the absolute gain leads to an apparently wrong orbital dipole.
However, this can be countered by adding a polarized CMB
quadrupole, which has the same SED and nearly the same
spin harmonics as the orbital dipole, due to the Planck scan-
ning strategy that observes along nearly perfect great cir-
cles.21 Errors in the total polarized sky signal as observed
at each frequency can finally be countered by adjusting the
combination of relative gains, polarized foreground signals,
and bandpass corrections between radiometers, leaving the
total χ2 nearly unchanged.

During the initial test phase of the BeyondPlanck pipeline,
the Markov chain was allowed to explore these degeneracies
freely, in order to understand their nature, and these runs resulted
in a full marginal uncertainty on the dipole amplitude of more
than 40 µK, as compared to 3 µK reported by Planck LFI for the
70 GHz channel alone (Planck Collaboration II 2020), or 1 µK as
reported by HFI (Planck Collaboration III 2020). Although this
value by itself could be considered acceptable, given the limited
cosmological importance of the CMB dipole, it was also strik-
ingly obvious that all component maps were fully compromised
by the poorly constrained calibration, ultimately leading to ob-
viously nonphysical astrophysical component maps.

To break these degeneracies, we instead impose the follow-
ing effective priors in the analysis pipeline, as already discussed
in Sect. 8.3 and by Gjerløw et al. (2020):

1. We estimate the absolute calibration, g0, using only the or-
bital dipole as a calibrator; see Sect. 8.3.1. This significantly

21 This particular degeneracy does not exist for WMAP, because of its
more complex scanning strategy.
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Fig. 33. BeyondPlanck posterior mean (top row) and standard deviation (bottom row) CMB fluctuation maps. Columns show, from left to right,
temperature and Stokes Q and U parameters, respectively. The temperature maps are smoothed to 14′ FWHM resolution, while the polarization
maps are smoothed to 1◦ FWHM.
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Fig. 34. Difference maps between the BeyondPlanck CMB temperature map and those derived from the full Planck 2018 data set (Planck Collab-
oration IV 2020). From left to right and from top to bottom, the various panels show differences with respect to Commander, NILC, SEVEM, and
SMICA. All maps are smoothed to a common angular resolution of 1◦ FWHM.

reduces the degeneracy between the foregrounds and the ab-
solute calibration.

2. We enforce active spatial priors on the free-free and AME
amplitude maps, as discussed by Andersen et al. (2020).
Specifically, we use (an appropriately scaled version of) the

Planck 857 GHz map as a spatial prior for AME (Planck Col-
laboration Int. LVII 2020), and the Planck 2015 free-free
map (Planck Collaboration X 2016) as a prior for free-free
emission. In effect, we thus incorporate external information
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Fig. 35. Single column of the low-resolution CMB noise covariance
matrix, constructed as the mean outer-product of Monte Carlo sam-
ples. The column corresponds to Stokes Q pixel number 100, which
is marked in gray, and located in the top right quadrant near the ’Q’
label. Note that non-zero correlations are detected nearly across the full
sky in both Stokes parameters.

from Planck HFI to help stabilize the model, but without in-
troducing data that directly constrains the CMB component.

3. We set the CMB polarization quadrupole to zero during the
relative gain calibration phase. This is less strict than the
LFI DPC and NPIPE procedures, both of which set the en-
tire CMB polarization signal to zero in this step (Planck Col-
laboration II 2020; Planck Collaboration Int. LVII 2020). As
discussed by Gjerløw et al. (2020), the strong coupling be-
tween the gain and the CMB polarization is associated with
the quadrupole alone, and not higher-order modes. As a for-
mal justification of this prior, one may argue that this corre-
sponds to imposing a ΛCDM prior to that particular mode. In
principle, this does bias the resulting posterior distribution;
however, as long as ΛCDM is a reasonable approximation to
the true sky, then the effect is negligibly small, because of
the very small predicted amplitude of the CMB quadrupole.
Furthermore, the true CMB polarization quadrupole is likely
to be even smaller than that predicted by ΛCDM, since the
CMB temperature quadrupole is already known be low at the
1 % level, and these two are correlated through the T E power
spectrum. For additional verification, we will in the follow-
ing estimate cosmological parameters both with and without
the EE ` = 2 mode included, and we find no significant dif-
ference.

Figure 31 shows the marginal CMB temperature fluctuation
posterior mean map as derived in BeyondPlanck, given both the
data, model and priors described above. This map is massively
dominated by the CMB solar dipole, with only a small imprint of

Q

U

−3 3σ

Fig. 36. BeyondPlanck low-resolution and “whitened” CMB polariza-
tion map, as defined by N−1/2

CMB sCMB at a HEALPix resolution of Nside = 8
and masked with the BeyondPlanck “full-sky” mask. Top and bottom
panel shows Stokes Q and U parameters, respectively, and the color
scales span ±3σ.

the Galactic plane being visible in the very center. At high lati-
tudes, CMB temperature fluctuations may be seen as tiny ripples
superimposed on the dipole.

Because of the small but non-negligible Galactic plane, we
must impose an analysis mask before estimating final dipole pa-
rameters. For this purpose, we use the Wiener filter estimator de-
scribed by Thommesen et al. (2020), which in-paints the Galac-
tic mask with a constrained realization prior to parameter esti-
mation; this is necessary in order to account for, and marginalize
over, coupling to higher-order CMB fluctuations. This method
was also adopted for the dipole estimates presented in Planck
Collaboration Int. LVII (2020), although we introduce one sig-
nificant difference to that analysis: In the current analysis we
estimate the magnitude of systematic uncertainties directly from
the BeyondPlanck Gibbs samples, as opposed to putting in it
by hand. Specifically, instead of producing 9000 constrained re-
alizations from a single maximum likelihood map, as done in
Thommesen et al. (2020) and Planck Collaboration Int. LVII
(2020), we now produce 100 constrained realizations from each
of the 900 available Gibbs samples. Since each of these realiza-
tions have different gain, correlated noise, and foreground resid-
uals, the full ensemble therefore now accounts for these uncer-
tainties automatically. The only additional term we put by hand
into to the error budget is a contribution of 0.7 µK from the CMB
monopole uncertainty itself (Fixsen 2009).

Using this methodology, we estimate the CMB dipole pa-
rameters over a series of Galactic masks, ranging in sky fraction
from 20 to 95 %. The results from these calculations are shown in
Fig. 32. Overall, we see that the posterior distributions are quite
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stable with respect to sky fraction. Furthermore, we note that the
uncertainties do not decrease after fsky ≈ 0.7, as they would if
the full error budget could be described in terms of white noise
and sky fraction. Rather, the weight of the additional sky cover-
age is effectively reduced when marginalizing over the various
systematic contributions, as desired. We adopt a sky fraction of
fsky = 0.77 to define our final dipole estimates, corresponding
to the sky fraction used for the main CMB temperature analysis.
The resulting values are plotted as black points in Fig. 32, and
tabulated together with previous estimates in Table 3.

Several points are worth noting regarding these results. First,
we see that the reported best-fit BeyondPlanck dipole amplitude
is 3359.5 ± 1.9 µK, which is lower than the latest LFI 2018 esti-
mate of 3364.4 ± 3.1 µK, which in turn is lower than the NPIPE
estimate of 3366.6 ± 2.6 µK. In fact, it is even lower than the
latest HFI estimate of 3362.08 ± 0.99 µK. On the other hand,
it is higher than the WMAP estimate of 3355 ± 8 µK. Algorith-
mically speaking, this makes intuitively sense, considering that
WMAP observations actually are used actively in the Beyond-
Planck analysis, while it is not in the Planck-only analyses. At
the same time, we note that the BeyondPlanck estimate is statis-
tically consistent with any one of these estimates, as measured
in terms of their error bars; the biggest outlier is NPIPE, which
still only represents a 2.7σ variation.

Regarding the directional parameters, two observations are
worth pointing out. First, we see that the BeyondPlanck uncer-
tainties are substantially larger than any of the previous Planck-
dominated results. Here it is worth recalling again that no ad-
ditional systematic error contributions are added by hand to the
BeyondPlanck directional uncertainties, and the reported values
are thus the direct result of degeneracies within the model itself.
Perhaps the biggest algorithmic difference in this respect is the
fact that the current algorithm explicitly marginalizes over the
full foreground model, while most other approaches condition on
external constraints. The second observation is that the Beyond-
Planck latitude is higher than any of the previous results. The
statistical significance of this difference is modest, only about
1–2σ, but compared with the remarkable internal agreement be-
tween Planck and WMAP, it is still noteworthy. In this respect,
we recall that we are currently using the Planck 2015 free-free
map as an informative prior in the current processing, and CMB
and and free-free emission are known to be strongly correlated
for the current data set; see Andersen et al. (2020). Performing a
joint analysis of LFI, HFI, and WMAP without an external free-
free prior might be informative regarding this point.

9.5.2. CMB maps

Next, we consider the CMB fluctuation maps, as shown in
Fig. 33. The top row shows the posterior mean (after subtract-
ing the dipole from the temperature component), while the bot-
tom row shows the posterior standard deviation. We see a narrow
Galactic plane imprint in both temperature and polarization, and
both in the mean and standard deviation maps. Fortunately, at
least at a visual level, the obviously offending features are well
covered by the analysis masks shown in Fig. 27.

Figure 34 shows difference maps between the BeyondPlanck
temperature map and the four official Planck 2018 foreground-
cleaned CMB maps (Commander, NILC, SEVEM, and SMICA; see
Planck Collaboration IV 2020). A best-fit monopole and dipole
have been removed outside the Planck 2018 common confidence
mask in each case, and all maps are smoothed to a common reso-
lution of 1◦ FWHM. Several notable feature may be seen in these
difference maps. First of all, we notice a significant amount of

random noise at high Galactic latitudes, which is due to the fact
that the BeyondPlanck CMB map does not include HFI data.

At low Galactic latitudes, the main difference is a blue Galac-
tic plane. From the top left panel in Fig. 33, we see that this is
indeed coming from the BeyondPlanck map, indicating that the
current BeyondPlanck signal model over-subtracts foregrounds
in the Galactic plane. At the same time, by comparing this figure
to Fig. 7 in Planck Collaboration IV (2020) (which shows pair-
wise differences between each of the four Planck 2018 CMB
maps), we see that the absolute internal differences within the
Planck 2018 maps are of comparable order-of-magnitude as the
difference between BeyondPlanck and Planck 2018, although
generally covering a slightly smaller sky fraction.

9.5.3. Low-` CMB likelihood

Our main scientific goal with the BeyondPlanck pipeline is to
constrain the CMB power spectrum and cosmological parame-
ters through end-to-end analysis. Both of these operations are
most conveniently facilitated through the CMB power spectrum
likelihood, L(C`). As discussed in Sect. 8.3.8, it is most con-
venient to split this function into two components, one low-
dimensional and low-` component that employs dense matrix
operations, and one high-dimensional and high-` component
that employs faster operations; a similar split is used by both
WMAP (Hinshaw et al. 2013) and Planck (Planck Collaboration
V 2020).

As described in Sect. 8.3.8, we employ a brute-force Gaus-
sian pixel-based likelihood estimator at low-`, as has been a stan-
dard procedure since COBE-DMR,

P(C` | ŝCMB) ∝ e−
1
2 ŝt

CMB(S(C`)+N)−1 ŝCMB

√|S(C`) + N| . (136)

The only noteworthy variation is that we employ an optimized
basis set that reduce the number of basis vectors in ŝCMB from
Npix to the number of modes with a relative signal-to-noise ratio
larger than 10−6 over 2 ≤ ` ≤ 8; see Gjerløw et al. (2015) for
details. We choose an upper truncation of ` ≤ 8 as a compromise
between minimizing the dimensionality of the noise covariance
matrix and retaining as much constraining power with respect
to τ as possible. As shown by Colombo et al. (2020), all main
results shown in the following are robust against variations in
this cut-off.

We construct the inputs to the low-` likelihood as follows:

1. For each of the 900 full-resolution Gibbs samples discussed
in the introduction to this section, we draw 50 new samples
from P(s`≤64

CMB | d, ω \ s`≤64
CMB), resulting in a total of 45 000

low-` CMB map samples. Note that each of these samples
represents a complete sample from the full posterior; the only
difference is that this particular sub-volume of ω is sampled
50 times more densely than for other parameters.

2. Next, each sample is individually downgraded to Nside = 8.
In temperature, we additionally smooth to 20◦ FWHM be-
fore downgrading to avoid sub-pixel effects from high signal-
to-noise high-` fluctuations, while for polarization we simply
boxcar average over each Nside = 8 pixel.

3. We then compute the posterior mean CMB map, ŝCMB and
covariance matrix NCMB simply by averaging over samples,
as given by Eq. (122). Additionally, we add 1 µK of random
Gaussian regularization noise to the temperature component,
both in ŝCMB and NCMB, to make the noise covariance ma-
trix non-singular, and we set all off-diagonal temperature-
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Fig. 37. (Left panel:) Comparison of (un-normalized) marginal posterior distributions of the reionization optical depth from Planck 2018 (green;
Planck Collaboration VI 2020), 9-year WMAP (red; Hinshaw et al. 2013), WMAP Ka–V and LFI 70 GHz (orange; Natale et al. 2020); and
BeyondPlanck EE-only using multipoles ` = 2–8 (gray/black; Paradiso et al. 2020). The thin gray line shows BeyondPlanck constraints derived
using the full-sky mask ( fsky = 0.74), while the solid black line shows constraints using the northern mask only ( fsky = 0.36). (Right panel:)
Corresponding marginal BeyondPlanck tensor-to-scalar ratio posteriors derived using BB multipoles between ` = 2–8, including either the
Northern Galactic hemisphere (black) or the full sky (gray).

Table 4. Summary of cosmological parameters dominated by large-scale polarization, and goodness-of-fit statistics. Note that the BeyondPlanck
full-sky case has an unacceptable goodness-of-fit, and should not be used for cosmological analysis. The main science result from the current
analysis are summarized in the top two entries, and are evaluated with a small polarization sky fraction. For completeness, the third row shows
results evaluated with nearly full-sky data, but these are strongly contamined by systematic errors, as indicated by the high χ2 value.

Analysis Name Data Sets f pol
sky τ rBB

95 % χ2 PTE Reference

BeyondPlanck, ` = 2–8 . . . . . . . . LFI, WMAP Ka–V 0.36 0.060+0.015
−0.013 < 4.3 0.16 Paradiso et al. (2020)

BeyondPlanck, ` = 3–8 . . . . . . . . LFI, WMAP Ka–V 0.36 0.061+0.015
−0.014 < 5.4 0.16 Paradiso et al. (2020)

BeyondPlanck, ` = 2–8, full-sky . . LFI, WMAP Ka–V 0.74 0.091+0.010
−0.098 2.9+1.3

−1.0 5 · 10−4 Paradiso et al. (2020)

WMAP 9-yr . . . . . . . . . . . . . . . . . WMAP Ka–V 0.76 0.089 ± 0.014 Hinshaw et al. (2013)
Natale et al. . . . . . . . . . . . . . . . . . LFI 70, WMAP Ka–V 0.54 0.071 ± 0.009 Natale et al. (2020)
Planck 2018 . . . . . . . . . . . . . . . . HFI 100×143 0.50 0.051 ± 0.009 < 0.41 Planck Collaboration V (2020)
SROLL2 . . . . . . . . . . . . . . . . . . . . HFI 100×143 0.50 0.059 ± 0.006 Pagano et al. (2020)
NPIPE (Commander CMB) . . . . . . LFI+HFI 0.50 0.058 ± 0.006 < 0.16 Tristram et al. (2020)

polarization elements in NCMB to zero, noting that tempera-
ture is massively signal-dominated.

4. We apply the Galactic analysis mask (as defined in Fig. 27)
by removing the relevant rows and columns from both ŝCMB
and NCMB.

5. Finally, we eigenvalue decompose the S(C`) + NCMB ma-
trix, where C` is defined by the best-fit Planck 2018 ΛCDM
spectrum for 2 ≤ ` ≤ 8, and define the projection operator
P as the set of all columns corresponding to an eigenvalue,
εi, larger than 10−6 max(εi). This multipole range includes
all values for which the LFI data has a significant signal-to-
noise ratio, while the eigenvalue threshold is chosen to avoid
issues with numerical precision.

To build useful intuition regarding ŝCMB and NCMB, we first
show an single column of NCMB prior to eigen-mode compres-
sion in Fig. 35; this column corresponds to pixel 100 in the
Stokes Q map, which is marked by gray in the figure (located
near the Q label). Several interesting features may be seen here.
First, we see that there is a broad stripe (or region) extending
from the pixel in question in both Q and U. This stripe corre-
sponds to correlated noise and gain fluctuations modulated by

the Planck scanning strategy. Second, we see that the Galac-
tic plane is negatively correlated with the pixel in question in
Q, and positively correlated in U; these correlations result from
variations in both gain and bandpass, coupled to the foreground
components. Third, we also see that there are significant correla-
tions at further distances in the form of broad extended regions;
these are at least partially due to the WMAP horn separation of
141◦, which in effect couples pixels across the entire sky. The
complexity of this map illustrates a significant advantage of the
Monte Carlo sampling approach: Constructing this full matrix
analytically would be extremely difficult, which is why it has
never been done in the CMB literature until now. To date, only
correlated noise, absolute calibration, and linear template correc-
tions have been accounted for in this matrix; see, e.g., Hinshaw
et al. (2013) and Planck Collaboration V (2020).

Figure 36 shows the “whitened” CMB polarization map,
as defined by N−1/2

CMBsCMB. This essentially measures the lo-
cal signal-to-noise ratio in each pixel (taking into account the
full covariance matrix structure), and should be consistent with
Gaussian random noise with vanishing mean and unit standard
deviation for a strongly noise-dominated map. Overall, this map
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Fig. 38. Comparison between low-` angular CMB power spectra, as de-
rived by the Planck collaboration using both LFI and HFI data (blue
points; Planck Collaboration V 2020); by the WMAP team using just
WMAP data (red points; Hinshaw et al. 2013); and by BeyondPlanck
using both LFI and WMAP data (black points; Colombo et al. 2020).
Thin black lines indicate the Planck 2018 best-fit ΛCDM spectrum
(Planck Collaboration VI 2020). The BeyondPlanck data points are
evaluated by conditionally slicing the posterior distribution `-by-` with
respect to the best-fit ΛCDM model, by holding all other multipoles
fixed at the reference spectrum while mapping out P(C` |d), to visualize
the posterior structure around the peak.

does appear largely noise dominated, but there are also some
intruiging coherent large-scale features that could indicate ex-
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Fig. 39. Convergence of constraints of the reionization optical depth
as a function of the number of posterior samples used to construct the
CMB mean map and covariance matrix. The solid black line shows the
posterior mode for τ, and the gray region shows the corresponding 68 %
confidence region.

cess signal. Also, there is fortunately no compelling evidence of
residual foreground contamination in this map, and the chosen
mask appears to perform well.

As a first quality assesment, we start by slicing the marginal
posterior distribution in Eq. (136) with respect to the two main
low-` polarization parameters, τ and r. Specifically, we adopt
the best-fit Planck 2018 ΛCDM model (Planck Collaboration V
2020) to define a reference model, but vary in turn τ and r. Each
model spectrum, C`, is computed with CAMB (Lewis et al. 2000).
When constraining τ we vary only the EE spectrum, while when
constraining r we vary only the BB spectrum. In all these calcu-
lations, we keep Ase−2τ fixed at the best-fit Planck value (Planck
Collaboration V 2020) to break a strong degeneracy with the
amplitude of scalar perturbations, As, essentially adopting the
high-` HFI information as a effective prior on the overall ampli-
tude of the spectrum. These calculations are repeated for both the
full-sky and the Northern Galactic hemisphere masks as defined
above.

To assess the internal consistency of the resulting models, we
evaluate the χ2 of that model with respect to the data in question,

χ2 = ŝt
CMB

(
S(Cbf

` ) + NCMB

)−1
ŝCMB. (137)

For a Gaussian and isotropic random field, this quantity should
be distributed according to a χ2

ndof
distribution, where ndof is the

number of degrees of freedom, which in our case is equal to the
number of basis vectors in ŝCMB. The signal covariance matrix
is in each case evaluated using the best-fit value of τ derived
from the parameter exploration described above. The results are
summarized in Fig. 37 and Table 4.

Starting with the full-sky case, we first note that the χ2

probability-to-exceed (PTE) for this region is 5 · 10−4, indicat-
ing a poor fit. Furthermore, the best-fit cosmological parame-
ters are τ = 0.091+0.010

−0.098 and r = 2.9+1.3
−1.0, both of which are

in strong tension with previous results from Planck and other
experiments (e.g., BICEP2/Keck Array and Planck Collabora-
tions 2015; Planck Collaboration V 2020; Tristram et al. 2020).
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Fig. 40. Estimates of τ (top panel), r (middle panel), and χ2 (bottom
panel) as a function of sky fraction, fsky, using only low-` polarization
information. The tensor-to-scalar ratio is given as a detection level in
units of σ, as measured by the likelihood ratio relative to a model with
vanishing B-mode signal.

Thus, even with clearly nonphysical cosmological parameters,
this data set fails a basic goodness-of-fit test, and this can only
be explained by a break-down of some fundamental assumption,
namely either Gaussianity, isotropy, or the basic ΛCDM frame-
work itself. Of course, at this point, we already know about at
least one plausible candidate to explain this violation of Gaus-
sianity and statistical isotropy, namely the strong stripes in the
44 GHz channel that are spatially mostly confined to the South-
ern Galactic hemisphere. Because of this χ2 excess, we conclude
that the BeyondPlanck processing is not yet sufficiently mature
to allow analysis of full-sky data.

We therefore turn our attention to the Northern hemisphere
alone, for which no strong stripes are seen in the 44 GHz chan-
nel. In this case, we see that the χ2 PTE is 16 %, which is statisti-
cally fully acceptable. Furthermore, the best-fit tensor-to-scalar
ratio is consistent with zero within a statistical significance of
1.4σ, and with an upper 95 % confidence limit of r < 4.3. The
fact that the peak location of this distribution is slightly posi-
tive could be related to the breakdown of the 1/ f noise model
for the 30 and 44 GHz channels reported by Ihle et al. (2020),
but the impact of this effect must clearly be small compared to
the much larger statistical uncertainties. The best-fit value of the
optical depth of reionization is τ = 0.060+0.015

−0.013, which is in excel-
lent agreement with previous results. Of course, the uncertainty

of this measurement is relatively large, since the accepted sky
fraction is small ( fsky = 0.36).

To visualize the low-` CMB angular power spectrum, we
once again employ Eq. (120), and simply compute slices through
L(C`) along each dimension, while fixing all other elements at
the best-fit Planck 2018 ΛCDM spectrum.22 For each slice, we
report the conditional posterior maximum value as a point es-
timate, and an asymmetric 68 % confidence interval as its un-
certainty. Figure 38 shows a comparison of the resulting Be-
yondPlanck low-` power spectra evaluated from the Northern
Galatic hemisphere with those published by WMAP (Hinshaw
et al. 2013) and Planck 2018 (Planck Collaboration V 2020); the
latter two are simply reproduced from tabulated values without
reprocessing.

Before concluding this section, we consider two internal con-
sistency tests. First, Fig. 39 shows constraints on τ as a func-
tion of number of samples used to generate the low-` likelihood
inputs. As discussed by Sellentin & Heavens (2016), it is not
sufficient that NCMB itself converges to some specified precision
to obtain robust results, but also that N−1

CMB and |NCMB| reach a
corresponding precision. We see that about 35 000 samples are
required to achieve a precision that results in a Monte Carlo un-
certainty that is significantly smaller than the posterior width.
Regarding the detailed behaviour of this function, we note that
the sharp increase around 10 000 samples happens when the fi-
nal covariance matrix first becomes well-conditioned, and there
are no longer any algebraically degenerate modes. However, at
this point only a sub-space of the systematic parameter volume
has been probed by the Monte Carlo Markov chains, and the cor-
responding predicted variance is therefore too low, resulting in
a positive bias in τ. Only around 35 000 has the full distribution
become stationary, and no further improvements are made with
more samples.

In the second consistency test we plot τ, r and the χ2 PTE as a
function of fsky, adopting the same suite of masks as Planck Col-
laboration Int. LVII (2020), but after multiplying each with our
Northern Galactic mask. The results from these calculations are
summarized in Fig. 40. We see that all values of τ are consistent
with the Planck HFI results to better than 1σ. For the tensor-
to-scalar ratio, we find that the overall detection level varies be-
tween 1.4 and 2.0σ, and this variation is also reflected in the χ2,
for which the PTE varies between 8 and 25 %. Overall, all results
are statistically consistent for all sky fractions.

9.5.4. High-` CMB likelihood

We now turn our attention to the high-` CMB power spectrum
and likelihood. In this respect, we note that the LFI and WMAP
polarization measurements have very low CMB signal-to-noise
ratios at multipoles ` & 10, and we therefore restrict ourselves
in the following to temperature alone. This has two main ad-
vantages. First, the cost of producing a single high-` constrained
CMB sample is reduced by a factor of three, since we no longer
need to perform polarized spherical harmonics transforms. Sec-
ond, this also allows us to employ the so-called Blackwell-Rao
estimator (Chu et al. 2005), which is by far the preferred esti-
mator for sampling-based likelihood estimators due to its high
level of precision combined with excellent computational speed.

22 A more common convention is to fix other spectra at the joint maxi-
mum likelihood solution. However, this sometimes leads to pathological
likelihood shapes for strongly noise-dominated modes, and the result-
ing spectra are in such cases poor representations of the likelihood shape
that is actually relevant for parameter estimation.
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Fig. 41. Full-resolution CMB temperature constrained realization maps. (Top:) Single constrained realization, si, drawn from P(s | d,C`, . . .).
(Middle:) Posterior mean map, 〈s〉, as evaluated from the ensemble of constrained CMB realizations; note that the small-scale signal amplitude
inside the mask decreases smoothly to zero with increasing distance from the edge of the mask. (Bottom:) CMB posterior standard deviation map,
as evaluated pixel-by-pixel from the ensemble of constrained CMB realizations. This map is dominated by instrumental noise outside the mask,
and by random fluctuations informed by the assumptions of isotropy and Gaussianity inside the mask.
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Fig. 42. Gelman-Rubin convergence statistic for the BeyondPlanck TT
angular power spectrum, as evaluated from eight σ` chains with each
N samples. A value lower than 1.1 (dotted gray line) typically indicates
acceptable convergence.

However, it does require a substantial signal-to-noise ratio per
multipole in order to converge, which is not the case for cur-
rent polarization data. In practice we employ the Gaussianized
Blackwell-Rao estimator, as presented by Rudjord et al. (2009)
and used by the Planck 2015 and 2018 likelihoods (Planck Col-
laboration XI 2016; Planck Collaboration V 2020), in order to
reduce the number of samples required for convergence at high
multipoles.

The inputs to this likelihood estimator are generated as
follows. For each full-resolution Gibbs sample23 discussed in
the introduction to this section, we draw a new sample from
P(sCMB | d, ω \ sCMB), as we did for the low-` estimator, but with
the following important differences:

1. The re-sampling step is performed at full angular resolution.
2. The noise level of each input frequency map is set to infinity

for each pixel that is excluded by the BeyondPlanck temper-
ature mask, giving these zero weight in the fit.

3. We condition on a CMB power spectrum prior, S(C`), when
solving the Wiener filter equation, which results in a sam-
ple, si, that has the Galactic plane in-painted with a Gaussian
constrained realization.

4. The power spectrum, Ci
`, is Gibbs sampled over between

each sky sample, si, such that {si,Ci
`} explore the full cor-

responding posterior distribution. Multipoles higher than
` > 800 are fixed at the best-fit Planck ΛCDM power spec-
trum, while all multipoles below ` ≤ 800 are sampled `-by-`.

For each sky sample, we compute the observed power spectrum,
σi
`, as defined by Eq. (6), which serves as the actual input to the

Blackwell-Rao estimator. Note that this procedure is very nearly
identical to that described by Chu et al. (2005), and later adopted
by both WMAP (Hinshaw et al. 2013) and Planck (Planck Col-
laboration V 2020), but with one fundamental difference: While
all previous analyses drew samples from one fixed set of fre-
quency sky maps, we now marginalize over a whole ensemble
of frequency sky maps. Thus, this is the first time that low-level
instrumental systematic errors are also propagated through the

23 At the time of writing, only 400 high-resolution samples have been
produced after burn-in. The wall-time cost per sample is 5 hours.

20
0

40
0

σ
T

T
2

(µ
K

2
)

50
00

60
00

σ
T

T
2

0
0

(µ
K

2
)

20
00

23
00

26
00

σ
T

T
6

0
0

(µ
K

2
)

0 20 40 60

Sample number

25
00

35
00

σ
T

T
8

0
0

(µ
K

2
)

Fig. 43. Trace plots for four representative angular power spectrum mul-
tipole coefficients, σTT

` . From top to bottom, each of the four panels
show ` = 2, 200, 600, and 800. Each curve shows one independent
Gibbs chain.

Blackwell-Rao estimator into high-level cosmological parame-
ters, in addition to instrumental noise, sky cut, and foreground
uncertainties (Planck Collaboration V 2020).

To provide some useful visual intuition, Fig. 41 summarizes
the properties of the constrained realizations that feed into the
Blackwell-Rao estimator. The top panel shows a single CMB
sky map sample from the full posterior distribution. This repre-
sents one perfect full-sky CMB map that is consistent with the
underlying data. Note that it is impossible to see the analysis
mask in this plot; these pixels are in effect replaced with a Gaus-
sian random realizations with a power spectrum given by Ci

` and
phases that are constrained by the high-latitude information. The
middle panel shows the corresponding posterior mean map. At
high Galactic latitudes, this map is virtually identical to the sin-
gle sample (only with very slightly lower noise), while inside the
mask it is much smoother. Only modes that can be meaningfully
estimated from high latitudes under the assumption of statistical
isotropy have non-zero value. Finally, the bottom panel show the
posterior standard deviation map. At high latitudes, this is dom-
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Fig. 44. (Top:) Angular CMB temperature power spectrum, DTT
` , as derived by BeyondPlanck (black), Planck (red), and WMAP (blue). The best-fit

Planck 2018 ΛCDM power spectrum is shown in dashed gray. (Middle:) Residual power spectrum relative to ΛCDM, measured relative to full
quoted error bars, r` ≡ (D` − DΛCDM

` )/σ`. For pipelines that report asymmetric error bars, σ` is taken to be the average of the upper and lower
error bar. (Bottom:) Fractional difference with respect to the Planck ΛCDM spectrum. In this panel, each curve has been boxcar averaged with a
window of ∆` = 100 to suppress random fluctuations.

inated by instrumental noise and systematic effects, while inside
the mask it is dominated by CMB sample variance.

The intuitive interpretation of the Blackwell-Rao estimator is
now very simple: Assume first that we happened to know the ex-
act CMB sky, without noise, foregrounds or systematic effects.
In that case, the CMB power spectrum likelihood is given ana-
lytically by the inverse Wishart distribution shown in Eq. (12).
However, in reality, we do of course not know the true sky per-
fectly, and we therefore have to marginalize over all possible
CMB skies that are consistent with all observed data. In other
words, we have to average the Gaussian likelihood over the en-
semble of si samples—and that is precisely the definition of the
Blackwell-Rao estimator.

As shown by Wandelt et al. (2004), the Blackwell-Rao es-
timator is guaranteed to converge to the true, exact CMB like-
lihood in the limit of an infinite number of samples. Of course,
in practice we do not have an infinite number of samples, and a
common way of assessing convergence is through the so-called
Gelman-Rubin R statistic (Gelman & Rubin 1992), which com-

pares the sample variance as measured within each chain to the
variance between chains. With the appropriate scaling factors, R
should typically be lower than 1.1 for acceptable convergence.
Figure 42 shows the R statistic for the σi

` ensemble described
above, which suggests that acceptable convergence is achieved
up to ` ≈ 600–700 with the current sample set.

These numbers are, however, only general rules-of-thumb,
and should always be combined with human visual inspection of
the actual chains as well. A selection of four representative mul-
tipoles are therefore shown in Fig. 43, in which each color rep-
resents one independent Gibbs chain. Here we see that ` = 2 and
200 mix very well, and the Markov chain correlation length is es-
sentially zero. As a result, robust convergence will be achieved
with a relatively low number of samples. At ` = 600, the cor-
relation length is notably longer, but a good estimate of the full
distribution may still be derived from the sample set shown. At
` = 800, it is even longer, and the mixing is about to break down.

We conclude from these results that the current sample set
has converged well below ` . 700. Still, to be conservative we
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Table 5. Comparison of basic 6-parameter ΛCDM model parameters as derived by BeyondPlanck (Paradiso et al. 2020), Planck 2018 (Planck
Collaboration VI 2020), and WMAP (Hinshaw et al. 2013). The second column shows results for BeyondPlanck only, using only TT multipoles
below ` ≤ 600 and polarization below ` ≤ 8. The third column shows similar results when also adding TT multipoles between 600 < ` ≤ 2500
from Planck 2018. For Planck, we show results from the Plik pipeline using the TT+T E+EE+lowE+lensing data combination, while for WMAP
we show results based on C−1-weighted 9-year WMAP-only data. Note that Planck and WMAP adopt slightly different conventions for some
parameters, and we report both where applicable. Columns marked with “∆” show differences with respect to BeyondPlanck-only results, as
measured in units of σ.

BeyondPlanck Planck 2018 WMAP

Parameter ` ≤ 600 +Planck ` > 600 Estimate ∆ (σ) Estimate ∆ (σ)

Ωbh2 . . . . . . . . . 0.02226 ± 0.00088 0.02230 ± 0.00022 0.02237 ± 0.00015 −0.1 0.02243 ± 0.00050 −0.2
Ωch2 . . . . . . . . . 0.115 ± 0.016 0.1227 ± 0.0025 0.1200 ± 0.0012 −0.3 0.1147 ± 0.0051 0
ΩΛ . . . . . . . . . . . · · · · · · · · · · · · 0.721 ± 0.025 · · ·
100θMC . . . . . . . . 1.0402 ± 0.0048 1.04064 ± 0.00048 1.04092 ± 0.00031 −0.2 · · · · · ·
τ . . . . . . . . . . . . 0.067 ± 0.016 0.074 ± 0.015 0.054 ± 0.007 0.8 0.089 ± 0.0014 −1.4
109∆2

R . . . . . . . . . · · · · · · · · · · · · 2.41 ± 0.10 · · ·
ln(1010As) . . . . . . 3.035 ± 0.079 3.087 ± 0.029 3.044 ± 0.014 −0.1 · · · · · ·
ns . . . . . . . . . . . . 0.962 ± 0.019 0.9632 ± 0.0060 0.9649 ± 0.0042 −0.1 0.972 ± 0.013 −0.5

only include multipoles between 9 ≤ ` ≤ 600 in the final Be-
yondPlanck high-` TT likelihood for cosmological parameter
estimation. The resulting power spectrum is shown in Fig. 44,
and compared with those presented by Planck (Planck Collab-
oration V 2020) and WMAP (Hinshaw et al. 2013). For refer-
ence, the gray dashed line shows the best-fit Planck 2018 ΛCDM
spectrum. The middle panel shows shows the difference of each
measured spectrum with respect to the model spectrum in units
of each pipeline’s respective error bars, while the bottom panel
shows the corresponding fractional difference with respect to the
best-fit Planck 2018 ΛCDM spectrum in units of percent. At
` . 500, where these data sets are all signal-dominated, the three
spectra follow each other almost `-by-`, while at higher multi-
poles, where WMAP becomes noise-dominated, larger variations
are seen within multipoles. Overall, the agreement between the
three estimates is very good, both as measured by fractional dif-
ferences and in units of σ.

9.5.5. Cosmological parameters

Finally, we are ready to present cosmological parameters from
the BeyondPlanck analysis pipeline. In the following, we use
CosmoMC (Lewis & Bridle 2002) to explore different cosmologi-
cal models, coupled to a likelihood of the following form,

lnLBP(C`) = lnL`=2−8
low−` (C`) (138)

+ lnL`=9−600
BR (C`) (139)

+ lnL`=601−2500
Planck (C`) (optional), (140)

where the likelihood in line 138 is given by Eq. (120); the like-
lihood in line 139 is given by Eq. (7) in Rudjord et al. (2009)
(which, intuitively, is also given by averaging Eq. (128) over
the ensemble of available Gibbs samples); and the likelihood in
line 140 is defined by the Gaussian TT -only Planck 2018 likeli-
hood (Planck Collaboration V 2020).

The low-` likelihood in Eq. (138) is defined directly in terms
of a full multi-variate pixel-based Gaussian distribution with
mean and covariance tuned using the posterior samples. Simi-
larly, the Blackwell-Rao estimator in Eq. (139) is defined sim-
ply by averaging the inverse Wishart distribution (as defined in
Eq. (128)) over all available Gibbs samples. Intuitively, each
Gibbs sample represents one possible full-sky and noiseless
CMB realization that is consistent with all observed data, and
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Fig. 45. Marginal cosmological parameter posterior distributions for a
basic 6-parameter ΛCDM model as estimated from the BeyondPlanck-
only CMB likelihood using TT multipoles up to ` ≤ 600 and polariza-
tion multipoles up to ` ≤ 8 (blue distributions), and also when including
` > 600 temperature information from Planck 2018 (red distributions).

the the Blackwell-Rao estimator is thus simply equivalent to av-
eraging the appropriate distribution for cosmic variance (i.e., the
inverse Wishart distribution) over all possible CMB realizations
that are consistent with the measurements. Finally, the high-`
Planck likelihood is simply defined as a multi-variate Gaussian
distribution in terms of angular power spectra. We estimate pa-
rameters both with and without the Planck high-` likelihood.

For a complete discussion regarding the parameter con-
straints that is derived from this likelihood, and comparisons
with previously published results, we refer the interested reader
to Paradiso et al. (2020). Here we only show one single case,
namely that corresponding to the basic six-parameter ΛCDM
model. These are summarized in terms of posterior means and
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standard deviations in Table 5, and in terms of 1- and 2-
dimensional marginal distributions in Fig. 45.

Overall, we see that the agreement between BeyondPlanck,
Planck 2018 and WMAP is very good. For Planck 2018, which
is statistically dominated by HFI measurements, the parameter
showing the biggest difference is τ, with a positive shift of 0.8σ.
We note however that both SROLL2 (Pagano et al. 2020) and
NPIPE (Tristram et al. 2020) report slightly higher values of τ
than Planck 2018; as measured relative to these, the Beyond-
Planck excess is only 0.4σ.

From Table 5, we also see that the BeyondPlanck uncertain-
ties are generally larger than those of Planck 2018, even when
combined with high-` information from Planck. This is most
likely due to the fact that BeyondPlanck does not exploit HFI
measurements below ` ≤ 600, and therefore observes notably
larger uncertainties between the first and third accoustic peaks in
the CMB power spectrum. In addition to these differences in raw
data volume, it is also important to note that the BeyondPlanck
framework marginalizes over a significantly larger model of nui-
sance parameters than either of the two previous pipelines, and
these also contribute to larger uncertainties. For a detailed break-
down of statistical and systematic uncertainties, and their impact
on cosmological parameters, we refer the interested reader to
Colombo et al. (2020); Paradiso et al. (2020).

10. Reproducibility and Open Science

As discussed in Sect. 1, the main long-term scientific goal and
motivation of the BeyondPlanck program is to establish an end-
to-end analysis framework for CMB observations that, we hope,
will be useful for the general community. This framework is de-
signed to be sufficiently flexible to allow analysis of different and
complementary experiments, and thereby exploit the strengths of
one instrument to break degeneracies in another. A concrete ex-
ample of such synergies has already been demonstrated in the
current paper, where information contained in the WMAP obser-
vations is used to support the calibration and component separa-
tion of LFI, and, as a result, we are now, for the first time, able
to fit for the spectral index of polarized synchrotron emission
across the two experiments.

For this project to succeed, substantial efforts have been
spent within the BeyondPlanck program on the issue of re-
producibility. These efforts are summarized by Gerakakis et al.
(2020), both in terms of the internal process itself and some
lessons learned, and also in terms of the final practical solutions
that have been implemented. Here we provide a brief summary
of the main points.

10.1. Reproducibility

For the BeyondPlanck framework to be useful for other experi-
ments it must be reproducible: Researchers outside of the current
collaboration must be able to repeat our analysis, before improv-
ing and extending it. To support this, we have focused on four
main items:

1. Documented open-source code – the full Commander24

source code, as well as various pre- and post-processing
tools,25 are made publicly available in a GitHub repository
under a GPL license, and may be freely downloaded and

24 http://beyondplanck.science
25 https://github.com/cosmoglobe/c3pp

extended within the general restriction of that license. Pre-
liminary documentation is provided,26 although it is under
continuous development, as is the source code itself.

2. Cmake compilation – easy compilation is supported through
the Cmake environment; required external libraries are auto-
matically downloaded and compiled.

3. Data downloader – a Python-based tool is provided that
automatically downloads all BeyondPlanck input data to a
user-specified directory, together with the parameter files that
are needed to run the code.

4. Community-based support environment – we have estab-
lished a web-based discussion forum27 dedicated to end-to-
end analysis where interested parties may share experiences
and discuss issues. All participation in this forum is of course
voluntary, with no expectations of either commitments or
guarantees from any participant, but the hope is that the fo-
rum will grow into a useful and active discussion platform
for anything from bugs and code development issues to high-
level scientific questions.

In addition, all main results (both full chain files and selected
post-processed posterior mean and standard deviation maps) are
available from the BeyondPlanck homepage,28 and eventually
through the Planck Legacy Archive.29 For further details regard-
ing the reproducibility aspects of the work, we refer the inter-
ested reader to Gerakakis et al. (2020).

10.2. Software

A second requirement for the BeyondPlanck framework to be
useful for other users is that the software is computationally ef-
ficient so that it can be run on generally available hardware, and
also that the source code is extendable without expert knowl-
edge. Regarding the former point, we note that great empha-
sis has been put on minimizing the required computational re-
sources throughout the implementation. This appears to be at
least partially successful, as summarized in Sect. 8.4 and by Gal-
loway et al. (2020a): The full BeyondPlanck analysis, as pre-
sented here, has a computational cost of 220 000 CPU hours,
which is roughly equivalent to the cost of producing O(10) end-
to-end Planck FFP8 70 GHz realizations using the traditional
pipeline (Planck Collaboration XII 2016). Furthermore, by com-
pressing the TOD inputs the memory footprint of the LFI data
set has been reduced by about an order of magnitude (see Ta-
ble 2 and Galloway et al. 2020a), and now requires only about
1.5 TB of RAM to run. Computers with this amount of memory
and clock cycles are now widely available, and a full Planck LFI
analysis therefore no longer requires the use of expensive super-
computers – although they will of course be beneficial when
available.

Regarding the software itself, the current main code base is
written in object-oriented Fortran 2003. Clearly, this may repre-
sent a significant hurdle for many users, as most astrophysics stu-
dents today are typically more exposed to languages like Python
or C than Fortran. This choice of language is primarily histor-
ical, and due to the fact that a large part of the legacy code
base was originally written in Fortran, most notably HEALPix
(Górski et al. 2005) and Commander (Eriksen et al. 2004, 2008).
However, a second important motivation for adopting Fortran
is that it remains one of the fastest languages even today in
26 https://docs.beyondplanck.science
27 https://forums.beyondplanck.science
28 http://beyondplanck.science
29 https://pla.esac.esa.int/
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terms of computational speed and memory management. As far
as readability and extendability goes, the code has been de-
signed with a strong focus on object-orientation, and we be-
lieve that adding support for several types of new sub-classes
is relatively straight-forward. This includes classes for new sig-
nal components; noise or beam representations; or TOD mod-
els. On the other hand, modifying the underlying memory man-
agement, component separation infrastructure, or parallelization
paradigm, is likely to be difficult without expert knowledge. A
guide to the current software is provided by Galloway et al.
(2020a). As two real-world demonstrations of the extendability
of the framework, we present preliminary applications to both
LiteBIRD and WMAP in two companion papers (Aurlien et al.
2020; Watts et al. 2020).

As useful as we hope the current version will be, we do be-
lieve that developing a massively parallel version of Commander
in Python would be a useful, interesting and intellectually chal-
lenging task, and we would encourage (and support!) work in
this direction. For reference, the current Commander Fortran
source code spans 45 000 lines,30 which can likely be reduced
by a significant factor if written in a less verbose language; port-
ing this to Python would obviously be a major undertaking, but
certainly feasible for even just a small team of talented and mo-
tivated researchers.

11. Conclusions, summary and outlook

The Planck project represents a landmark achievement in inter-
national cosmology, mapping out the primary temperature fluc-
tuations in the CMB to a precision determined by astrophysical
constraints. This achievement was made possible by the dedi-
cation and long-term contributions from ESA and NASA; from
tens of national funding agencies; and many hundreds of sci-
entists and engineers working for more than two decades. At
the end of the mission, a massive amount of knowledge and
expertise regarding optimal analysis of CMB experiments had
been generated within the collaboration, as clearly demonstrated
through more than 150 refereed scientific publications.

A central goal of the BeyondPlanck project was to translate
a significant part of this aggregated experience into a practical
computer code that can analyse Planck data from end-to-end,
and to make this code available to the community in general.
Due to limited resources and time, BeyondPlanck only consid-
ered the Planck LFI data in the time domain, although some pre-
liminary work has also been done on WMAP and simulated Lite-
BIRD observations.

Regrettably, an application for continued funding for inte-
grating HFI and LiteBIRD into the same framework was recently
rejected. The referee noted that the advantages of the proposed
methodology over other available methodologies (. . . ) are not
sufficiently explained, and the use of the stakeholder knowledge,
such as instrument modellers and astrophysicists, is not suffi-
ciently considered. These are very reasonable comments, and a
busy Principal Investigator of a given experiment who reads this
paper may ask very similar questions: “Why should I care about
Bayesian statistics? What’s in it for me?” To answer these ques-
tions, we make the following points:

1. Faithful error propagation: BeyondPlanck implements
global end-to-end Bayesian CMB analysis framework. The

30 Interestingly, only about 6000 lines are directly associated with TOD
processing, while 14 000 lines are directly associated with component
separation; the rest is spent on general data infrastructure and tools.

single most important advantage of this is faithful propa-
gation of uncertainties from raw TOD to final cosmological
parameters. Instrumental and astrophysical systematic errors
are propagated to the final CMB likelihood on the same foot-
ing as any other nuisance parameter. While already impor-
tant for Planck, this issue will become absolutely critical for
future planned high-precision B-mode experiments, such as
LiteBIRD or PICO.

2. Breaking degeneracies and saving costs by exploiting syn-
ergistic observations: Combining data from complemen-
tary sources is essential to break fundamental degeneracies
within a given experiment. For instance, both Planck and
WMAP have degenerate polarization modes that they can-
not measure well on their own, due to peculiarities in their
respective scanning strategies—but there are no degenerate
modes in the combined data set. In general, however, the
usefulness of joint analysis with external data is often lim-
ited by systematic errors. The BeyondPlanck framework ad-
dresses this by providing a common platform for performing
joint low-level analysis of different experiments. Also not-
ing that the lion’s share of the analysis cost of any real-world
CMB experiment is associated with understanding degenera-
cies and systematic errors, we believe that a global approach
will lead to better and cheaper science for each experiment.

3. Fewer human errors: Tight analysis integration also leads to
many important practical advantages, including less room for
human errors or miscommunication; greater transparency of
both explicit and implicit priors; better optimization of com-
puting resources; and significantly reduced end-to-end wall-
clock time by eliminating intermediate human interaction.

4. “Faster, better and cheaper” through open-source science:
True inter-experiment global analysis will clearly not suc-
ceed without active contributions and support from a large
part of the general community. For this reason, we make our
source codes publicly available under a GPL open-source li-
cense to ensure long-term stability of the currently released
software. It also means that future improvements must be re-
leased under a similarly generous license, in recognition of
the fact that this project is intended to be collaborative, open,
and inclusive. The use of stakeholder knowledge is critically
important—and we hope that many stakeholders will indeed
be interested in actively contributing to the program, ulti-
mately leading to “faster, better, and cheaper” science for
everyone.

As discussed above, the BeyondPlanck program has primar-
ily focused on the Planck LFI data. The reasons for doing so
were three-fold. First and foremost, many BeyondPlanck col-
laborators have been working with the LFI data for one or two
decades, and the aggregated experience with this data set within
the collaboration implied a low start-up cost; results could be
produced quickly. Second, the full LFI data volume is fairly lim-
ited in size, comprising less than 1 TB after compression, which
is good for fast debugging and testing. Third, the LFI instru-
ment is based on HEMT radiometers, which generally both have
a relatively high noise contribution and low systematic errors per
sample. The combination of these three points made LFI a natu-
ral starting point for the work.

However, now that the computational framework already ex-
ists, it will require substantially less effort to generalize it to other
and complementary data sets. This work has already started for
LiteBIRD, SPIDER, and WMAP, but we welcome initiatives tar-
geting any other experiment as well. In this respect, it may be
useful to distinguish between four types of experiments, each
with their own set of algorithmic complexities.
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Fig. 46. Brightness temperature (top panel) and polarization amplitude (bottom panel) RMS as a function of frequency and astrophysical com-
ponent, and as derived from the BeyondPlanck and Planck sky models. Vertical bands indicate the frequency ranges of various experiment. All
components have been evaluated at a common angular resolution of 1◦ FWHM. The widths of each confidence region correspond to the spread
when evaluating the RMS over two different masks with sky fractions of 88 and 27 %, respectively. The cyan curve shows the level of CMB
fluctuations evaluated for the best-fit Planck ΛCDM spectrum. For polarization, the spinning dust component (orange curve) indicates an upper
limit as presented by Herman et al. (2020), not a detection. In the current BeyondPlanck analysis, only the three LFI channels are modelled in the
time-domain. A long-term future goal is to include all publicly available and relevant data (for instance WMAP and Planck HFI) into this model;
preferrably in the form of time-ordered data, but if this is not technically or financially possible, then at least in the form of pre-processed sky
maps. This work will be organized within the Cosmoglobe project.

First, many radio, microwave and sub-millimeter experi-
ments may be modelled within nearly the same sky and in-
strument model as BeyondPlanck. Examples include C-BASS,
QUIET and QUIJOTE, all of which simply provide additional
signal-to-noise and/or frequency coverage, as far as the underly-
ing algorithms are concerned. For these, analysis within the Be-

yondPlanck framework may turn out to amount simply to writ-
ing one or more TOD processing modules (for instance using the
current LFI module as a template) to take into account the var-
ious instrument-specific systematic effects of the experiment in
question. These experiments should be, relatively speaking, the
easiest to integrate into the current framework.
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Other experiments may build on the same sky model and
component separation procedures as BeyondPlanck, but require
a different mapmaking algorithm. One prominent example of
this is WMAP, which is differential in nature, and therefore re-
quires a different Conjugate Gradient mapmaking algorithm to
translate cleaned TOD into pixelized maps; this work is already
on-going (Herman et al. 2020). Experiments of this type should
also be relatively straighforward to integrate.

A third class of experiments are those that can use the same
type of sky models, but requires a significantly different in-
strumental model. The most prominent example of such are
TES bolometer-based instruments. These often have both higher
signal-to-noise ratios and systematic errors per sample, and
therefore require a richer set of systematics corrections. They
also typically have a significant multiplicative transfer function,
which means that unbiased maps cannot be produced simply by
introducing additive TOD corrections, as is done in the current
implementation. Instead, they will also require a dedicated Con-
jugate Gradient mapmaker to take into account the multiplicative
effects. Examples of potentially relevant experiments include for
instance BICEP2, CLASS, SPIDER, and LiteBIRD. Integrating
these will thus be more challenging than HEMT-based experi-
ments like LFI or WMAP, but it should certainly be feasible, and
the scientific rewards will be massive.

The fourth and final group of experiments are those that
either produce massive amounts of time-ordered data, or very
high-resolution data. Important examples are ACT , SPT, Simons
Observatory, and CMB-S4. These will all require a fundamental
redesign of the existing code base, simply to handle the massive
amounts of memory and network communication efficiently. Ad-
ditionally, experiments that observe only a fraction of the sky, but
at high angular resolution, cannot employ the spherical harmon-
ics basis that we currently use for component separation without
introducing large degeneracies and singular modes; all spatial
modes need to be constrained by at least one experiment for the
current implementation to work properly. Developing a new ver-
sion of the Bayesian framework that can handle higher levels of
parallelization, and also use more general basis sets, is thus an
important goal for future work.

Returning to the specific scientific results derived by the
BeyondPlanck project, we note that cosmological constraints
derived from LFI and WMAP alone will never be competitive
in terms of overall uncertainties as compared to an HFI-based
analysis. Nevertheless, many interesting results have been estab-
lished during the course of the project. Some of the most note-
worthy among these are the following:
1. We have, at least partially, succeeded in integrating the LFI

44 GHz channel into a statistically viable low-` CMB likeli-
hood. In the process, we have identified two important break-
downs of the current 44 GHz instrument model, namely a
limited range of scanning rings for which the gain model ap-
pears to break down, and a general short-coming of a simple
1/ f model to describe correlated noise in both the 30 and
44 GHz channels. Understanding the nature of these system-
atic errors, and mitigating them, is an important goal for the
immediate future (and may be possible even before the cur-
rent suite of papers goes into press!). For now, however, only
the Northern Galactic hemisphere may be used for cosmo-
logical low-` polarization analysis.

2. We have for the first time constructed a full, dense,
low-resolution CMB covariance matrix that accounts for
marginalization over a wide range of important systematic
time-ordered effects, including gain, bandpass, and fore-
ground corrections, in addition to the usual correlated noise.

This results in a low-` polarization likelihood that yields re-
sults consistent with the latest HFI analyses, and a best-fit
value of the reionization optical depth of τ = 0.060+0.015

−0.013.
The associated χ2 goodness-of-fit statistics are statistically
acceptable, although there might be weak hints of excess
power, possibly due to the break-down of the 1/ f noise
model.

3. We have produced a statistically consistent and joint estimate
of the CMB dipole using both Planck and WMAP data. The
best-fit dipole amplitude of 3359.5±1.9 µK is consistent with
all published results, including the latest HFI-based measure-
ments, and the quoted error estimate is derived strictly within
the well-defined Bayesian statistical framework.

4. We are for the first time able to fit a physically meaningful
spectral index of polarized synchrotron emission using both
WMAP and Planck. This is the direct result of performing a
truly joint analysis with LFI and WMAP as described above,
using information from one experiment to break degenera-
cies within the other.

Before concluding, we reemphasize that this is not the end.
While the BeyondPlanck project itself contractually ends on
November 30th, 2020, the work will in general continue with
various alternative funding sources, and, we hope, also with the
help of a continuously growing community of supporting collab-
orators and experiments. Figure 46 shows a compilation of the
current BeyondPlanck sky model and data sets in both temper-
ature (top panel) and polarization (bottom panel) together with
selected external products. The long-term goal of this work is
to populate this plot with all available experimental data, and
thereby gradually refine the sky model. The ERC-funded Cos-
moglobe project aims to coordinate these efforts, and will serve
as a stable platform for all parties interested in global Bayesian
CMB analysis. Cosmoglobe will also serve as the long-term
home for all BeyondPlanckmaterial and products, long after the
current BeyondPlanck web portal vanishes.

Finally, we end with an important caveat emptor, and em-
phasize that Commander is very much a work-in-progress—and
it will remain so for all foreseeable future. Essentially every sin-
gle step in the pipeline can and will be replaced by smarter and
more capable sampling algorithms; there are still known bugs
and memory leaks in the code (Galloway et al. 2020a); the user-
interface could most certainly be made more intuitive; and so on.
This is an unavoidable side-effect of being at the cutting edge of
algorithmic research, where new ideas are continuously being
explored, implemented and tested. However, at the same time,
it is also our belief that the current platform is now finally suf-
ficiently mature to allow external users and developers to use
it productively for their own analyses, and to extend it as they
see fit. In other words, we believe that now is the right time for
Bayesian end-to-end CMB analysis to go OpenSource, and we
invite all interested parties to participate in this work.
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Appendix A: Review of frequently used textbook
sampling algorithms

As described in Sect. 6.3, the BeyondPlanck pipeline is de-
signed in the form of a Gibbs sampler in which each parame-
ter is sampled conditionally on all other parameters. Each pa-
rameter must therefore be associated with a specific sampling
algorithm that samples from the correct distribution. In this ap-
pendix, we therefore review some of the most common sampling
techniques that are used in the BeyondPlanck framework, while
noting that all of this is textbook material; this is just provided for
reference purposes. In all cases below, we assume that samplers
for both the uniform distribution, U[0, 1], and the standard uni-
variate normal (Gaussian) distribution, N(0, 1), are already avail-
able through some numerical library; we use routines provided
in HEALPix.

Appendix A.1: Univariate and low-dimensional Gaussian
sampling

Perhaps the single most common distribution in any Bayesian
pipeline is the univariate Gaussian distribution N(µ, σ2) with
mean µ and standard deviation σ. A sample x from this distri-
bution can be trivially generated by

x = µ + ση, (A.1)

where η ∼ N(0, 1) is a standard normal variate. Note that 〈x〉 = µ,
because 〈η〉 = 0 and

〈
(x − µ)2

〉
= σ2 because

〈
η2

〉
= 1.

A sample from a multi-variate normal distribution N(µ̄,C)
with mean vector µ̄ and covariance matrix C may be produced in
a fully analogous manner,

x = µ̄ + C
1
2 η̄, (A.2)

where now η̄ is a vector of independent N(0, 1) variates, and C
1
2

denotes some matrix for which C = C
1
2 (C

1
2 )t. The two most typi-

cal examples are the Cholesky decomposition (C = LLt for posi-
tive definite matrices, where C

1
2 = L) and singular-value decom-

position (C = VΣVt for singular matrices, where C
1
2 = VΣ

1
2 Vt).

A notable advantage regarding the latter is that it is symmetric,
and therefore less bug-prone than the Cholesky factor; on the
other hand, it is slightly more computationally expensive.

Appendix A.2: High-dimensional Gaussian sampling

It is important to note that evaluating a “square root” of a matrix,
whether it is through Cholesky or eigen-vector decomposition,
is an O(n3) operation, where n is the dimension of the matrix.
As such, the direct approach is only computationally practical
for relatively low-dimensional distributions, and just with a few
thousand elements or less. For distributions with millions of cor-
related variables, the above prescription is entirely impractical.
In the following, we therefore describe a widely used method
to sample from high-dimensional distributions, effectively by in-
verting the covariance matrix iteratively by Conjugate Gradients.

Again, let x be a random Gaussian field of n elements with
an n × n covariance matrix S, i.e., x ∼ N(0,S). Further, to put
the notation into a familiar context, we assume we have some
observations d that can be modeled as

d = Tx + n, (A.3)

where n is a stochastic noise vector of size nd (which in general
is different from n) which is drawn from a Gaussian distribution

with zero mean and covariance N, and T is a matrix of size nd ×
n, which effectively translates x into the vector space of d. In
other words, we assume that the data may be modelled as a linear
combination of x plus a well-defined noise contribution.

Note that this assumption about d does not preclude the cases
where we have observations that can be written as d = Tx+n+b,
where b is known and independent of x - in this case, we are
free to redefine d: d′ → d − b, in which case our assumption in
Eq. (A.3) would be met for d′.

In general, T will not depend on x. In the context of the Gibbs
framework of this paper, however, T typically will depend on
other quantities that we do sample, but which we assume to be
known with respect to the current conditional of the Gibbs chain.

Our goal is then to draw a sample from P(x | d,T,S,N), the
posterior of x, given d and the other quantities, denoted P(x | d)
as a shorthand. Using Bayes’ theorem, we can write this as

P(x | d) ∝ P(d | x)P(x). (A.4)

Here P(x) is a prior for x, which we assume takes the form
N(0,S), whereas the likelihood term, P(d | x), is simply given
by a Gaussian distribution with covariance N and mean Tx. This
gives (neglecting the pre-factors of the exponentials, as they are
independent of x and end up as normalization constants)

−2 ln P(x | d) = xtS−1x + (d − Tx)tN−1(d − Tx)

= xtS−1x + dtN−1d + xtTtN−1Tx−
dtN−1Tx − xtTtN−1d

= xt(S−1 + TtN−1T)x − 2xtTtN−1d, (A.5)

where, in the last transition, we neglect also the terms that do not
include x. We also use the identity atCb = btCa, which is valid
for a symmetric matrix C, in order to gather the terms that are
linear in x.

This expression for P(x | d) can be written as a Gaussian
distribution by “completing the square”: We are looking for a
matrix F and a vector c such that

P(x | d) = exp
[
−1

2
(x − c)tF−1(x − c)

]

∝ exp
[
−1

2

(
xtF−1x − 2xtF−1c

)]
. (A.6)

Comparing terms in Eqs. (A.5) and (A.6), we find that the terms
that are quadratic in x enforce

F−1 = S−1 + TtN−1T. (A.7)

Inserting this into the terms that are linear in x, we find

c = (S−1 + TtN−1T)−1TtN−1d. (A.8)

Thus, the posterior of x is a Gaussian distribution with co-
variance given by Eq. (A.7) and mean (and mode) given by
Eq. (A.8).

In order to draw a sample, x̃, from this distribution, we can
in principle use the standard prescription for sampling from mul-
tivariate Gaussian distributions, as summarized in the previous
section. However, inverting the covariance matrix, S−1 +TtN−1T,
is once again a O(n3) operation. To circumvent this problem, we
instead consider the same equation in the form

(S−1 + TtN−1T)x = TtN−1d. (A.9)

Since the matrix on the left-hand side is both symmetric and
semi-positive definite, this equation can be solved iteratively by
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Conjugate Gradients; for a brilliant review of this algorithm, see
Shewchuk (1994). Additionally, to obtain the correct covariance
structure, one can simply add one random zero-mean covariance
term for each element in the covariance matrix to the right-hand
side of the equation,

(S−1 + TtN−1T)x = TtN−1d + TtN−1/2η1 + S−1/2η2. (A.10)

With this definition, 〈x〉 = c, and
〈
xxt〉 = (S−1 + TtN−1T)−1 = F,

as desired.
A fully analogous calculation may be done also with a non-

zero prior mean, m, in which case an additional term is intro-
duced on the right-hand side of Eq. (A.9),

(S−1 +TtN−1T)x = TtN−1d+S−1m+TtN−1/2η1 +S−1/2η2. (A.11)

The relative strength of the data and prior terms is thus effec-
tively determined by the overall signal-to-noise ratio of the data
as measured by S and N, and in the limit of vanishing signal-
to-noise (i.e., N−1 → 0), 〈x〉 = m, as desired. Note, also, that S
quantifies the covariance of the fluctuations around the mean, not
the co-variance of the entire field x itself. In the limit of S → 0
(or, equivalently, S−1 → ∞), we therefore also have 〈x〉 = m.
Thus, the magnitude of S represents a direct handle for adjust-
ing the strength of the prior.

Appendix A.3: Inversion sampling

The samplers discussed in the two previous sections only con-
cerns Gaussian distributions. In contrast, the so-called inversion
sampler is a completely general sampler that works for all uni-
variate distributions.

Let P(x) be a general probability distribution for some ran-
dom variable x. The inversion sampler is then defined as follows:

1. Compute P(x) over a grid in x, making sure to probe the tails
to sufficient accuracy.

2. Compute the cumulative probability distribution,
F(x) =

∫ x
−∞ P(x′) dx′.

3. Draw a random uniform variate, η ∼ U[0, 1].
4. Solve the nonlinear equation η = F(x) for x.

Clearly, this is a computationally very expensive algorithm,
noting that it actually requires the user to map the full distribu-
tion, P(x), in the first step. This typically requires a preliminary
bisection search to first identify a sufficiently wide region in x to
cover all significant parts of P. Then another 50–100 evaluations
are required to grid the (log-)probability distribution.

However, the facts that this sampler requires no manual tun-
ing, and that it produces independent samples, make it an attrac-
tive component in many Gibbs samplers; typically, the overall
computational cost of the entire Gibbs chain is dominated by
completely different operations.
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ABSTRACT

We present a Bayesian method for estimating instrumental noise parameters and propagating noise uncertainties within the global
BeyondPlanck Gibbs sampling framework, and apply this to Planck LFI time-ordered data. Following previous literature, we adopt
a simple 1/ f model for the noise power spectral density (PSD), and implement an optimal Wiener-filter (or constrained realization)
gap-filling procedure to account for masked data. We then use this procedure to both estimate the gapless correlated noise in the
time-domain, ncorr, and to sample the noise PSD spectral parameters, ξn = {σ0, fknee, α}. In contrast to previous Planck analyses, we
only assume piecewise stationary noise within each pointing period (PID), not throughout the full mission, but we adopt the LFI DPC
results as priors on α and fknee. On average, we find best-fit correlated noise parameters that are mostly consistent with previous results,
with a few notable exceptions. However, a detailed inspection of the time-dependent results reveals many important findings. First
and foremost, we find strong evidence for statistically significant temporal variations in all noise PSD parameters, many of which
are directly correlated with satellite housekeeping data. Second, while the simple 1/ f model appears to be an excellent fit for the
LFI 70 GHz channel, there is evidence for additional correlated noise not described by a 1/ f model in the 30 and 44 GHz channels,
including within the primary science frequency range of 0.1–1 Hz. In general, most 30 and 44 GHz channels exhibit excess noise at
the 2–3σ level in each one hour pointing period. For some periods of time, we also find evidence of strong common mode noise
fluctuations across the entire focal plane. Finally, we find a number of strong stripes when binning the 44 GHz correlated noise into a
sky map, and we hypothesize that these may be associated with deficiencies in the gain model for this channel. Overall, we conclude
that a simple 1/ f profile is not adequate to fully characterize the Planck LFI noise, even when fitted hour-by-hour, and a more general
model is required. These findings have important implications for large-scale CMB polarization reconstruction with the Planck LFI
data, and understanding and mitigating these issues should be a high-priority task for future studies.

Key words. ISM: general – Cosmology: observations, polarization, cosmic microwave background, diffuse radiation – Galaxy:
general
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1. Introduction

One of the main algorithmic achievements made within the field
of CMB analysis during the last few decades is accurate and
nearly lossless data compression. Starting from data sets that
typically comprise O(108 − 1011) time-ordered measurements,
we are now able to routinely produce sky maps that contain
O(103 − 107) pixels (e.g., Tegmark 1997; Ashdown et al. 2007).
From these, we may constrain the angular CMB power spectrum,
which spans O(103) multipoles (e.g., Gorski 1994; Hivon et al.
2002; Wandelt et al. 2004). Finally, from these we may derive
tight constraints on a small set of cosmological parameters (e.g.,
Bond et al. 2000; Lewis & Bridle 2002; Planck Collaboration
V 2020; Planck Collaboration VI 2020), which typically is the
ultimate goal of any CMB experiment.

Two fundamental assumptions underlying this radical com-
pression process are that the instrumental noise may be mod-
elled to a sufficient precision, and that the corresponding induced
uncertainties may be propagated faithfully to higher-order data
products. The starting point for this process is typically to as-
sume that the noise is Gaussian and random in time, and does
not correlate with the true sky signal at any given time. Under
the Gaussian hypothesis, the net noise contribution therefore de-
creases as 1/

√
Nobs, where Nobs is the number of observations of

the given pixel, while the signal contribution is independent of
Nobs.

However, it is not sufficient to assume that the noise is sim-
ply Gaussian and random. One must also assume something
about its statistical properties, both in terms of its correlation
structure in time and its stationarity period. Regarding the cor-
relation structure, the single most common assumption in the
CMB literature is that the temporal noise power spectrum den-
sity (PSD) can be modelled as a sum of a so-called 1/ f term and
a white noise term (e.g., Bennett et al. 2013; Planck Collabo-
ration II 2020; Planck Collaboration III 2020). The white noise
term arises from intrinsic detector and amplifiers’ thermal noise,
and is substantially reduced by cooling the instrument to cryo-
genic temperatures, typically to ∼20 K for coherent receivers (as
in the case of Planck LFI) and to 0.1–0.3 K for bolometric de-
tectors. Traditionally, the white noise of coherent radiometers is
expressed in terms of system noise temperature, Tsys, per unit
integration time (measured in K Hz−1/2), while for bolometers
it is expressed as noise equivalent power, NEP (W Hz−1/2). The
sources of the 1/ f noise component include intrinsic instabili-
ties in the detectors, amplifiers and readout electronics, as well
as environmental effects, and, notably, atmospheric fluctuations
for sub-orbital experiments. In the case of Planck LFI, the 1/ f
noise was dominated by gain and noise temperature fluctuations
and thermal instabilities (Planck Collaboration II 2020), and was

minimized by introducing the 4 K reference loads and gain mod-
ulation factor to optimize the receiver balance; see, e.g., Planck
Collaboration II (2014, 2016) and BeyondPlanck Collaboration
(2020) for further details.

Regarding stationarity, the two most common assumptions
are either that the statistical properties remain constant through-
out the entire observation period (e.g., Planck Collaboration II
2020), or that it may at least be modelled as piece-wise station-
ary within for instance one hour of observations (e.g., QUIET
Collaboration et al. 2011). Given such basic assumptions, the ef-
fect of the instrumental noise on higher-order data products has
then traditionally been assessed, and propagated, either through
the use of detailed end-to-end simulations (e.g., Planck Collabo-
ration XII 2016) or in the form of explicit noise covariance ma-
trices (e.g., Tegmark et al. 1997; Page et al. 2007; Planck Col-
laboration V 2020).

The importance of accurate noise modelling is intimately
tied to the overall signal-to-noise ratio of the science target in
question. For applications with very high signal-to-noise ratios,
detailed noise modelling is essentially irrelevant, since other
sources of systematic errors dominate the total error budget. One
prominent example of this is the CMB temperature power spec-
trum as measured by Planck on large angular scales (Planck
Collaboration IV 2020; Planck Collaboration V 2020). Its white
noise contribution can be misestimated by orders of magnitude
without making any difference in terms of cosmological parame-
ters, because the full error budget is vastly dominated by cosmic
variance.

The cases for which accurate noise modelling is critically
important are those with signal-to-noise ratios of order unity.
For these, noise misestimation may be the difference between
obtaining a tantalizing, but ultimately unsatisfying, 2σ result,
and claiming a ground-breaking and decisive 5σ discovery; or,
the worst-case scenario, erroneously reporting a baseless posi-
tive detection.

This regime is precisely where the CMB field is expected to
find itself in only a few years from now, as the next-generation
CMB experiments (e.g., CMB-S4, LiteBIRD, PICO, Simons Ob-
servatory, and many others; Abazajian et al. 2019; Suzuki et al.
2018; Sugai et al. 2020; Hanany et al. 2019; Ade et al. 2019) are
currently being planned, built and commissioned in the search
for primordial gravitational waves imprinted in B-mode polar-
ization. The predicted magnitude of this signal is expected to be
at most a few tens of nanokelvins on angular scales larger than
a degree, corresponding to a relative precision of O(10−8), and
extreme precision is required for a robust detection. It will there-
fore become critically important to take into account all sources
of systematic uncertainties, and propagate these into the final re-
sults.

The BeyondPlanck project (BeyondPlanck Collaboration
2020) is an initiative that aims to meet this challenge by im-
plementing the first global Bayesian CMB analysis pipeline that
supports faithful end-to-end error propagation, from raw time-
ordered data to final cosmological parameters. One fundamental
aspect of this approach is a fully parametric data model that is
fitted to the raw measurements through standard posterior sam-
pling techniques, simultaneously constraining both instrumental
and astrophysical parameters. Within this framework, the instru-
mental noise is just one among many different sources of uncer-
tainty, all of which are treated on the same statistical basis. The
sample-based approach introduced by BeyondPlanck therefore
represents a novel and third way of propagating noise uncer-
tainties (Keihänen et al. 2020; Suur-Uski et al. 2020), comple-
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mentary to the existing simulation and covariance matrix based
approaches used by traditional pipelines.

As a real-world demonstration of this novel framework, the
BeyondPlanck collaboration has chosen the Planck LFI mea-
surements (Planck Collaboration I 2020; Planck Collaboration II
2020) as its main scientific target (BeyondPlanck Collaboration
2020). These data represent an important and realistic testbed in
terms of overall data volume and complexity, and they also have
fairly well-understood properties after more than a decade of de-
tailed scrutiny by the Planck team (see Planck Collaboration II
2014, 2016, 2020, and references therein). However, as reported
in this paper, there are still a number of subtle unresolved and un-
explored issues relating even to this important and well-studied
data set that potentially may have an impact on higher-level sci-
ence results. Furthermore, as demonstrated by the current anal-
ysis, the detailed low-level Bayesian modelling approach is ide-
ally suited to identify, study and, eventually, mitigate these ef-
fects.

Thus, the present paper has two main goals. The first is
to describe the general algorithmic framework implemented in
the BeyondPlanck pipeline for modelling instrumental noise in
CMB experiments. The second goal is then to apply these meth-
ods to the Planck LFI observations, and characterize the perfor-
mance and systematic effects of the instrument as a function of
time and detector.

The rest of the paper is organized as follows. First, in Sect. 2
we briefly review the BeyondPlanck analysis framework and
data model, with a particular emphasis on noise modelling as-
pects. In Sect. 3, we present the individual sampling steps re-
quired for noise modelling, as well as some statistics that are
useful for efficient data monitoring. In Sect. 4 we discuss various
important degeneracies relevant for noise modelling, and how to
minimize the impact of modelling errors. Next, in Sect. 5 we give
a high-level overview of the various noise posterior distributions,
their correlation properties, as well as detailed specifications for
each detector. In Sect. 6 we discuss anomalies found in the data,
and interpret these in terms of the instrument and the thermal
environment. Finally, we summarize in Sect. 7.

2. The BeyondPlanck data model and framework

The BeyondPlanck project is an attempt to build up an end-to-
end data analysis pipeline for CMB experiments going all the
way from raw time-ordered data to cosmological parameters in
a consistent Bayesian framework. This allows us to character-
ize degeneracies between instrumental and astrophysical param-
eters in a statistically well-defined framework, from low-level
instrumental quantities such as gain (Gjerløw et al. 2020), band-
passes (Svalheim et al. 2020a), far sidelobes (Galloway et al.
2020b), and correlated noise via Galactic parameters such as the
synchrotron amplitude or spectral index (Andersen et al. 2020;
Svalheim et al. 2020b), to the angular CMB power spectrum and
cosmological parameters (Colombo et al. 2020; Paradiso et al.
2020).

The LFI dataset consists of three bands, at frequencies of
roughly 30, 44, and 70 GHz. These bands have two, three, and
six radiometer pairs each, respectively, which for historical rea-
sons are numbered from 18 to 28. The two radiometers in each
pair are labeled by M and S (Planck Collaboration II 2014). In
BeyondPlanck, the raw uncalibrated data, d, produced by each

of these radiometers is modelled in time-domain as follows,

d j,t = g j,tPtp, j

B
symm
pp′, j

∑

c

Mc j(βp′ ,∆
j
bp)ac

p′ + Basymm
pp′, j

(
sorb

j,t + sfsl
j,t

) +

+ncorr
j,t + nw

j,t.

(1)

Here the subscript t denotes a sample index in time domain; j de-
notes radiometer; p denotes the pixel number; c denotes signal
component; g denotes the gain; P denotes the pointing matrix;
Bsymm and Basymm denote the symmetric and asymmetric beam
matrices, respectively; a are the astrophysical signal amplitudes;
β are the corresponding spectral parameters; ∆bp are the band-
pass corrections; Mc j is the bandpass-dependent component mix-
ing matrix; sorb is the orbital dipole; sfsl are the far sidelobe cor-
rections; ncorr is the correlated noise; and nw is the white noise.
For more details on each of these parameters see BeyondPlanck
Collaboration (2020) and the other companion papers.

The goal of the Bayesian approach is now to sample from the
joint posterior distribution ,

P(g, ncorr, ξn,∆bp, a, β,C` | d). (2)

This is a large and complicated distribution, with many degen-
eracies. However, using Gibbs sampling we can divide the sam-
pling process into a set of managable steps. Gibbs sampling
is a simple algorithm in which samples from a joint multi-
dimensional distribution are generated by iterating through all
corresponding conditional distributions. Using this method, the
BeyondPlanck sampling scheme may be summarized as follows
(BeyondPlanck Collaboration 2020),

g ← P(g | d, ξn,∆bp, a, β,C`) (3)
ncorr ← P(ncorr | d, g, ξn,∆bp, a, β,C`) (4)
ξn ← P(ξn | d, g, ncorr, ∆bp, a, β,C`) (5)

∆bp ← P(∆bp | d, g, ncorr, ξn, a, β,C`) (6)
β ← P(β | d, g, ncorr, ξn,∆bp, C`) (7)
a ← P(a | d, g, ncorr, ξn,∆bp, β,C`) (8)

C` ← P(C` | d, g, ncorr, ξn,∆bp, a, β ). (9)

Here, ← indicates sampling from the distribution on the right-
hand side.

Note that for some of these steps we are not following the
strict Gibbs approach of conditioning on all but one variable.
Most notably for us, this is the case for the gain sampling step in
Eq. (3), where we do not condition on ncorr. In effect, we instead
sample the gain and correlated noise jointly by exploiting the
definition of a conditional distribution,

P(g, ncorr | d, · · · ) = P(g | d, · · · )P(ncorr | d, g, · · · ). (10)

This equation implies that a joint sample {g, ncorr} may be pro-
duced by first sampling the gain from the marginal distribution
with respect to ncorr, and then sampling ncorr from the usual con-
ditional distribution with respect to g. The advantage of this joint
sampling procedure is a much shorter Markov correlation length
as compared to standard Gibbs sampling, as discussed by Gjer-
løw et al. (2020).

A convenient property of Gibbs sampling is its modular na-
ture, as the various parameters are sampled independently within
each conditional distribution, but joint dependencies are still ex-
plored through the iterative scheme. In this paper, we are there-
fore only concerned with two of the above steps, namely Eqs. (4)
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and (5). For details on the complete Gibbs chain and the other
sampling steps, see BeyondPlanck Collaboration (2020) and the
companion papers.

The LFI time-ordered data are divided into roughly 45 000
pointing periods, denoted PIDs (pointing ID). Most PIDs have a
duration of 30–60 minutes. When sampling the correlated noise
and the corresponding PSD parameters, we assume that the noise
is stationary within each PID, but independent between PIDs.
The gain is also assumed to be constant within each PID; how-
ever, this is not fit independently for each PID, but rather sam-
pled smoothly on longer timescales (Gjerløw et al. 2020).

Following previous literature (Planck Collaboration II 2014;
Tauber et al. 2019; Planck Collaboration II 2020), we assume
that the LFI noise PSD can be described by a so-called 1/ f
model,

P( f ) = σ2
0

[
1 +

(
f

fknee

)α]
. (11)

Here f denotes a temporal frequency; σ0 quantifies the white
noise level of the time-ordered data1; α is the slope (typically
negative) of the correlated noise spectrum; and the knee fre-
quency, fknee, denotes the (temporal) frequency at which the
variance of the correlated noise is equal to the white noise
variance. The three PSD parameters are collectively denoted
ξn = {σ0, fknee, α}. Note, however, that there is nothing unique or
fundamental about the 1/ f noise model, and a real-world instru-
ment may exhibit a more complicated noise structure than this.
Determining whether Eq. (11) represents a statistically accept-
able model for the LFI noise is an important goal of the current
paper.

3. Methods

As outlined above, noise estimation in the Bayesian Beyond-
Planck framework amounts essentially to being able to sample
from two conditional distributions, namely P(ncorr | d, ω \ ncorr)
and P(ξn | d, ω \ ξn). The first presentation of Bayesian noise
estimation for time-ordered CMB data that was applicable to the
current problem was presented by Wehus et al. (2012), and the
main novel feature presented in the current paper is simply the
integration of these methods into the larger end-to-end analy-
sis framework outlined above. In addition, the current analysis
also employs important numerical improvements as introduced
by Keihänen et al. (2020), in which optimal mapmaking is re-
phrased into an efficient Bayesian language.

The starting point for both conditional distributions is the
following parametric data model,

d = gstot + ncorr + nwn, (12)

where d denotes the raw time ordered data (TOD) organized into
a column vector; g is the gain; stot describes the total sky sig-
nal, comprising both CMB and foregrounds, projected into time-
domain; ncorr represents the correlated noise in time domain; and
nwn is white noise. The two noise terms are both assumed to be
Gaussian distributed with covariance matrices Ncorr ≡ 〈ncorrnT

corr〉
and Nwn ≡ 〈nwnnT

wn〉, respectively. The complete noise PSD is
then given by P( f ) = Nwn + Ncorr = σ2

0 + σ2
0

(
f

fknee

)α
.

1 σ0 has different units if we are talking about the uncalibrated data,
σ0 [V], calibrated data, σ0 [K] ≡ σ0 [V] /g, or the white noise PSD,
σ2

0 [K2 Hz−1] ≡ (σ0 [K] )2 2
Rsamp

, where Rsamp is the sample rate (in Hz)
of the time ordered data. Where this distinction is important, we include
the units explicitly.

3.1. Sampling correlated noise, P(ncorr | d, ξn, stot, g)

Our first goal is to derive an appropriate sampling prescription
for the time-domain correlated noise conditional distribution,
P(ncorr | d, ξn, stot, g). To this end, we start by defining the signal-
subtracted data, d′, directly exploiting the fact that g and stot are
currently conditioned upon,2

d′ ≡ d − gstot = ncorr + nwn. (13)

Since both ncorr and nwn are assumed Gaussian with known co-
variance matrices, the appropriate sampling equation for ncorr

is also that of a multivariate Gaussian distribution, which is
standard textbook material; for a brief review, see Appendix A
in BeyondPlanck Collaboration (2020). In particular, the maxi-
mum likelihood (ML) solution for ncorr

t is given by the so-called
Wiener-filter equation,
(
N−1

corr + N−1
wn

)
ncorr = N−1

wnd′, (14)

while a random sample of ncorr may be found by solving the
following equation,
(
N−1

corr + N−1
wn

)
ncorr = N−1

wnd′ + N−1/2
wn η1 + N−1/2

corr η2, (15)

where η1 and η2 are two independent vectors of ran-
dom variates drawn from a standard Gaussian distribution,
η1,2 ∼ N(µ = 0, σ2 = 1).

3.1.1. Ideal data

Assuming for the moment that both Ncorr and Nwn are diagonal
in Fourier space, we note that Eq. (15) may be solved in a closed
form in Fourier space,

ncorr
f =

d′f + C
(
N1/2

wn ( f )w1 + Nwn( f )N−1/2
corr ( f )w2

)

1 + Nwn( f )/Ncorr( f )
, (16)

for any non-negative frequency f , where the correlated noise
TOD has been decomposed as ncorr

f =
∑

t ncorr
t e−2πi f t. For com-

pleteness, C is a constant factor that depends on the Fourier con-
vention of the numerical library of choice,3 and w1,2 are two in-
dependent random complex samples from a Gaussian distribu-
tion,

w1,2 ≡ ηR + iηI√
2

, (17)

where ηR,I ∼ N(µ = 0, σ2 = 1).
Figure 1 shows three independent realizations of ncorr that all

correspond to the same signal-subtracted Planck 30 GHz TOD
segment. Each correlated noise sample is essentially a Wiener-
filtered version of the original data, and traces as such the slow
variations in the data, with minor variations corresponding the
two random fluctuation terms in Eq. (16), as allowed by the
white noise level present in the data. We can also see that there
are gaps in the data, which we will need to deal with.

2 When a parameter appears on the right-hand side of a conditioning
bar in a probability distribution, it is assumed known to infinite preci-
sion. It is therefore for the moment a constant quantity, and not associ-
ated with any stochastic degrees of freedom or uncertainties.
3 We use the FFTW library, in which case C =

√nsamples, where nsamples
is the number of time samples.
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Fig. 1. Illustration of three constrained correlated noise realizations
(colored curves) drawn from P(ncorr | d, ξn, stot, g) for the Planck
30 GHz data (grey curve). Regions for which parts of the data have been
masked, either due to a processing mask or flagged data, are marked as
white gaps.

3.1.2. Handling masking through a conjugate gradient solver

When writing down an explicit solution of Eq. (15) in Eq. (16),
we assumed that both Ncorr and Nwn were diagonal in Fourier
space. However, as illustrated in Fig. 1, real observations have
gaps, either because of missing or flagged data. The most typical
example of missing data is the application of a processing mask
that removes all samples with too strong foreground contamina-
tion, either from Galactic diffuse sources or from extragalactic
point sources.

We can represent these gaps in our statistical model by set-
ting the white noise level for masked samples to infinity. This
ensures that Eqs. (14) and (15) are still well defined, albeit some-
what harder to solve. The new difficulty lies in the fact that while
Nwn is still diagonal in the time domain, it is no longer diagonal
in the Fourier domain. This problem may be addressed in two
ways. Specifically, we can either solve Eqs. (14) and (15) di-
rectly, using an iterative method such as the conjugate gradient
(CG) method (Wehus et al. 2012; Keihänen et al. 2020), or we
can fill any gap in d′ with a simpler interpolation scheme, for
instance a polynomial plus white noise, and then use Eq. (16) di-
rectly. Clearly, the former method is mathematically superior, as
it results in a statistically exact result. However, the CG method
is in general not guaranteed to converge due to numerical round-
off errors, and since the current algorithm is to be applied mil-
lions of times in a Monte Carlo environment, the second ap-
proach is useful as a fallback solution for the few cases for which
the exact CG approach fails.

As shown by Keihänen et al. (2020), Eq. (15) may be recast
into a compressed form using the Sherman-Morrison-Woodbury
formula, effectively separating the masked from the unmasked
degrees of freedom, and the latter may then be handled with the
direct formula in Eq. (16). This approach, in addition to having
a lower computational cost per CG iteration, also needs fewer
iterations to converge compared to the untransformed equation.

0 20 40 60 80 100 120
Time [s]

4
2

0
2

4
6

samples (CG)
linear gap filling

Fig. 2. Illustration of the limitation of the linear gap-filling procedure
for simulated data with extreme noise properties and large gaps. In gen-
eral, the linear gap-filling procedure tends to underestimate the fluctua-
tions in ncorr on long timescales.

We adopt this approach without modifications for the main Be-
yondPlanck pipeline.

Returning to Fig. 1, we note that the correlated noise sam-
ples have significant larger variance within the gaps than in the
data-dominated regime. As a result, one should expect to see a
slightly higher conditional χ2 inside the processing mask in a
full analysis than outside, since ncorr will necessarily trace the
real data less accurately in that range. This is in fact seen in the
main BeyondPlanck analysis, as reported by BeyondPlanck Col-
laboration (2020) and Suur-Uski et al. (2020). However, when
marginalizing over all allowed correlated noise realizations, the
final uncertainties will be statistically appropriate, due to the
fluctuation terms in Eq. (15).

3.1.3. Gap-filling by polynomial interpolation

As mentioned above, the CG algorithm does not always con-
verge, and for Monte Carlo applications that will run millions of
times without human supervision, it is useful to establish a robust
fallback solution. For this purpose, we adopt the basic approach
of simply interpolating between the values on each side of a gap.
Specifically, we compute the average of the non-masked points
among the 20 points on each side of the gap, and interpolate lin-
early between these two values. In addition, we add a white noise
component to d′, based on Nwn, to each masked sample.

An important limitation of the linear gap-filling procedure is
associated with estimation of the noise PSD parameters, ξn. As
described in Sect. 3.2, these parameters are estimated directly
from ncorr by Gibbs sampling. A statistically suboptimal sam-
ple of ncorr may therefore also bias ξn, which in turn may skew
ncorr even further. If the gaps are short, then this bias is usu-
ally negligible, but for large gaps it can be problematic. This
situation is illustrated in Fig. 2, which compares the linear gap
filling procedure with the exact CG approach. In general, the
linear method tends to underestimate the fluctuations on large
timescales within the gap.
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Because of the close relative alignment of the Planck scan-
ning strategy with the Galactic plane that takes place every six
months (Planck Collaboration I 2011), some pointing periods
happen to have larger gaps than others. For these, two long
masked regions occur every minute, when the telescope points
toward the Galactic plane. Any systematic bias introduced by
the gap-filling procedure itself will then not be randomly dis-
tributed in the TOD, but rather systematically contribute to the
same modes, with a specific period equal to the satellite spin
rate. For these, the statistical precision of the CG algorithm is
particularly important to avoid biased noise parameters.

Overall, the linear gap filling procedure should only be used
when strictly necessary. In practice, we use it only when the CG
solver fails to converge within 30 iterations, which happens in
less than 0.03 % of all cases.

Another simpler and more accurate gap filling procedure is
suggested by Keihänen et al. (2020): We may simply fill the gaps
in d′ with the previous sample of the correlated noise, and then
add white noise fluctuations. This corresponds to Gibbs sam-
pling over the white noise as a stochasic parameter, which is sta-
tistically fully valid. However, this approach requires us to store
the correlated noise TOD in memory between consecutive Gibbs
iterations. Since memory use is already at its limit (Galloway et
al. 2020a), this method is not used for the main BeyondPlanck
analysis. However, for systems with more available RAM, this
method is certainly preferable over simple linear interpolation.

3.2. Sampling noise PSD parameters, P(ξn | ncorr)

The second noise-related conditional distribution in the Beyond-
Planck Gibbs chain is P(ξn | ncorr), which describes the noise
PSD. As discussed in Sect. 2, in this paper we model this func-
tion in terms of a 1/ f spectrum as defined by Eq. (11). We em-
phasize, however, that any functional form for P( f ) may be fitted
using the methods described below. Figure 3 illustrates the PSD
of the different components, and our task is now to sample each
of the noise PSD parameters ξn = {σ0, fknee, α}, corresponding
to the dashed blue line in this figure.

3.2.1. Sampling the white noise level, σ0

We start with the white noise level, which by far is the most im-
portant noise PSD parameter in the system. We first note from
Eq. (11) that if α is close to zero, the correlated and white noise
terms are perfectly degenerate. Even for α ≈ −1 there is a signif-
icant degeneracy between the two components for a finite-length
TOD.

Of course, for other parameters in the full Gibbs chain, only
the combined P( f ) function is relevant, and not each component
separately. At the same time, and as described by BeyondPlanck
Collaboration (2020), marginalization over the two terms within
other sampling steps happens using two fundamentally different
methods: While white noise marginalization is performed ana-
lytically through a diagonal covariance matrix, marginalization
over correlated noise is done by Monte Carlo sampling of ncorr.
It is therefore algorithmically advantageous to make sure that
the white noise term accounts for as much as possible of the
full noise variance, as this will lead to an overall shorter Markov
chain correlation length.

For this reason, we employ a commonly used trick in radio
astronomy for estimating the white noise level, and define this to
be

σ2
0 ≡

Var(ri+1 − ri)
2

, (18)
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Fig. 3. Comparison of temporal PSDs for different components. The
blue curve shows the PSD of the signal-subtracted data; the orange
curve shows the fitted correlated noise PSD; and the gray line shows
the PSD of the residual TOD. The dashed curves correspond to the best
fit 1/ f -noise model, with (blue) and without (orange) white noise.

where r ≡ d′ − ncorr. By differencing consecutive samples,
any residual temporal correlations are effectively eliminated, and
will therefore not bias the determination of σ0.

This method is equivalent to fixing the white noise level to
the highest frequencies in Fig. 3. Formally speaking, this means
that σ0 should not be considered a free parameter within the
Gibbs chain, but rather a derived quantity fixed by the data, d,
the gain, g, the signal model, stot, and the correlated noise, ncorr.
However, this distinction does not carry any particular statistical
significance with respect to other parameters, and we will in the
following therefore discuss σ0 on the same footing as any of the
other noise parameters.

3.2.2. Sampling correlated noise parameters, fknee and α

With σ2
0 fixed by Eq. (18), the other noise parameters, fknee and

α, are sampled from their exact conditional distributions. Since
we assume that also the correlated noise component is Gaussian
distributed, the appropriate functional form is that of a multivari-
ate Gaussian,

P( fknee, α | σ0, ncorr) ∝ e−
1
2 (ncorr)T N−1

corr ncorr

√|Ncorr|
P( fknee, α), (19)

where Ncorr = Ncorr( fknee, α), and P( fknee, α) is an optional prior.
This may be efficiently evaluated in Fourier space as

− ln P =

fmax∑

f = fmin


|ncorr

f |2
Ncorr( f )

+ ln Ncorr( f )

 − ln P( fknee, α), (20)

where Ncorr( f ) = σ2
0

(
f

fknee

)α
.

To explore this joint distribution, we iteratively Gibbs sam-
ple over fknee and α, using an inversion sampler for each of the
two conditional distributions, P( fknee | α, σ0, ncorr) and P(α |
fknee, σ0, ncorr); see Appendix A in BeyondPlanck Collaboration
(2020) for details regarding the inversion sampler.
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Fig. 4. Distribution of noise parameters for PID 10101 of radiometer
24S, one of the 44 GHz channels, for fixed stot and g. Dashed red lines
correspond to results obtained without an active prior, while the solid
line corresponds to results after including the active priors on fknee and
α from Eqs. (21) and (22). Black crosses indicate the best fit values
derived by the DPC pipeline for this radiometer.

If we naively apply our statistical model, all frequencies
should in principle be included in the sum in Eq. (20). At the
same time, we note that frequencies well above fknee ideally
should carry very little statistical weight, since the correlated
noise variance then by definition is smaller than the white noise
variance. This means that the sampled ncorr is almost completely
determined by the prior (i.e., the previous values of σ0, fknee, α),
at these high frequencies. The sum in Eq. (20), on the other hand,
is completely dominated by those high frequencies. The result of
this is an excessively long Markov chain correlation length when
including all frequencies in Eq. (20); the inferred values of α and
fknee will always be extremely close to the previous values.

One way to avoid these long correlation lengths would be not
to condition on ncorr at all, but rather use the likelihood for d′ to
sample α and fknee (and sample ncorr afterwards). This is equiva-
lent to sampling ξn from the marginal distribution with respect to
ncorr, and fully analogous to how the degeneracy between g and
ncorr is broken through joint sampling. However, for real world
data, residual signal or systematics may leak into d′, in particular
at frequencies around and above the satellite scanning frequency.
While some of these systematics may also leak into ncorr, in gen-
eral ncorr is cleaner, especially at frequencies below fknee, where
ncorr is dominated by the random sampling terms.

A useful solution that both makes the correlated noise pa-
rameters robust against modelling errors and results in a short
Markov chain correlation length is therefore to condition on ncorr

above some pre-specified frequency. In practice, we therefore
choose to only include frequencies below fmax = 2 f DPC

knee when
evaluating Eq. (20), where f DPC

knee is the knee frequency deter-
mined by the Planck LFI Data Processing Center (DPC, Planck
Collaboration II 2020). That is, we only use the part of ncorr

where we are able to measure the 1/ f slope with an appreciable
signal to noise ratio. For the lower frequency cutoff in Eq. (20),
we adopt fmin > 0, and only exclude the overall mean per PID.

3.2.3. Priors on α and f knee

As described by Planck Collaboration II (2020), the official
Planck LFI DPC analyses assume the noise PSD to be station-
ary throughout the mission. Here we allow these parameters to
vary from PID to PID, in order to accommodate possible changes
in the thermal environment of the satellite. However, since the
duration of a single PID is typically one hour or shorter, there
is only a limited number of large-scale frequencies available to
estimate the correlated noise parameters, and this may in some
cases lead to significant degeneracies between α and fknee. In
particular, if fknee is low (which of course is the ideal case), α
is essentially unconstrained. To avoid pathological cases, it is
therefore useful to impose priors on each of these parameters,
under the assumption that the system should be relatively stable
as a function of time.

Specifically, we adopt a log-normal prior for fknee,

− ln P( fknee) =
1
2


log10 fknee − log10 f DPC

knee

σ fknee


2

+ ln fknee, (21)

where f DPC
knee is the DPC result for a given radiometer (Planck Col-

laboration II 2020) and σ fknee = 0.1. For α, we adopt a Gaussian
prior of the form

− ln P(α) =
1
2

(
α − αDPC

σα

)2

, (22)

where αDPC again is the DPC result for the given radiometer and
σα = 0.2. Figure 4 shows a comparison of the posterior distribu-
tions with (solid lines) and without (dashed lines) active priors
for a typical example.

The prior widths have been chosen to be sufficiently loose
that the overall impact of the priors is moderate for most cases.
The priors are in practice only used to exclude pathological
cases. Technically speaking, we also impose absolute upper and
lower limits for each parameter, as this is needed for gridding the
conditional distribution within the inversion sampler. However,
the limits are chosen to be sufficiently wide so that they have no
significant impact on final results.

4. Mitigation of modelling errors and degeneracies

When applying the methods described above to real-world data
as part of a larger Gibbs chain, several other degeneracies and
artifacts may emerge beyond those discussed above. In this sec-
tion, we discuss some of the main challenges for the current
setup, and we also describe solutions to break or mitigate these
issues.

4.1. Signal modelling errors and processing masks

First, we note that the correlated noise component is by nature
entirely instrument specific, and depends directly on the ther-
mal stability of the detectors. It is therefore difficult to impose
any strong spatial priors on ncorr, beyond the loose PSD priors
described above, and these provide only very weak constraints
in map-domain. The correlated noise is from first principles the
least known parameter in the entire model, and its allowed pa-
rameter space is able to describe a wide range of different TOD
combinations, without inducing a significant likelihood penalty
relative to the 1/ f model. As a result, a wide range of systematic
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errors or model mismatches may be described quite accurately
by modifying ncorr, rather than ending up in the residual,

r ≡ d − ncorr − gstot. (23)

Colloquially speaking, the correlated noise component may
in many respects be considered the “trash can” of CMB time-
ordered analysis, capturing anything that does not fit elsewhere
in the model. This is both a strength and a weakness. On the one
hand, the flexibility of ncorr protects against modelling errors for
other (and far more important) parameters in the model, includ-
ing the CMB parameters. On the other hand, in many cases it is
preferable that modelling errors show up as χ2 excesses, so that
they can be identified and mitigated, rather than leaking into the
correlated noise. To check for different types of modelling errors,
it is therefore extremely useful to inspect both χ2’s and binned
sky maps of rν and ncorr for artifacts. For an explicit example
of this, see the discussion of data selection for BeyondPlanck in
Suur-Uski et al. (2020), where these statistics are used as effi-
cient tools to identify bad observations.

In general, the most problematic regions of the sky are those
with bright foregrounds, either in the form of diffuse Galactic
emission or strong compact sources. If residuals from such fore-
grounds are present in the signal-subtracted data, d′, while es-
timating the correlated noise TOD, the correlated noise Wiener
filter in Eq. (15) will attempt to fit these in ncorr, and this typi-
cally results in stripes along the scanning path with a correlation
length defined by the ratio between fknee and the scanning fre-
quency.

To suppress such artifacts, we impose a processing mask for
each frequency, as discussed in Sect. 3.1. In the current analysis,
we define these masks as follows:

1. We bin the time-domain residual in Eq. (23) into an IQU
pixelized sky map for each frequency (as defined by Eq. (77)
in BeyondPlanck Collaboration 2020), and smooth this map
to an angular resolution of 10◦ FWHM.

2. We take the absolute value of the smoothed map, and then
smooth again with a 30′ beam to account for pixels which
the raw residual map changes sign.

3. We then compute the maximum absolute value for each pixel
over each of the three Stokes parameters. The resulting maps
are shown in Fig. 5 for each of the three Planck LFI frequen-
cies.

4. These maps are then thresholded at values well above the
noise level, and these tresholded maps form the main input
to the processing masks.

5. To remove particularly bright compact objects that may not
be picked up by the smooth residual maps described above,
we additionally remove all pixels with high free-free and/or
AME levels, as estimated in an earlier analysis.

The final processing masks are shown in Fig. 6, and allow 73,
81, and 77 % of the sky to be included while fitting correlated
noise at 30, 44, and 70 GHz, respectively.

4.2. Degeneracies with the gain

The brightest component of the entire BeyondPlanck signal
model is the Solar CMB dipole, which has an amplitude of 3 mK.
This component plays a critical role in terms of gain estimation
(Gjerløw et al. 2020), and serves as the main tool to determine
relative calibration differences between detectors. Both the gain
and CMB dipole parameters are of course intrinsically unknown
quantities, and must be fitted jointly. Any error in the deter-
mination of these will therefore necessarily result in a nonzero

30 GHz

44 GHz

70 GHz

0 3µK

Fig. 5. Residual maps, rν, for each of the three Planck LFI frequencies,
smoothed to a common angular resolution of 10◦ FWHM.

Fig. 6. Processing masks used for correlated noise sampling. Different
shades of gray indicate different frequency masks. The allowed 30 GHz
sky fraction (light) is fsky = 0.73; the 44 GHz sky fraction (intermediate)
is fsky = 0.81; and the 70 GHz sky fraction (dark) is fsky = 0.77.
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Fig. 7. Correlated noise intensity sample for the 30 GHz band when
fitting a model that assumes constant gains throughout the mission. Map
has been smoothed to an angular resolution of 2.5◦ FWHM.
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Fig. 8. Three subsequent samples (colored curves) of the correlated
noise PSD for 25M, one of the 44 GHz radiometers. The black line
shows the PSD of the signal-subtracted data.

residual, in the same manner as Galactic foregrounds described
above, and this may therefore potentially also bias ncorr. Unlike
the Galactic residuals, however, it is not possible to mask the
CMB dipole, since it covers the full sky. The correlated noise
component is therefore particularly susceptible to errors in ei-
ther the gain or CMB dipole parameters, and residual large-scale
dipole features in the binned ncorr map is a classic indication
of calibration errors. To illustrate the effect of an incorrect gain
model, Fig. 7 shows a 30 GHz correlated noise sample when as-
suming that the gain is constant throughout the entire Planck
mission.

The gain also has a direct connection with the white noise
level, σ0. This manifests itself in different ways, depending on
the choice of units adopted for σ0. When expressed in units of
volts, the white noise level is simply given by the radiometer
equation,

σ0[V] ∝ gphysTsys, (24)

Table 1. Distribution of posterior mean noise parameters for each ra-
diometer. Error bars represent variation over time of the posterior mean
values, and not the width of the posterior distribution for any given PID.

Detector α fknee [mHz] σ0 [mK]
27M −0.84+0.05

−0.06 210+22
−20 1.562+0.012

−0.012

27S −0.84+0.06
−0.06 127+16

−12 1.708+0.010
−0.013

30
G

H
z

28M −0.88+0.08
−0.11 137+22

−16 1.793+0.011
−0.013

28S −1.00+0.11
−0.17 43+6

−5 1.638+0.008
−0.012

24M −1.03+0.10
−0.11 27+3

−3 3.155+0.012
−0.013

24S −0.78+0.07
−0.07 92+29

−12 2.704+0.013
−0.018

25M −1.02+0.11
−0.12 19.5+2.7

−2.4 2.832+0.010
−0.015

44
G

H
z

25S −1.03+0.08
−0.08 45+5

−5 2.687+0.019
−0.015

26M −0.97+0.07
−0.08 63+8

−5 3.264+0.018
−0.012

26S −0.86+0.09
−0.09 50+8

−5 2.848+0.013
−0.012

18M −1.08+0.15
−0.19 14.7+3.2

−2.3 4.57+0.03
−0.03

18S −1.18+0.16
−0.14 18.2+3.3

−2.7 4.18+0.02
−0.03

19M −1.20+0.15
−0.16 11.6+2.4

−1.8 5.193+0.019
−0.036

19S −1.10+0.13
−0.14 13.7+2.5

−2.0 4.962+0.018
−0.036

20M −1.10+0.16
−0.23 7.6+2.3

−1.4 5.258+0.024
−0.028

20S −1.25+0.13
−0.20 5.5+1.8

−1.0 5.571+0.014
−0.051

70
G

H
z

21M −1.35+0.15
−0.12 38+8

−6 4.033+0.015
−0.016

21S −1.15+0.15
−0.18 13.0+2.7

−1.9 5.018+0.027
−0.025

22M −1.33+0.14
−0.23 9.5+3.4

−2.1 4.381+0.018
−0.019

22S −1.25+0.21
−0.27 14+8

−5 4.746+0.024
−0.024

23M −1.04+0.10
−0.12 30+4

−3 4.493+0.024
−0.021

23S −1.19+0.08
−0.08 60+6

−6 4.815+0.019
−0.024

where gphys is the actual physical gain of the radiometer, and Tsys
is the system temperature (BeyondPlanck Collaboration 2020).
In calibrated units of KCMB, however, the white noise level is

σ0[K] ∝ gphys

gmodel
Tsys, (25)

where gmodel is the gain estimate in our model. When consid-
ering the evolution of the noise parameters as a function of
time, we then note that σ0[V] will correlate with the physical
gain, which depends strongly on the thermal environment at any
given time. On the other hand, if our gain model is correct, i.e.,
gmodel ≈ gphys, these fluctuations will cancel in temperature units,
and σ0[K] should instead correlate with the system temperature,
Tsys. The system temperature also depends on the physical tem-
perature, Tphys, as the amplifiers’ noise and waveguide losses
increase with temperature. These were measured in pre-flight
tests to be at a level dTsys/dTphys ≈ 0.2–0.5 K/K, depending on
the radiometer (Terenzi et al. 2009). In conclusion, if we ob-
serve a sudden change in σ0[K] that is not present in σ0[V], this
might indicate a problem in the gain model. We also expect that
changes in σ0[K] reflect genuine variations of the white noise
level, mainly driven by changes in the 20 K stage. In the follow-
ing, we will plot σ0 as a function of time in both units of volts
and kelvins, and use these to disentangle gain and system tem-
perature variations.
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Fig. 9. Maps of a single Gibbs sample of the correlated noise added over all radiometers in the 30 GHz (left), 44 GHz (middle) and 70 GHz (right)
bands. From top to bottom, rows show Stokes I, Q and U, respectively. Maps have been smoothed to a common angular resolution of 5◦ FWHM.

5. Results

We are now ready to present the main results obtained by apply-
ing the methods described above to the Planck LFI data within
the BeyondPlanck Gibbs sampling framework (BeyondPlanck
Collaboration 2020), as summarized in terms of the posterior
distributions for each of the noise parameters. In total, six inde-
pendent Gibbs chains were produced in the main BeyondPlanck
analysis, each chain including 200 samples, for a total computa-
tional cost of about 230 000 CPU-hours or three weeks continu-
ous wall-time (BeyondPlanck Collaboration 2020; Galloway et
al. 2020a).

5.1. Posterior distributions and Gibbs chains

First, we recall that at every step in the Gibbs chain, we sam-
ple the correlated noise parameters for each pointing period and
each radiometer, both the time-domain realization ncorr and the
PSD parameters ξn. To visually illustrate the resulting variations
from sample to sample in terms of PSDs, Fig. 8 shows three
subsequent spectrum samples for a single pointing period for the
25M radiometer. We see that the correlated noise follows the data
closely at low frequencies, while at high frequencies the PSD is
effectively extrapolated based on the current model. The scat-
ter between the three colored curves shows the typical level of
variations allowed by the combination of white noise and degen-
eracies with other parameters in the model.

Figure 9 shows the pixel-space correlated noise correspond-
ing to a single Gibbs sample, obtained after binning ncorr for
all radiometers and all PIDs into an IQU map. Columns show

different frequency maps (30, 44, and 70 GHz), and rows show
different Stokes parameters (I, Q, and U). Overall, we see that
the morphology of each map is dominated by stripes along the
Planck scanning strategy, as expected for correlated 1/ f noise,
and we do not see any obvious signatures of either residual
foregrounds in the Galactic plane, nor CMB dipole leakage at
high latitudes. This suggests that the combination of the data
model and processing masks described above performs reason-
ably well. We also note that the peak-to-peak values of the total
correlated noise maps are O(1 µK), which is of the same order
of magnitude as the predicted signal from cosmic reionization
(Planck Collaboration IV 2020). Thus, correlated noise estima-
tion plays a critical role for large-scale polarization reconstruc-
tion, while it is negligible for CMB temperature analysis.

While the 30 and 70 GHz maps visually appear to be
isotropic and random, we do see signatures of excess striping
in the 44 GHz channel, in particular in Stokes Q. Several >1 µK
stripes extend from the Eastern parts of the map, near the Galac-
tic plane, through the Southern hemisphere. We have not yet
been able to identify the origin of these stripes, but note that
possible explanations include gain model errors for selected PID
ranges, for instance in the form of one or more unmodelled am-
plifier gain jumps possibly triggered by thermal or electrical in-
stabilities, or a sub-optimal processing mask. As reported by Be-
yondPlanck Collaboration (2020); Colombo et al. (2020); Par-
adiso et al. (2020), these artifacts lead to significant map-based
χ2 excesses in the final CMB polarization analysis, and thereby
strongly limit our ability to constrain the optical depth of reion-
ization with the current model. Our findings are consistent with
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Fig. 10. Gibbs samples of noise parameters for two different PIDs for
detectors 27M, 24S and 20M of the 30, 44 and 70 GHz bands respec-
tively.

the difficulty experienced in treating the 44 GHz data for polar-
ization analysis in all the official LFI DPC releases. However,
the BeyondPlanck processing allows us to visually identify the
structure of the excess correlated noise in the maps. Understand-
ing the origin of these stripes and mitigating their impact rep-
resents a top priority for the next version of the BeyondPlanck
processing.

For both ncorr and ξn, the main result of the BeyondPlanck
pipeline are the full ensembles of Gibbs samples. These are too
large to visualize in their entirety here, and are instead provided
digitally, including animations of the correlated noise maps as a
function of iteration.4 In the following, we will therefore focus
on ξn, and as an example Fig. 10 displays one of the full Gibbs
chains for two different PIDs for one radiometer from each LFI
frequency band. We see that the Gibbs chains appear both stable

4 http://beyondplanck.science

and well-behaved. Some chains have longer Markov chain auto-
correlation lengths than others, as expected from their different
levels of degeneracies both within the noise model itself, and be-
tween the noise and the signal or gain. Overall, the Markov chain
properties appear sound in all cases, with relatively short burn-
in and correlation lengths. We conservatively remove the first 50
samples from each chain to account for burn-in.

The main results are shown in Figs. 11–16, which summarize
the noise PSD parameters for each LFI radiometer in terms of
distributions of posterior means (top section; histograms made
from the posterior means for all PIDs) and as average quanti-
ties as a function of PID (bottom section). The former are useful
to obtain a quick overview of the mean behavior of a given ra-
diometer, while the latter is useful to study its evolution in time.
Blue, red, and green correspond to 30, 44, and 70 GHz radiome-
ters, respectively. Mean ξn values are tabulated in Table 1, while
the average noise properties of all radiometers in each band are
plotted as a function of time in Fig. 17.

Regarding mean values, we see that the 30 GHz radiometers
generally have fairly high knee frequencies, fknee ∼ 100 mHz,
and shallow power law slopes, α ∼ −0.85. The 70 GHz channels,
on the other hand, have lower knee frequencies, fknee ∼ 20 mHz,
and steeper slopes, α ∼ −1.2. The 44 GHz channels generally
fall between these two extremes.

The dashed lines in Figs. 11–16 show the Planck LFI DPC
values for each parameter (Planck Collaboration II 2020), which
are assumed to be constant throughout the mission. Generally
speaking, these agree well with the results presented here. The
main exception is the 30 GHz white noise level,σ0, for which we
on average find 2 % lower values. It is difficult to precisely pin-
point the origin of these differences, but we do note that Galactic
foregrounds are particularly bright at 30 GHz. One possible hy-
pothesis is therefore that these are fitted slightly better in the
joint and iterative BeyondPlanck approach, as compared to the
linear pipeline DPC approach.

5.2. Time variability and goodness-of-fit

Perhaps the single most important and visually immediate con-
clusion to be drawn from these plots is the fact that the noise
properties of the LFI instrument vary significantly in time. This
is evident in all three frequency channels and all radiometers.
Furthermore, by comparing the time evolution between differ-
ent radiometers, we observe many common features, both be-
tween frequencies and, in particular, among radiometers within
the same frequency. Many of these may be associated with spe-
cific and known changes in the thermal environment of the satel-
lite, and can be traced using thermometer housekeeping data;
this will be a main topic for the next section.

The bottom panels in Figs. 11–16 show a χ2 per PID of the
following form,

χ2 ≡
∑nsamp

i=1

(
ri
σ0

)2 − nsamp
√

2nsamp
(26)

where nsamp is the number of samples, and ri is the residual for
sample i as defined by Eq. (23). Thus, this quantity measures the
normalized mean-subtracted χ2 for each PID, which should, for
ideal data and nsamp � 1, be distributed according to a standard
Gaussian distribution.

Starting with the 70 GHz channel, which generally is the
most well-behaved, we see that the χ2 fluctuates around zero
for most channels, with a standard deviation of roughly unity.
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Fig. 11. Noise characterization of the Planck LFI 30 GHz radiometers; 27M (top left), 27S (top right); 28M (bottom left), and 28S (bottom right).
For each radiometer, the top figure shows distributions of noise parameters PSD, ξn = {σ0, fknee, α}, averaged over all Gibbs samples for the full
mission. The bottom figure shows the time evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution in
reduced normalized χ2 in units of σ. Black dashed curves and crosses show corresponding values as derived by, and used in, the official Planck
LFI DPC pipeline.
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Fig. 12. Noise characterization of the Planck LFI 44 GHz radiometers; 24M (top left), 24S (top right); 25M (bottom left), and 25S (bottom right).
For each radiometer, the top figure shows distributions of noise parameters PSD, ξn = {σ0, fknee, α}, averaged over all Gibbs samples for the full
mission. The bottom figure shows the time evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution in
reduced normalized χ2 in units of σ. Black dashed curves and crosses show corresponding values as derived by, and used in, the official Planck
LFI DPC pipeline.
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Fig. 13. Noise characterization of the Planck LFI 44 GHz radiometers; 26M (left), 26S (right). For each radiometer, the top figure shows distribu-
tions of noise parameters PSD, ξn = {σ0, fknee, α}, averaged over all Gibbs samples for the full mission. The bottom figure shows the time evolution
of the posterior mean of the noise parameters, and the bottom panel shows the evolution in reduced normalized χ2 in units of σ. Black dashed
curves and crosses show corresponding values as derived by, and used in, the official Planck LFI DPC pipeline.

The most notable feature is a short gap in the 18M and 18S ra-
diometer distributions. As discussed by Suur-Uski et al. (2020),
the χ2 for these two radiometers shows an excess in this range,
and these data are therefore omitted from the main analysis.

This is also the case for the 26M and 26S 44 GHz radiome-
ters, to a higher extent. This particular case is considered explic-
itly in the next section, where it is shown that the 26S radiometer
appears unstable for the second half of the mission, with signif-
icantly higher χ2 and fknee values. These data are therefore also
removed from the main BeyondPlanck analysis (Suur-Uski et al.
2020).

In general, the 30 and 44 GHz channels appear less stable
than the 70 GHz channels in terms of overall χ2. These are nei-
ther centered on zero, nor stationary in time, but rather tend to
show statistically significant excesses of 2–3σ per PID, with in-
ternal temporal variations at the 1σ level. These excesses will
be discussed in Sect. 6, but we note for now that they must be
expected to significantly impact higher-level analyses, in partic-
ular large-scale CMB polarization analysis, as they strongly sug-
gest that a simple 1/ f noise model is incomplete. As such, the
predicted noise bias will necessarily be underestimated. Conse-
quently, establishing a more complete noise model for the 30 and
44 GHz channels is a top priority for a next-generation Beyond-
Planck analysis.

As a typical illustration of such χ2 failures, Fig. 18 shows
the PSD for a range of 18 PIDs for the 28M 30 GHz radiometer.
Here the 1/ f model is not able to fit the real correlated noise to
sufficient statistical accuracy at intermediate temporal frequen-

cies, between 0.1 and 10 Hz, but rather shows a generally flatter
trend. Similar behavior is seen in most 30 and 44 GHz radiome-
ters, while the 70 GHz radiometers are better behaved, probably
simply because of their lower fknee values.

Turning our attention to the ξn parameters, we see even larger
variability than in the χ2. First, we note a period of significant
instability in most channels between PIDs 8–20 000, but most
strikingly in the 70 GHz α estimates. This feature will be dis-
cussed in more detail in Sect. 6, where it is explicitly shown to
be correlated with thermal variations. We note, however, that the
1/ f noise model seems flexible enough to adjust to these partic-
ular changes, as no associated excess χ2 is observed in the same
range.

Next, when considering the white noise level, σ0, given in
units of volts or kelvins, we see the pattern anticipated in the
previous section. The uncalibrated white noise in units of volts
follows the slow drifts of the gain, which typically manifests it-
self in slow annual gain oscillations. In contrast, the calibrated
noise in units of KCMB is far more stable. An important excep-
tion to this is 25S, which exhibits large variations in KCMB, in
particular around PIDs 25–30 000. This might suggest a prob-
lem with the gain model for this particular radiometer, and this
could possibly also be associated with the strong stripes in ncorr

noted above.
Other significant features include sharp jumps in fknee, for

instance as seen in 24S. These typically coincide with external
events, for instance during cooler maintainence (see Sect. 6 and
Gjerløw et al. 2020).
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Fig. 14. Noise characterization of the Planck LFI 70 GHz radiometers; 18M (top left), 18S (top right); 19M (bottom left), and 19S (bottom right).
For each radiometer, the top figure shows distributions of noise parameters PSD, ξn = {σ0, fknee, α}, averaged over all Gibbs samples for the full
mission. The bottom figure shows the time evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution in
reduced normalized χ2 in units of σ. Black dashed curves and crosses show corresponding values as derived by, and used in, the official Planck
LFI DPC pipeline.
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Fig. 15. Noise characterization of the Planck LFI 70 GHz radiometers; 20M (top left), 20S (top right); 21M (bottom left), and 21S (bottom right).
For each radiometer, the top figure shows distributions of noise parameters PSD, ξn = {σ0, fknee, α}, averaged over all Gibbs samples for the full
mission. The bottom figure shows the time evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution in
reduced normalized χ2 in units of σ. Black dashed curves and crosses show corresponding values as derived by, and used in, the official Planck
LFI DPC pipeline.
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Fig. 16. Noise characterization of the Planck LFI 70 GHz radiometers; 22M (top left), 22S (top right); 23M (bottom left), and 23S (bottom right).
For each radiometer, the top figure shows distributions of noise parameters PSD, ξn = {σ0, fknee, α}, averaged over all Gibbs samples for the full
mission. The bottom figure shows the time evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution in
reduced normalized χ2 in units of σ. Black dashed curves and crosses show corresponding values as derived by, and used in, the official Planck
LFI DPC pipeline.
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Fig. 18. PSD of signal-subtracted data from radiometer 28M, averaged
over 18 PIDs (at intervals of 100 PIDs) in the range 30 000–32 000
(black). The dashed lines show the mean BeyondPlanck (dashed blue)
and LFI DPC (dashed gray) noise models for the same data. An excess
is seen at intermediate frequencies between 0.1 and 10 Hz.

6. Systematic effects

Previous LFI analyses have assumed a stationary noise model
with three fixed parameters (σ0 [K], fknee, and α) for each of the
22 radiometers. In contrast, each of these parameters is in Be-
yondPlanck estimated for every PID, increasing the total num-
ber of PSD noise parameters from 66 to about 3 million. This in-
crease of information allows us to capture the effects of evolution
in the radiometer responses and local thermal environment, as
well as subtle interactions between them. In this section, we will
use this new information to characterize potential residual sys-
tematic effects in the data, and, as far as possible, associate these
with independent housekeeping data or known satellite events.
An overview of the measurements from eight temperature sen-
sors that are particularly important for LFI is provided in Fig. 19.
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Fig. 19. High-level comparison of measurements from eight tempera-
ture sensors that are particularly relevant for LFI. Sensors TS5L, TS6L,
TS1R, TS2R are installed in the 20 K focal plane frame, while LVHX1
is the liquid-vapour heat exchanger providing 18K to HFI; sensors
L1_4K, L2_4K and Cernox_4K are on the HFI 4 K stage supporting the
LFI 4 K reference loads. The step-like increases in the 20 K stage are
visible both before and after the sorption cooler switchover event (near
PID 11 000). For details on the locations of the various temperature sen-
sors, see Fig. 21 of Bersanelli et al. (2010) and Fig. 18 of Lamarre et al.
(2010). For visualization purposes, the mean value has been subtracted
from each data set, and some have been scaled by one or two orders of
magnitude, as indicated in the legend.

For details on the locations of the various temperature sensors,
see Fig. 21 of Bersanelli et al. (2010) and Fig. 18 of Lamarre
et al. (2010).

6.1. Temperature changes in the 20 K stage

A key element for the LFI thermal environment was the Planck
sorption cooler system (SCS), which provided the 20 K stage to
the LFI front-end and the 18K pre-cooling stage to HFI. The
SCS included a nominal and a redundant unit (Planck Collab-
oration II 2011). In August 2010 (around PID 11 000), a heat
switch of the nominal cooler unit reached its end-of-life, and the
SCS was therefore switched over to the redundant cooler.5 This
“switchover” event implied a major redistribution of the temper-
atures in the LFI focal plane, with variations at ∼1 K level, for
two main reasons. First, the efficiency of the newly active redun-
dant cooler led to an overall decrease of the absolute tempera-

5 This operation took place at PID 10911, corresponding to Operation
Day (OD) 454.
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Fig. 20. Average correlated noise properties of the 70 GHz radiometers
(bottom two panels) compared with 4 K and 20 K temperature sensor
read-outs (top four panels) for the full mission.

ture. Second, because of the different location of the interface
between the focal plane structure and the cold-end for the redun-
dant cooler, a change of temperature gradients appeared across
the focal plane.

Since the SCS dissipated significant power, changes in its
configuration produced measurable thermal effects in the entire
Planck spacecraft, and most directly in the 20 K stage. In the
period preceding the switchover, starting around PID 8000, a se-
ries of power input adjustments were commanded to reduce ther-
mal fluctuations in the 20 K stage while optimizing the sorption
cooler lifetime, which generated a number of step-like increases
in the LFI focal plane temperature. These are measured by all
the LFI temperature sensors located in the 20 K focal plane unit,
as shown in Fig. 19.

Following the switchover, in the period with PIDs 11–
15 000, a significant increase of 20 K temperature fluctuations
was observed. These excess fluctuations were understood as due
to residual liquid hydrogen sloshing in the inactive cooler and
affecting the cold-end temperature. The issue was resolved by
heating the unit and letting the residual hydrogen evaporate. Af-
terwards, to optimize the performance and lifetime of the oper-
ating cooler, several periodic, step-like adjustments were again
introduced in the operational parameters of the cooler. This re-
sulted in a semi-gradual, monotonic increase of the LFI focal
plane temperature from switchover to end of mission of ∼1.3 K.

In Fig. 19 the sudden discontinuity at switchover (PID
11 000) is visible for all temperature sensors, and the stepwise
up-ward trend driven by SCS operational adjustments can be
seen in all 20 K sensors. These temperature variations directly
affected the LFI noise performance for most radiometers, as ob-
served in the lower panels of Figs. 11–16. To see this, it may be
useful to concentrate on a well-behaved case (e.g., radiometers
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Fig. 21. Same as Fig. 20, but zoomed in on PIDs 7000–11 000.

22 or 23, Fig. 16) and then recognize the same features in other
radiometers.

The effect of the SCS switchover shows up as a sharp dis-
continuity also in the white noise levels near PID 11 000. The
sudden decrease of the focal plane temperature of about 1 K im-
plies a change in radiometer gain, as well as a genuine reduction
in radiometer noise. This leads to a decrease not only of σ0 [V]
but also of σ0 [K]. Furthermore, due to the change in cold-end
interface, the temperature drop at switchover was larger on the
top-right-hand side of the focal plane (as defined by the view
in Fig. 6 of BeyondPlanck Collaboration 2020) than in other
regions. In particuclar, we see in Figs. 11–16 that the drop in
σ0 [K] is particularly pronounced for radiometers 21, 22, 23, 27
(both M and S), which are all located in that portion of the focal
plane.

Using again Fig. 16 as a guide, we can also recognize the
effect of the incremental increase of focal plane temperature due
to sorption cooler adjustments, both before and after switchover.
The increasing physical temperature of the focal plane drives a
corresponding increase of σ0 [K], which is visible for most of
the radiometers in Figs. 11–16. However, we cannot exclude that
part of the observed slow increase of white noise is due to aging
effects degrading the intrinsic noise performance of the front-end
amplifiers. To disentangle these two components would require
a more detailed thermal and radiometric model.

6.2. Temperature fluctuations and 1/ f parameters

In Fig. 20 (top four panels) we report the value and rms of repre-
sentative temperature sensor of the 4 K and 20 K stages (L1_4K
and TS5L). During the thermal instability period that followed
the switchover, the noise properties of essentially all the 70 GHz
radiometers markedly changed their 1/ f noise behavior (with
the only notable exception of 21M). This is highlighted in the
lower two panels of Fig. 20, which show the averaged values
of α and fknee for all the 70 GHz radiometers. The correlation
between 1/ f noise parameters and temperature fluctuations is
excellent, with higher fluctuations producing an increase in fknee
and a steepening (i.e., more negative) slope α. The latter is a
typical behavior of thermally driven instabilities, which tend to
transfer more power to low frequencies, and thus steepen the
1/ f tail. This behavior shows up also in the individual 70 GHz
radiometers (Figs. 14–16).
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Figure 21 is a zoom into the pre-switchover period (PID
7000–11 000) of the upper plot. Here we see the effect of some
of the step-wise adjustments in the sorption cooler operation,
whose main effect is to temporarily reduce the temperature fluc-
tuations. The observed tight correlation with the steepening of
the slope is striking.

For a specific example of how noise property variations
modify the noise PSD, Fig. 22 shows the average PSD for 10
PIDs between 3000–4000 (black) compared to 10 PIDs between
12 000–13 000 (grey) for the 70 GHz 20M radiometer. We see
large increases in power at low frequencies, and a shift in the
knee frequency.

These correlations appear more weakly in the 30 and 44 GHz
radiometers (see Fig. 17). In particular, there is no correlation
with the knee frequency. This behavior could be partly explained
by the fact that, by mechanical design, the front-end modules
(FEMs) of the 30 and 44 GHz are less thermally coupled to the
frame and cooler front-end; or it could be indicative of an addi-
tional source of non-thermal correlated noise that dominates the
slope and knee frequency of these channels. This could be the
case also for the 70 GHz radiometer 21M, for which the lack of
correlation cannot be explained in terms of poor thermal cou-
pling.

These hypotheses are supported by Fig. 18, which compared
the PSD of the 30 GHz 28M signal-subtracted data, averaged
over 18 PIDs in a typical stable period, with both the Beyond-
Planck and LFI DPC noise models for the same period. None of
the models are able to properly describe the observed data. The
deviation indicates that there is an excess power in the frequency
range between 0.1 and 5 Hz.

6.3. Seasonal effects and slow drifts

The changing Sun-satellite distance during the yearly Planck or-
bit around the Sun produced a seasonal modulation of the so-
lar power absorbed by the spacecraft. The corresponding effect
on the LFI thermal environment was negligible for the actively-
controlled front end, as demonstrated by the lack of yearly mod-
ulation in the 20 K temperature sensors (see Fig. 19 and upper

panel of Fig. 20). However, the 300 K environment and the pas-
sive cooling elements (V-groove radiators) were affected by a
∼1 % seasonal modulation (see Fig. 6 of Planck Collaboration I
2014).

Since the radiometer back-end modules (BEMs) provided a
major contribution to the radiometer gain g, and these are located
in the 300 K service module (SVM), the thermal susceptibility
of the BEMs coupled with local thermal changes is expected to
induce radiometer gain variations. On the other hand, since the
BEMs are downstream relative to the >30 dB amplification from
the FEMs, their contribution to the noise temperature, Tsys, is
negligible. Therefore we may expect the LFI uncalibrated signal
(and the uncalibrated noise σ0 [V]) to show a seasonal modula-
tion due to thermally-driven BEM gain variations, with essen-
tially no degeneracy with Tsys.

Figures 11–16 show that several LFI radiometers ex-
hibit such modulation in the uncalibrated white noise, σ0 [V],
throughout the four year survey. For all of these, the modula-
tion disappears inσ0 [K], indicating that our gain model properly
captures this effect. We also observe that the sign of the modu-
lation is opposite for the 70 GHz and the 30–44 GHz radiome-
ters. Furthermore, all radiometers that exhibit seasonal modula-
tion also show a systematic slow drift of σ0 [V] throughout the
mission with the same sign as the initial modulation (which cor-
responds to increasing physical temperatures in the SVM). Since
the spacecraft housekeeping recorded a slow overall increase in
temperature throughout the mission (∆T ≈ 5 K), the observed
drift of σ0 [V] is qualitatively consistent with the hypothesis of
BEM susceptibility as the origin of the effect.

For each radiometer, the amplitude of the modulation de-
pends on the details of the thermal susceptibility of the LFI
elements down-stream relative to the third V-groove, includ-
ing waveguide losses, BEM components, particularly low-noise
amplifiers (LNAs), detector diodes, data acquisition electronics
(gain and offset), etc. The dominant element is the BEM, whose
thermal susceptibility was measured in the LFI pre-launch test
campaign for the 30 and 44 GHz radiometers (Villa et al. 2010).
The change in BEM output voltage, ∆Vout, as a function of the
variation in BEM physical temperature, ∆TBEM, can be written
as

∆Vout ∝ φBEM∆TBEM

(
Tsys + Tin

)
, (27)

where Tin is the input signal temperature (either sky or refer-
ence load) and φBEM is a transfer function quantifying the BEM
thermal susceptibility. The measured values of φBEM (Villa et al.
2010) were slightly negative for all the 30 and 44 GHz radiome-
ters, ranging from −0.01 to −0.02, and this is consistent with
both the observed overall drift and the seasonal effect. No such
ground tests could be done for the 70 GHz instrument. However,
in-flight tests during commissioning (Cuttaia & Terenzi 2011)
revealed that the sign of φBEM for the 70 GHz radiometers was
opposite to those of 30 and 44 GHz, which is consistent with our
interpretation.

6.4. Inter-radiometer correlations

So far, we have mostly considered noise properties as measured
separately for each radiometer. However, given the significant
sensitivity to external environment parameters discussed above,
it is also interesting to quantify correlations between detectors.
As a first measure of this, we plot in Fig. 23 the cross-correlation
of ncorr averaged over all pairs of radiometers within each fre-
quency band as a function of PID. As expected from the previous
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Fig. 24. Signal subtracted data from radiometers from all three bands
for PID 12 301. The data is averaged over a 20 second timescale and
scaled to fit in the same plot.

discussion, we find a large common correlation for the 70 GHz
channel that peaks in the post-switchover period. Similar coher-
ent patterns are seen in the 30 and 44 GHz channels, but at some-
what lower levels.

As a specific example of such common mode noise, Fig. 24
shows the signal subtracted timestreams for one radiometer from
each band for PID 12 301, which is representative for the pe-
riod of maximum correlation. Here we see that the same large
scale fluctuations are present in all three bands. In Fig. 25 we
show the average cross correlation between time streams of all
70 GHz radiometers for the same PID. We compare the aver-
age correlation between the correlated noise components, ncorr,
with the correlation between the residuals, d′ − ncorr. We see that
even though the correlations between the ncorr components are
large, the residuals are highly uncorrelated. This is an indication
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Fig. 25. Average cross correlation between timestreams of all 70 GHz
radiometers for PID 12301. Orange points show average correlation be-
tween the correlated noise components, while the grey points shows
average correlation between the residuals. We see that even though the
correlation between the correlated noise components is large, the resid-
uals are completely uncorrelated, indicating that this correlated signal
does not leak into the rest of the pipeline, but is all incorporated into the
correlated noise.

that the common mode signal is efficiently described by ncorr,
and it therefore does not leak into the rest of the BeyondPlanck
pipeline.

Figure 26 shows a global correlation matrix of all the noise
parameters for all the LFI radiometers throughout the mission. A
number of interesting features can be recognized in this diagram:

1. We note that all 70 GHz radiometers exhibit an internally co-
herent trend, where fknee and α behave essentially as a com-
mon mode for the entire 70 GHz array, with the only excep-
tion being 21M. This coherent behavior reflects the common
thermal origin of the 1/ f noise of the 70 GHz radiometers,
as discussed in Sect. 6.2. We also see that σ0 [K] shows a
similar common mode behavior for the 70 GHz radiometers
and, to a lesser extent, it correlates also with the σ0 [K] of
the 44 and 30 GHz radiometers. This is indicative of the fact
that changes in the LFI radiometers’ sensitivity are driven by
the global LFI thermal environment, most importantly by the
slow increase in temperature at the 20 K temperature stage.

2. For 30 and 44 GHz we do not observe the same common
mode behavior for fknee and α as for the 70 GHz. Rather, we
see positive correlation (red pixels in Fig. 26) between fknee
and α within each single radiometer. This suggests that (a)
the dominant source of 1/ f noise is independent for each 30
and 44 GHz radiometers, and (b) for a given radiometer, as
fknee increases, the slope becomes flatter (i.e., α becomes less
negative). This behavior further supports the hypothesis that
the dominant source of correlated noise in the 30 and 44 GHz
is not of thermal origin.

3. Finally, we observe an anti-correlation between fknee and σ0
(as a common mode at 70 GHz and individually for 30 and
44 GHz). Slightly larger values of fknee for lower σ0 can be
understood in terms of the correlated fluctuations becoming
subdominant near fknee when the white noise increases dur-
ing the mission time.
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Fig. 26. Average over all Gibbs samples of the noise parameters, ξn = {σ0, fknee, α}, for each PID. We then find the correlation in time between
these averages for the different bands and detectors. The results here are for the calibrated white noise level, σ0 [K].

6.5. Correlation with housekeeping data

Next, we correlate the LFI noise parameters with housekeeping
data, and in particular with temperature sensor that are relevant
for LFI. This is summarized in Fig. 27, showing the correlation
coefficients with respect to several sensors that monitor the 20 K
stage (TS5L, TS2R, TS6L, TS1R, LVHX1) and the 4 K stage
(L1_4K, L2_4K, Cernox_4K). Some significant patterns appear
that can be interpreted in terms of the general instrument behav-
ior:

1. For the 70 GHz radiometers, both the rms and the peak-to-
peak of the 20 K temperature sensor fluctuations correlate
with fknee and anti-correlate with α (i.e., they prefer a steeper
power-law slope). This is particularly evident for the TS5L
and TS6R sensors, which are located nearby the 70 GHz ar-
ray. This indicates that the 1/ f noise of the 70 GHz radiome-
ters is dominated by residual thermal fluctuations in the 20 K
stage. A similar trend can be seen also at 30 GHz in the two
horn-coupled receivers 28M and 28S. However, the 44 GHz

channels show no sign of this behavior. Combined with the
lack of correlation with the 4 K sensors, this is consistent
with the hypothesis that the 1/ f noise of the 44 GHz (and
partly the 30 GHz) radiometers is dominated by non-thermal
fluctuations.

2. Weaker correlations are seen between the various noise pa-
rameters and the 4 K temperature sensors. The lack of signif-
icant correlation of the rms and peak-to-peak of 4 K sensors
with any of the 1/ f parameters, fknee and α, is an indication
that the 4 K reference loads do not contribute significantly to
the radiometers correlated noise.

3. A strong anti-correlation (correlation) of the gain g with
the absolute value of the 20 K sensors for the 70 GHz (30–
44 GHz) radiometers is observed. Based on the discussion
in Sect. 6.3, this pattern can be understood by noting that
the 20 K stage temperature systematically increased through-
out the mission, driven by sorption cooler adjustments. The
same monotonic trend was also on-going in the 300 K stage,
which controls the BEM amplifiers. This is thus a spurious
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Fig. 27. Correlation in time, for the complete mission, between noise
parameters and the temperature sensors. For each sensor we show the
results (from left to right) from the mean temperature, the temperature
rms and the peak-to-peak temperature of each sensor within each point-
ing period. The results here are for the calibrated white noise level,
σ0 [K]. We have imposed a mild highpass-filter in time of the differ-
ent datasets in order to avoid random correlations on the very longest
timescales.

correlation, for which the increasing back-end temperature
actually leads to lower (higher) values of g for the 70 GHz
(30–44 GHz) radiometers.

6.6. Issues with individual radiometers

In addition to the overall behavior and correlations that are com-
mon to many or most radiometers, there are issues that only seem
to affect individual radiometers. Here we point out two special
cases, namely 26S and 21M.
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First, as discussed above, we often find excess noise power
in the 30 and 44 GHz channels in the signal-subtracted data at
intermediate frequencies, ∼0.1–5 Hz. This excess cannot be de-
scribed with a 1/ f noise model, and leads to high χ2 values. The
most extreme example of this is the 44 GHz 26S radiometer, as
shown in Fig. 28. This figure is identical to the bottom panel
Fig. 13, except that masked PIDs are now not omitted. Here we
see a jump in fknee around PID 20 800, after which the χ2 is con-
sistently high with a mean of about 5σ. This is elucidated in
Fig. 29, which compares the noise PSD averaged over 10 PIDs
in the 12 000–13 000 range with a corresponding average evalu-
ated in the 32 000–33 000 range. We see an excess in power at
intermediate frequencies that is not possible to fit with the 1/ f
noise model. Considering that the Planck spin period is 60 s,
temporal frequencies of 0.1–1 Hz correspond to angular scales
of 6–60◦ on the sky. This unmodelled noise therefore represents
a significant contaminant with respect to large-scale CMB polar-
ization reconstruction, which is one of the main scientific targets
for the current BeyondPlanck analysis. We therefore choose to
exclude all data from 26S after after PID 20 800 (Suur-Uski et
al. 2020). To avoid excessive temperature-to-polarization leak-
age, we also exclude 26M data for the same region. In total, this
represents 17 % of the data full 44 GHz data volume, and the Be-
yondPlanck 44 GHz frequency map therefore has a higher white
noise level than the corresponding official Planck products; but
with a more complete noise description.

The sudden degradation of 26S at around PID 21 000 has no
simultaneous counterpart in any other LFI radiometer, includ-
ing the coupled 26M which exhibits a normal behaviour (see
Fig. 28). This suggests a singular event within the 26S itself,
or in the bias circuits serving its RF components. Since we do
not observe significant changes in the radiometer output signal
level and no anomalies are seen in the LNAs currents, it is un-
likely that the problem resides in the HEMT amplifiers. A more
plausible cause would be a degradation of the phase switch per-
formance, possibly due to ageing, instability of the input cur-
rents, or loss of internal tuning balance (Mennella et al. 2010;
Cuttaia et al. 2009). Indeed sub-optimal operation of the phase
switches would not significantly change the signal output level,
but is known to introduce excess 1/ f noise, as verified during
the ground testing and in-flight commissioning phase.

The second anomalous case is the 70 GHz 21M radiome-
ter. While the noise properties of the other 70 GHz channels
are internally significantly correlated, this particular channel
does not show similar correlations. The reason for the differ-
ent behavior of 21M is still not fully understood. However, as
shown for PID 2201 in Fig. 30, this particular radiometer ex-
hibits a typical “popcorn” or “random telegraph” noise, i.e., a
white noise jumping between two different offset states. Dur-
ing ground testing this behavior was noted in the undifferenced
data of LFI21 and LFI23 and ascribed to bimodal instability
in the detector diodes. The effect was then recognized in-flight
and this prevented proper correction of ADC nonlinearity effect
(Planck Collaboration III 2014). However, because the timescale
of diode jumps between states (typically a few minutes) is longer
than the differencing between sky and reference load (0.25 ms,
corresponding to the phase switch frequency of 4 kHz), the effect
is efficiently removed in the differenced data. In the current anal-
ysis, we actually observe popcorn behavior in the differenced
data, suggesting either an increased instability of the affected
diode in 21M (possibly due to aging), or a different origin of
the effect. Popcorn noise has been also found in some HFI chan-
nels (Planck HFI Core Team 2011). We have not seen any sign
of popcorn noise in any of the other LFI channels besides 21M,
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Fig. 30. Signal subtracted data from radiometer 21M for PID 2201. The
data are averaged over a one second timescale.

but we have also not performed a deep dedicated search for it.
However, the fact that the χ2 distribution for channel 21M ap-
pears acceptable suggests that this effect, even if surviving in the
differenced data stream, happens at a sufficiently long timescale
that ncorr is able to absorb it, preventing it from leaking into other
astrophysical components.

7. Conclusions

This paper has two main goals. First, it aims to describe Bayesian
noise estimation within a global CMB analysis framework (Be-
yondPlanck Collaboration 2020). As such, this work represents
the first real-world application and demonstration of methods
originally introduced by Wehus et al. (2012), while at the same
time taking advantage of important numerical improvements in-
troduced by Keihänen et al. (2020). The second main goal is to
apply this method to the Planck LFI measurements to character-
ize their noise properties at a more fine-grained level than done
previously (Planck Collaboration II 2020).

An important question regarding the original work of We-
hus et al. (2012) was whether the method would be practical
for real-world observations, or whether it was too computation-
ally expensive to be useful in a real pipeline. We are now in a
position to conclusively answer this question: As summarized
by (BeyondPlanck Collaboration 2020; Galloway et al. 2020a),
the noise estimation step in the BeyondPlanck pipeline accounts
for 38 % of the total runtime, or 48 CPU-hours per sample for
the 70 GHz channel, most of which is spent Fourier transform-
ing the raw time-ordered data. As such, exact Bayesian noise
estimation certainly is an expensive pipeline component—but
it is by no means not prohibitive. Additionally, it is important
to note that Bayesian correlated noise sampling replaces both
traditional mapmaking and noise covariance matrix evaluations
(Keihänen et al. 2020; Suur-Uski et al. 2020), which are two
of the most expensive procedures in a traditional CMB analysis
pipeline (Planck Collaboration I 2020), and, in fact, this leads to
lower computational requirements overall. As an example, we
note that a full BeyondPlanck Gibbs sample (which includes
both low- and high-level processing with all LFI channels) costs
163 CPU-hours, while producing a single component of the full
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Planck Full Focal Plane (FFP) simulation of the 70 GHz channel
costs 9360 CPU-hours. Likewise, we also note that the current
BeyondPlanck analysis was run on an in-house cluster with 416
cores and 9 TB of RAM, while the Planck simulations were pro-
duced on a large national computing center with O(105) cores
(Planck Collaboration I 2020; Planck Collaboration Int. LVII
2020). We believe that the computational speed of this method
alone should make it an attractive option for other CMB experi-
ments, not to mention the possibilities of performing joint exact
Bayesian analysis.

As far as LFI-specific results are concerned, the current re-
sults point toward generally complex noise behaviour with sub-
tle contributions from origins that have not yet been fully ac-
counted for. Most notably, the noise properties of each LFI ra-
diometer vary significantly in time, and depend sensitively on the
thermal environment of the instrument. For the 70 GHz channel,
for which the correlated noise amplitude (and knee frequency)
is generally low, most of these variations may be described in
terms of a simple 1/ f model with time-dependent parameters.
With very few exceptions, the time-domain χ2 of this channel is
statistically acceptable throughout the mission.

However, for the 30 and 44 GHz channels a more complex
picture has emerged. For these, the χ2 is generally high by 2–3σ
per PID, and with significant variations as a function of time.
Multiple observations suggest a yet undetected source of non-
thermal correlated noise in the 44 GHz (and at a lower level in the
30 GHz radiometers) that is responsible for mild, and possibly
time-varying, deviations from the simple 1/ f model. Inspection
of individual PIDs indicates the presence of excess power be-
tween 0.1 and 5 Hz, well above the Planck scanning frequency
of 0.017 Hz, thereby affecting the angular scales that are relevant
for large-scale CMB polarization science. Our analysis suggests
that these effects are not due to temperature fluctuations, but
rather associated with other effects, such as electrical instabil-
ities or other environmental issues. We have carried out a pre-
liminary investigation by correlating the LFI radiometers whose
LNA bias were supplied by common electronics groups,6 but we
have found no compelling evidence of correlations or anoma-
lies. Many other electrical effects must be studied by exploiting
all the available housekeeping information. Most of the spikes in
the rms of the temperature sensors (see, e.g., Fig. 20) are readily
understood as due to commanded cooler adjustments, but a few
of them deserve further investigation. The influence of transient
perturbations should also be systematically investigated, includ-
ing the possible effect of cosmic rays and solar flares.

A complete and quantitative analysis will require a detailed
thermal model of the full instrument that includes the back-
end unit and interfaces with the V-grooves, coupled with ther-
mal susceptibility parameters of the relevant components (LNAs,
OMTs, waveguides, BEMs, detector diodes, data acquisition
electronics). Such a detailed study is beyond the scope of this
work, but this is now made possible through the present study,
and it will become a primary target for future BeyondPlanck LFI
analysis.

A separate issue appears to be associated with the gain
model, which for some radiometers exhibits larger temporal vari-
ations than might be expected from housekeeping data. This
might be connected with a number of strong stripes in the
44 GHz correlated noise map, which affects large fractions of
the sky at the 1 µK level, which are highly relevant for large-

6 There were four such power groups in LFI, feeding the radiometers
associated with the following horn sets: (19-20-28), (18-26), (21-22-24-
27), (23-25).

scale CMB polarization reconstruction. Of course, problems
with the 44 GHz channel have been reported by the Planck team
ever since the first data release (Planck Collaboration VI 2014;
Tauber et al. 2019; Planck Collaboration II 2020), and it was
therefore omitted from the main Planck CMB polarization anal-
ysis (Planck Collaboration IV 2020). The current method and re-
sults do not yet resolve these problems, but hopefully they shine
new light on the issue that might help resolve it through fur-
ther modelling. In particular, understanding and mitigating the
χ2 excesses at 30 and 44 GHz (possibly by generalizing the 1/ f
noise model) and the stripes at 44 GHz (possibly through more
robust gain modelling) should be a top priority for future Be-
yondPlanck analyses.

In general, the detailed BeyondPlanck modelling approach
allows us to highlight a number of subtle systematic patterns
in the LFI radiometers that were already noted and reported in
previous analyses, but only now, for the first time, have been
possible to elucidate and understand in greater detail. Examples
are a detailed characterization of the nature of seasonal modula-
tions and long term drifts, and correlations between instrument
noise parameters with temperature sensor read-out information.
These methods are likely to play a central role in the analysis of
future high-sensitivity CMB B-mode experiments, for instance
LiteBIRD (Sugai et al. 2020).
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ABSTRACT

We present a Bayesian calibration algorithm for CMB observations as implemented within the global end-to-end BeyondPlanck
framework, and apply this to the Planck Low Frequency Instrument (LFI) data. Following the most recent Planck analysis, we
decompose the full time-dependent gain into a sum of three nearly orthogonal components: One absolute calibration term, common to
all detectors; one time-independent term that can vary between detectors; and one time-dependent component that is allowed to vary
between one-hour pointing periods. Each term is then sampled conditionally on all other parameters in the global signal model through
Gibbs sampling. The absolute calibration is sampled using only the orbital dipole as a reference source, while the two relative gain
components are sampled using the full sky signal, including the orbital and Solar CMB dipoles, CMB fluctuations, and foreground
contributions. We discuss various aspects of the data that influence gain estimation, including the dipole/polarization quadrupole
degeneracy, processing masks, and anomalous jumps in the instrumental gain. Comparing our solution to previous pipelines, we find
good agreement in general, with relative deviations of −0.84 % (−0.67 %) for 30 GHz, −0.14 % (0.02 %) for 44 GHz and −0.69 %
(−0.08 %) for 70 GHz, compared to Planck 2018 (NPIPE). These deviations are within expected error bounds, and we attribute them
to differences in data usage and general approach between the pipelines. In particular, we note that the BeyondPlanck calibration is
performed globally, which results in better inter-frequency consistency than previous estimates. Additionally, WMAP observations
are used actively in the BeyondPlanck analysis, and this both breaks internal degeneracies in the Planck data set and results in better
overall agreement with WMAP. Although our presentation and algorithm are currently oriented toward LFI processing, the general
procedure is fully generalizable to other experiments, as long as the CMB dipole signal can be used for calibration.

Key words. ISM: general – Cosmology: observations, polarization, cosmic microwave background, diffuse radiation – Galaxy:
general

1. Introduction

The cosmic microwave background (CMB) anisotropies are
among the most important observables available to cosmolo-
gists, and accurate determination of their statistical properties
has been a main goal for a multitude of collaborations and ex-
periments during the last three decades (e.g., Smoot et al. 1992;
de Bernardis et al. 2000; Kovac et al. 2002; Bennett et al. 2013;
Planck Collaboration I 2020, and references therein). The Be-
yondPlanck project (BeyondPlanck Collaboration 2020) is an
? Corresponding author: E. Gjerløw; eirik.gjerlow@astro.uio.
no

initiative aiming to establish a common multi-experiment analy-
sis platform that supports global end-to-end Bayesian analysis of
raw time-ordered data (TOD) produced by such experiments, as
well as seamless propagation of low-level uncertainties into all
high-level products, including frequency and component maps,
the CMB angular power spectra, and cosmological parameters.
As a first demonstration, we apply this framework to the Planck
LFI data, as presented in this and a suite of companion papers.

A fundamentally important step in any CMB analysis
pipeline is photometric calibration—the process of mapping the
instrument readout to the incoming physical signal. In general,
this procedure involves comparing some specific feature in the
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measured data with a known calibration model, for instance the
CMB dipole or astrophysical foreground signal (or both), or
by comparing the total measured power with a reference load
with a known physical temperature (e.g., Planck Collaboration
V 2016).

The multiplicative factor that converts between sky signal
and detector readout is called the gain. This factor typically de-
pends on the local environment of the detectors, such as the am-
bient temperature, and is therefore in principle different for each
sample. However, as long as the detectors are thermally stable
on reasonably long time scales, it is usually a good approxima-
tion to assume that the gain is constant over some short period of
time, or at least that it is smoothly varying in time. For instance,
the WMAP team adopted and fitted a six-parameter model for
the gain, using housekeeping data such as focal plane temper-
ature measurements to interpolate in time (Jarosik et al. 2011).
For LFI, we will assume that the gain factor is constant through-
out each Planck pointing period (PID) – the timescale during
which the satellite scans a given “circle” on the sky; these last
roughly an hour each. We will also assume that the gain is vary-
ing smoothly between neighboring PIDs, except during a small
set of events during which the instrument was actively modified
by the mission control center, for instance during cooler mainte-
nance.

The Planck LFI Data Processing Centre (DPC) (Planck Col-
laboration II 2014; Planck Collaboration V 2016; Planck Col-
laboration II 2020) used an onboard 4 K reference load to sup-
port the 30 GHz calibration for the early results, while for the
other channels, and for all channels in later releases, they re-
lied primarily on the CMB dipole signal. Gain fluctuations and
correlations were modelled and suppressed by boxcar averag-
ing over a signal-to-noise dependent window size. The Planck
HFI DPC (Planck Collaboration VIII 2014, 2016; Planck Col-
laboration III 2020) also used the CMB dipole signal for gain
estimation, but in this case they assumed a constant gain factor
throughout the whole mission, relying on the excellent thermal
stability of the Planck instrument. Apparent gain variations were
instead assumed to arise from non-linearities in the analog-to-
digital conversion module, which then allowed for a determinis-
tic correction. A similar approach has also been adopted by the
recent SROLL2 re-analysis initiative (Delouis et al. 2019).

In the most recent official analysis (NPIPE; Planck Collab-
oration Int. LVII 2020), the Planck team adopted the LFI gain
model for all channels up to and including the 857 GHz channel.
A novelty introduced in that analysis, however, was a decompo-
sition of the gain factor into two nearly orthogonal components:
an absolute (or baseline) gain factor, which was assumed to be
constant for the entire mission, and a detector-specific gain mis-
match factor that could vary both in time and between detec-
tors. This approach allowed estimation of each component sepa-
rately, using calibrators that are better suited to each component.
For example, the low signal-to-noise (but well-understood) or-
bital dipole was used to calibrate the absolute gain factor due to
the long integration time involved in estimating this particular
component. Solving for all relevant factors was then performed
jointly with other relevant quantities.

In this paper, we adopt the NPIPE approach, and decom-
pose the full gain into the above-mentioned components, and
we estimate these jointly with all other parameters in the full
model. Thus, the main novel feature presented in this paper is
the integration of the gain estimation procedure within a larger
Gibbs framework, as summarized by BeyondPlanck Collabora-
tion (2020), which performs joint estimation of all relevant pa-

rameters in a statistically consistent manner, including the CMB
and astrophysical foreground sky signal.

The rest of the paper is structured as follows: In Sect. 2, we
aim to build intuition regarding gain estimation, presenting the
general data model that we use and highlighting various impor-
tant features of this model, as applied to real-world LFI observa-
tions. Next, in Sect. 3 we describe our main gain estimation pro-
cedure, before showing results in Sect. 4, and comparing these
with those derived by other pipelines. Finally, we summarize in
Sect. 5, with an eye toward future experiments and applications.

2. Data and modelling considerations

We start our presentation with a general discussion of the gain-
related data model, and how to account for various complications
that arise when fitting this to real-world data.

2.1. Data model

As described by BeyondPlanck Collaboration (2020), the main
goal of the BeyondPlanck analysis framework is to develop an
end-to-end Bayesian analysis platform for CMB data, starting
from raw time-ordered data. As for most Bayesian problems, the
key step in our approach is therefore to write down an explicit
parametric model for the observed data from a given detector,
dt,i, where t is the index denoting the sample,1 and i is the in-
dex denoting the detector in question. In the current analysis, we
adopt the following high-level model,

dt,i = gt,istot
t,i + ncorr

t,i + nwn
t,i , (1)

where ncorr
t,i and nwn

t,i are correlated and white noise, respectively,
gt,i is the gain factor, and stot

t,i denotes the total signal. Here, stot
t,i

is given in kelvin, while dt,i is the instrument readout, which is
measured in volt, meaning that the unit for gt,i becomes [V/K].
The total signal can further be decomposed into

stot
t,i = ssky

t,i + sorb
t,i + sfsl

t,i

= Ptp,iB
symm
pp′,i ssky

p′ + Ptp,iB
asymm
pp′,i sorb

p′ + Ptp,iB
asymm
pp′,i sfsl

p′

= Ptp,i

[
Bsymm

pp′,i ssky
p′ + Basymm

pp′,i

(
sorb

p′ + sfsl
p′
)]

(2)

In this expression, P is the pointing matrix, which contains the
mapping between the pointing direction the instrument, p and
the sample index t; Bsymm and Basymm denote convolution with
the symmetric and asymmetric beams, which quantify the frac-
tion of the total signal coming from direction p′ when the instru-
ment is pointing towards p; ssky is the sky signal (including the
Solar dipole); sorb is the orbital dipole (to be discussed below);
and sfsl represents signal leakage through the far-sidelobes. For
further details regarding any of these objects, we refer the in-
terested reader to BeyondPlanck Collaboration (2020) and refer-
ences therein.

The main topic of the current paper is estimating gt,i. In this
respect, it is important to note that all other free parameters in
the data model, including ssky

t,i and ncorr
t,i , are also unknown, and

must be estimated jointly with gt,i. Casting this statement into

1 Here, a “sample” means the detector readout at every 1/ f seconds,
where f is the sampling frequency of the instrument. The whole set of
these samples is called the time-ordered data (TOD). The sampling fre-
quency for the three LFI instruments are 32.5 Hz, 46.5 Hz, and 78.8 Hz
for the 30 GHz, 44 GHz, and 70 GHz instrument, respectively.
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Bayesian terms, we wish to sample from the posterior distribu-
tion,2

P(g, stot, sorb, ncorr, . . . | d). (3)

That is, we aim to model the global state of the instrument
and data, and map out the probability of various points in pa-
rameter space by sampling from this distribution. This may at
first glance seem like a intractable problem. However, a cen-
tral component of the BeyondPlanck framework is parameter
estimation through Gibbs sampling. According to the theory of
Gibbs sampling, samples from a joint posterior distribution may
be drawn by iteratively sampling from all conditional distribu-
tions. In other words, when sampling the gain, we may assume
that the sky signal and correlated noise parameters are perfectly
known. And likewise, when sampling the sky signal or corre-
lated noise parameters, we may assume that the gain is perfectly
known. The correlations between these various parameters are
then probed by performing hundreds or thousands of iterations
of this type.

Thus, for the purposes of calibration alone, we do not need
to be concerned with many aspects that indirectly affect the gain,
such as CMB dipole or correlated noise estimation (Planck Col-
laboration II 2014; Planck Collaboration V 2016; Planck Col-
laboration II 2020). Instead, we are here concerned only with
defining an adequate model for g, and expressing this in a way
that minimizes degeneracies with parameters in the Gibbs chain.

As discussed above, the gain is generally not constant in
time. A very conservative (and somewhat naïve) model would
therefore be to assume that the gain is in fact different for every
sample t. However, this model clearly does not take into account
our full knowledge about the instrument (Planck Collaboration
XXVIII 2014). In particular, we do know that the gain is ex-
pected to correlate with the detector temperature, and this tem-
perature does not change significantly on timescales of just one
sample. Rather, based on available housekeeping data, a good as-
sumption is that the gain is constant within a given pointing pe-
riod (PID, or scan) – which is defined as a collection of samples
measured over a period of about an hour, during which the in-
strument spins about its axis once per minute while keeping the
spin axis vector stationary. Between each scan, the instrument
performs a slight adjustment of the satellite spin axis, ensuring
that new sky areas are covered in consecutive pointing periods.

To reflect the assumption of constant gain within each scan,
we rewrite our data model as follows,

dt,i = gq,istot
t,i + ncorr

t,i + nwn
t,i , (4)

where q now denotes PID. Thus, t is used to indicate a specific
sample, while q represents a collection of samples.

From Eq. (4), we immediately note the presence of two im-
portant degeneracies, involving the sky signal and noise, respec-
tively. If we attempt to fit for g, stot, and ncorr simultaneously,
without knowing anything about any of them, we see that a given
solution, say, {g0, stot

0 , n
corr
0 }, will result in an identical goodness-

of-fit as another solution {g1, stot
1 , n

corr
1 }, as long as either

g1 = g0
stot

0

stot
1
, (5)

2 Here, and elsewhere, boldface quantities generally mean vectors.
Which vector space they belong to will to a large degree be evident
from the subscripts – in this case, there are no subscripts, meaning that
the vectors contain all samples from all detectors.

or

ncorr
1 = ncorr

0 + g0stot
0 − g1stot

1 . (6)

In other words, the gain is multiplicatively degenerate with the
signal, and additively degenerate with the correlated noise. Such
degeneracies are mainly a computational problem, since with
two degenerate parameters in a Gibbs chain, exploring the re-
sulting distributions takes a much larger number of samples than
for uncorrelated parameters. A main topic of this paper is how
to break these degeneracies in a statistically self-consistent and
computationally efficient manner.

2.2. Absolute versus relative gain calibration

So far, we have been talking about the calibration of a given
detector in isolation, which relates to what we call absolute cal-
ibration. Absolute calibration refers to correctly determining the
“true” value of the gain, and is important for accurately deter-
mining the emitted intensity of astrophysical components, such
as the CMB.

Another closely related concept is relative calibration,3
which quantifies calibration differences between radiometers.
Because of Planck’s scanning strategy, which only provides
weak cross-linking4 (Planck Collaboration I 2011), it is impos-
sible to estimate the three relevant Stokes parameters (the in-
tensity, I, and two linear polarization parameters, Q and U) in-
dependently for each detector. Rather, the polarization signal is
effectively determined by considering pairwise differences be-
tween detector measurements, while properly accounting for
their relative polarization angle differences at any given time.
Therefore, any instrument characterization error that induces
spurious detector differences will be partially interpreted by the
analysis pipeline as a polarization signal. If our relative gain cal-
ibration is wrong, such differences will be introduced.

Given the high sensitivity of current and future CMB experi-
ments, the gain must be estimated to a fractional precision better
than O(10−3) for robust CMB temperature analysis, and better
than O(10−4) for robust polarization analysis. Accurate relative
calibration is thus even more important than accurate absolute
calibration, and this will, as discussed in the next section, inform
the choices we make on how to estimate these two types of cali-
bration.

2.3. The Solar and orbital CMB dipoles

One of the most powerful ways to break the signal/gain degen-
eracy mentioned in the previous section is to observe a source
of known brightness. If that source happens to be significantly
stronger than other sources in the same area of the sky, we could
fix stot

t,i in Eq. 4 and the gain would essentially be determined by
the ratio of the data to the known source brightness.

Unfortunately, the number of available astrophysical calibra-
tion sources that may be useful for CMB calibration purposes
is very limited, given the stringent requirements discussed in

3 Note that our definition differs slightly from the LFI DPC definition
of relative calibration. In their nomenclature, relative calibration refers
to temporal fluctuations of the gain around the mean within a given
detector.
4 A given point on the sky, once observed by a detector, is not ob-
served by the same detector at a different angle before a long time has
passed, during which several environmental parameters of the detector
may have changed.
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Fig. 1: Comparison of different contributions to the time-ordered
data seen by Planck at 30 GHz, for a PID whose orientation is
close to perpendicular to the dipole axis. The blue and black
curves show the orbital and Solar CMB dipoles, respectively,
while the red line shows contributions from small-scale CMB
fluctuations and Galactic foregrounds. The gray line shows in-
strumental noise.

Sect. 2.2. For instance, the brightness temperature of individ-
ual planets within the Solar system is only known to about 5 %
(Planck Collaboration VIII 2016), while few other local sources
are known with a precision better than 1 %.

The key exception is the CMB dipole. The peculiar velocity
of the Planck satellite relative to the CMB rest frame induces
a strong apparent dipole on the sky due to the Doppler effect.
Specifically, photons having an anti-parallel velocity relative to
the satellite motion are effectively blue-shifted, while photons
with a parallel velocity are redshifted.

It is useful to decompose the peculiar spacecraft velocity
into two components; the motion of the Solar system relative to
the CMB rest frame, vsolar, and the orbital motion of the Planck
satellite relative to the Solar system barycenter, vorbital. Thus, the
total velocity of the satellite relative to the CMB rest frame is
vtot = vsolar + vorbital. Taking into account the full expression for
the relativistic Doppler effect, the induced dipole reads

sdip(x, t) = TCMB

(
1

γ(t)(1 − β(t) · x)
− 1

)
, (7)

where β = vtot/c, and γ = (1 − |β|2)−1/2. The total dipole is time
dependent because of the motion of the satellite over the course
of the mission. We can similarly define a Solar dipole, ssolar(x)
and an orbital dipole, sorb(x, t), which are induced by only the
Solar and orbital velocities alone, respectively. Both dipoles play
crucial roles in CMB calibration; the orbital dipole for absolute
calibration and the Solar dipole for relative calibration.

Starting with the orbital dipole, we note that this depends
only on the satellite’s velocity with respect to the Sun. This is ex-
ceedingly well measured through radar observations, and known
with a precision better than 1 cm s−1 (Godard et al. 2009). For
an orbital speed of 30 km s−1, this results in an overall relative
precision better than O(10−6). However, Eq. (7) also depends
on the CMB monopole, which is measured by COBE-FIRAS
to 2.72548 K ± 0.57 mK (Fixsen 2009), corresponding to a rel-
ative uncertainty of 0.02 % or O(10−4). Thus, the absolute cal-
ibration of any current and future CMB experiment cannot be
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Fig. 2: Comparison of the CMB temperature dipole (thick black
line) observed through the Planck scanning strategy with three
random polarization quadrupole simulations (thin colored lines);
the latter have been scaled by a factor of 104 for visualization
purposes.

determined with a higher absolute precision than O(10−4) until
a next-generation CMB spectral distortion experiment, for in-
stance PIXIE (Kogut et al. 2011), is launched. Still, this preci-
sion is more than sufficient for Planck calibration purposes.

The second CMB dipole component corresponds to the Sun’s
motion with respect to the CMB rest frame. While this velocity
is intrinsically unknown, one may estimate this from the relative
amplitude of the Solar and orbital dipoles. This is illustrated in
Fig. 1, which compares the orbital and Solar dipole signals (blue
and black curves) with contributions from Galactic foreground
emission and instrumental noise at 30 GHz for about three min-
utes of time-ordered observations. The Solar dipole is effectively
determined by the relative amplitude ratio between the black and
blue curves in this figure.

Based on this approach, the most recent Planck analyses
have determined that the Solar CMB dipole amplitude is about
3.36 mK, corresponding to Solar velocity of about 370 km s−1

(Planck Collaboration I 2020; Planck Collaboration Int. LVII
2020). For comparison, large-scale CMB polarization fluctua-
tions typically exhibit variations smaller than O(1 µK) (Planck
Collaboration IV 2020), and consequently the relative calibra-
tion of different detectors must be better than O(10−4) to avoid
the Solar CMB dipole to significantly contaminate large-scale
polarization. Achieving this level of precision in the presence of
correlated noise, Galactic foregrounds, far sidelobe contamina-
tion and other sources of systematic uncertainties is the single
most difficult challenge associated with large-scale CMB polar-
ization science.

2.4. The degeneracy between the CMB temperature dipole
and polarization quadrupole

In Sect. 2.1 we noted that the gain is multiplicatively degener-
ate with the signal, and additively degenerate with the noise.
Within this broad categorization, there are also some particularly
important gain/signal degeneracies that are worth highlighting,
and perhaps the most prominent example is that with respect to
the CMB polarization quadrupole. To illustrate this, consider the
case in which two detectors report different CMB dipole am-
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Fig. 3: Correlated noise maps for the 30 GHz channel in a Gibbs chain that includes (left panel) or neglects (right panel) gain
time-dependencies. All maps are smoothed to a common resolution of 2.5◦ FWHM.

plitude signals; how could such a difference be explained? One
possible explanation is a calibration mismatch, i.e., that the ab-
solute calibration of one or both detectors is mis-estimated.

Another possible explanation could be a large polarization
CMB quadrupole signal. Due to the scanning strategy adopted
by Planck, in which the same ring is observed repeatedly for one
hour, a polarization quadrupole can easily appear with a dipo-
lar signature, depending on the particular phase orientation of
the mode in question. This is illustrated in Fig. 2. The black
thick line shows the CMB temperature dipole as a function of
time, while the colored thin lines show three random polariza-
tion quadrupole simulations, all observed with the Planck scan-
ning strategy. Out of the three random quadrupole simulations,
two have a time-domain behaviour that very closely mimics the
CMB temperature dipole, and in the presence of noise and instru-
mental effects, it would be exceedingly difficult to distinguish
between the two models.

This is a perfect recipe for a degenerate system, and one that
carries the potential of contaminating any large-scale polariza-
tion reconstruction. It is, however, important to note that this par-
ticular degeneracy appears with a very specific morphology, and
affects only a handful of spatial polarization modes, as defined
by projecting the CMB Solar dipole onto the Planck scanning

strategy. Recognizing the importance of this degeneracy, previ-
ous Planck analyses have adopted different strategies of resolv-
ing the issue. For instance, both the Planck LFI DPC and NPIPE
analyses have opted to disregard the CMB polarization compo-
nent completely during the calibration phase (Planck Collabora-
tion II 2016, 2020; Planck Collaboration Int. LVII 2020). This
may be at least partially justified for LFI on theoretical grounds
by noting that the CMB polarization variance on large angular
scales predicted by current best-fit ΛCDM models is . 0.1 µK2,
which is comparable to, or below, the overall noise. For the sig-
nificantly more sensitive HFI instrument, this assumption is not
adequate, and the recent NPIPE analysis therefore explicitly es-
timates a transfer function to account for this effect (Planck Col-
laboration Int. LVII 2020).

In the following, we adopt a similar strategy as Planck LFI,
but with an important difference: Rather than excluding the en-
tire CMB polarization component from the calibration proce-
dure, we only exclude the single CMB polarization quadrupole
mode. This ensures that all higher-order CMB moments are for-
mally estimated without any effective transfer function, while
the quadrupole formally still does have a non-zero transfer func-
tion. However, given the high LFI noise level and the low ΛCDM
prediction this is in practice negligible, as already demonstrated

Article number, page 5 of 18

247



A&A proofs: manuscript no. BP_gains

by previous Planck DPC analyses. It is also worth noting that
the real CMB temperature quadrupole amplitude is significantly
lower than the ΛCDM prediction (de Oliveira-Costa et al. 2004),
and one may therefore expect also the polarization quadrupole to
be low, as these are correlated. Still, for cosmological parameters
derived from large-scale Planck polarization data, one is well ad-
vised to compare estimates with and without the CMB polariza-
tion quadrupole included, and ensure that these are statistically
consistent. Of course, this particular mode is also associated with
a high cosmic variance, and a small bias regarding this mode is
in practice unlikely to have any measurable effect.

2.5. Processing masks and PID selection

The Gibbs sampling framework used by BeyondPlanck requires
an explicit parametric model that describes CMB, foregrounds,
and the instrument. If this model turn out to be an insufficient
representation of the actual data, the Gibbs sampling framework
will attempt to fit eventual modelling errors using the parameters
that are at its disposal. Ideally, such unexplained contributions
should end up as an excess residual in r = d − gstot − ntot, but
in practice they often also contaminate the other model param-
eters, such as the CMB. The correlated noise, ncorr, is one such
parameter that, because of its relatively unconstrained and global
structure, ends up absorbing a wide range of modelling errors, as
discussed by Ihle et al. (2020). Furthermore, as already noted in
Sect. 2.1, there is a tight degeneracy between the correlated noise
and the gain, and ncorr is therefore a sensitive monitor for gain
errors. Figure 3 illustrates this in terms of one arbitrarily selected
30 GHz ncorr sample from the main BeyondPlanck analysis (Be-
yondPlanck Collaboration 2020). The left column shows such a
sample in the default model, in which the gain is allowed to vary
from PID to PID, while the right column shows the same when
enforcing a time-independent gain. While the maps in the left
column are visually dominated by scan-aligned random stripes,
as expected for ncorr, the maps in the right column (in partic-
ular the top row) shows large excesses with a dipolar pattern
along each Planck scanning ring. This is the archetypical sig-
nature of gain modelling errors, and this clearly demonstrates
the need for a time-variable gain model. At the same time, there
is also a clear quadrupolar pattern in the default configuration,
with a positive excess along the Galactic plane and a negative
excess near the Galactic poles. This structure is visually consis-
tent with a near sidelobe modelling residual, in the sense that the
Galactic foreground signal is slightly over-smoothed compared
to the prediction of the nominal beam model, and the resulting
residual is picked up by the correlated noise component. This is
not surprising, considering that about 1 % of the full LFI 30 GHz
beam solid angle is unaccounted for in the GRASP beam model
(Planck Collaboration II 2020), and some of this missing power
may be in the near sidelobes. Fortunately, we also see from the
same plot that the impact of this effect is modest, and accounts
for only about 1 µK at 30 GHz.

More generally, because we have an incomplete understand-
ing of both the instrument and the microwave sky, modelling
errors will at some level always be a concern when estimating
both gain and correlated noise. Furthermore, these modelling er-
rors will typically be stronger near the Galactic plane or bright
compact sources, where foreground uncertainties are large. For
this reason, it is customary to apply a processing mask while es-
timating these quantities, omitting the parts of the sky that are
least understood from the analysis. In BeyondPlanck, we define
processing masks based on data-minus-signal residual maps for
each frequency (Ihle et al. 2020), and these are shown in Fig. 4.

Fig. 4: Processing masks used in gain and correlated noise es-
timation. Different shades of grey indicate different frequency
masks. The allowed 30 GHz sky fraction (light) is 0.73, the
44 GHz sky fraction (intermediate) is 0.81, and the 70 GHz sky
fraction (dark) is 0.77. Reproduced from Ihle et al. (2020).
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Fig. 5: Examples of jumps seen in the gain factors. The line
shows a lightly smoothed gain solution for the 27S detector,
which highlights two sharp jumps.

In addition, as discussed by Suur-Uski et al. (2020), we also
exclude a number of PIDs from the main analysis, for similar
reasons as for applying processing masks. Most of these PIDs,
however, do not correspond to particularly problematic areas
of the sky, but rather to unmodelled instrumental changes or
systematic errors. For instance, all data collected during either
cooler maintenance or major satellite maneuvers are rejected.
Another important example is the 44 GHz LFI 26S radiometer,
for which the correlated noise levels increased dramatically dur-
ing the second half of the mission, possibly because of some
subtle electrical issue, and these data are therefore omitted from
the current analysis (Ihle et al. 2020). Excluded PIDs will show
up as gaps in all PID plots in this paper.

2.6. Gain jumps

As noted from the beginning of the Planck experiment (see, e.g.,
Planck Collaboration XXVIII 2014), the physical gain of the in-
strument exhibits several sharp jumps. These jumps are related
to changes in the thermal environment of the instrument – an
example of such an event is the turning off of the 20 K sorption
cooler. Not all of the events are well understood, and can mainly
be traced after an initial gain estimation. We show examples of
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Table 1: PIDs of gain jumps considered in the BeyondPlanck
analysis. We indicate whether a jump comes from the NPIPE
analysis or whether it comes from finding sharp jumps in the
20 K onboard temperature sensor readout.

PID Jump classification

3352 NPIPE
5030 NPIPE
5484 NPIPE
8309 20 K
8503 20 K
8606 20 K
9613 20 K

10117 20 K
10512 20 K
10911 NPIPE
14061 20 K
15957 NPIPE
16204 20 K
16455 NPIPE
17024 20 K
18338 20 K
21484 NPIPE
25654 NPIPE
27110 NPIPE
27343 NPIPE
30387 NPIPE
32763 NPIPE
38591 NPIPE
43929 NPIPE

such jumps in Fig. 5 and list the jumps that we have consid-
ered in our data analysis in Table 1. These jumps mainly enter
the analysis when we consider the smoothing of time-dependent
gains in Sect. 3.5.

The jumps we consider are a combination of the jumps noted
in the NPIPE analysis (Planck Collaboration Int. LVII 2020),
as well as those found in an inspection of the readouts of the
20 K temperature sensors onboard the instrument, where similar
jumps are found. The gain is expected to correlate with this tem-
perature, so we take such jumps as being indicative of possible
gain jumps in our model as well.

All of the jumps are considered to be present in all detectors,
so we have not entered a more in-depth analysis of whether a
given jump is actually present in every detector. Whereas such an
analysis could be interesting in its own right, for the purposes of
gain estimation the statistical cost of introducing a discontinuity
into the model is very minimal, and we therefore make every
jump a global one.

2.7. Breaking degeneracies through multi-experiment
analysis

As described in BeyondPlanck Collaboration (2020), Beyond-
Planck includes as part of its data selection several external data
sets that are necessary to break fundamental degeneracies within
the model. One particularly important example in this respect is
the inclusion of low-resolution WMAP polarization data. In the
same way that the WMAP experiment was unable to measure a
few specific polarization modes on the sky due to peculiarities
in its scanning strategy (Jarosik et al. 2007), Planck is also un-
able constrain some modes as defined by its scanning strategy
(Planck Collaboration II 2020). However, because the WMAP
and Planck scanning strategies are intrinsically very different,

their degenerate modes are not the same, and, therefore all sky
modes may be measured to high precision when analyzing both
data sets jointly.

This will be explicitly demonstrated in Sect. 4.3, where we
compare the BeyondPlanck sky maps to those derived individu-
ally from each experiment. The morphology of these frequency
difference maps correspond very closely to the correction tem-
plates produced respectively by the WMAP and Planck teams
(Jarosik et al. 2007; Planck Collaboration II 2020), and Beyond-
Planck is statistically consistent with both data sets. Agreement
is a direct and natural consequence of performing a joint fit, and
there is no need for additional explicit template corrections for
BeyondPlanck.

At the same time, it is also important to note that only the
Planck LFI data are currently modelled in terms of time-ordered
data, whereas the WMAP sky maps and noise covariance matri-
ces are analyzed as provided by the WMAP team. Therefore, if
there should be unknown systematics present in WMAP, those
errors will necessarily also propagate into the various Beyond-
Planck products. An important near-future goal is therefore to
integrate also the WMAP time-ordered data into this framework.
This work is already on-going, as discussed by Watts et al.
(2020), but a full WMAP TOD-based analysis lies beyond the
scope of the current work.

3. Methodology

As discussed in Sect. 2.1, our main goal in this paper is to draw
samples from P(g | stot, ncorr, d, . . .), the conditional distribution
of g given all other parameters. In this section, we describe each
of the various steps involved in this process.

3.1. Correlated noise degeneracies and computational
speed-up

Before we present our main sampling algorithms for g, we re-
call from Sect. 2.1 that g is additively degenerate with ncorr.
In a Gibbs sampling context, strong degeneracies lead to very
long Markov correlation lengths as the Gibbs sampler attempts
to explore the degenerate space between the two parameters. In
order to save computing power and time, it is therefore bet-
ter to sample g and ncorr jointly, such that for a given itera-
tion of the main Gibbs chain, we instead sample directly from
P(g, ncorr | stot, d, . . .).5

A joint sample may be produced by means of univariate dis-
tributions through the definition of a conditional distribution,

P(x1 | x2) ≡ P(x1, x2)
P(x1)

⇒ P(x1, x2) = P(x1)P(x2 | x1). (8)

Thus, sampling from the joint distribution P(g, ncorr | stot, d, . . .)
is equivalent to first sampling g from its marginal distribution
with respect to ncorr, P(g | stot, d, . . .), and then subsequently
sampling ncorr from its conditional distribution with respect to
g, P(ncorr | g, stot, d, . . .). These two steps must be performed
immediately after one another, or else we would introduce an
inconsistency in the Gibbs chain with respect to the other pa-
rameters.

Note that P(ncorr | g, stot, d, . . .) is unchanged compared to
the original Gibbs prescription, and no changes are required to

5 Although this might seem somewhat counter-intuitive in the con-
text of Gibbs sampling, joint sampling formally corresponds to re-
parametrizing {g, ncorr} into one parameter in the Gibbs chain.
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sample from that particular distribution (see Ihle et al. 2020,
for more details on this sampling process). When it comes to
P(g | stot, d, . . .), we refer to Appendix A.2 of BeyondPlanck
Collaboration (2020), whose sampling equations we will use
throughout this paper. We note that the data model used in that
appendix is the same general form as Eq. (4), and that sam-
pling from P(g | stot, d, . . .) is exactly analogous to what is
shown in that appendix, as long as we make the identification
n→ ncorr + nwn. As the covariance matrix of a sum of indepen-
dent Gaussian variables (ncorr and nwn) is also Gaussian, with a
covariance matrix given by the sum of the individual covariance
matrices, we can in what follows use the results of the above-
mentioned appendix to sample from P(g | stot, d, . . .) as long as
we let N→ Ncorr + Nwn.

Computationally speaking, sampling from P(g | stot, d, . . .)
instead of P(g | stot, ncorr, d, . . .) is numerically equivalent to a
more expensive noise covariance matrix evaluation.6 To mitigate
this additional cost, we note that the gain is assumed to be slowly
varying in time, and, in particular, constant within each PID. All
time-domain operations may therefore be carried out using co-
added low-resolution data with negligible loss of precision. In
practice, all TOD operations are in the following carried out at
a sample rate of 1 Hz, leading to a computational speed-up of
about two orders of magnitude.

3.2. Absolute gain calibration with the orbital dipole

Next, we also recall from Sect. 2.1 that the gain is multiplica-
tively degenerate with the total sky signal. At the same time, we
note that the orbital CMB dipole is known to exquisite precision,
and this particular component is therefore the ideal calibrator for
CMB satellite experiments. However, its relatively low ampli-
tude as compared with instrumental noise renders it incapable
of tracking short-term gain variations, and, when fitted jointly
with astrophysical foregrounds, it is also not sufficiently strong
to determine relative calibration differences between detectors
at the precision required for large-scale polarization reconstruc-
tion. Therefore, to minimize sensitivity to potential residual sys-
tematic and modelling errors, it is advantageous to estimate the
absolute calibration using the orbital dipole alone, but use the
full signal model (including the bright Solar CMB dipole) when
estimating relative and time-dependent gain variations.

This motivates splitting the gain into two components,

gq,i = g0 + γq,i, (9)

where g0 is now independent of both time and detectors, follow-
ing Planck Collaboration Int. LVII (2020). Our goal is then to
use only the orbital CMB dipole to estimate g0, and later use
the full sky signal to estimate γq,i. Thus, with this reparametriza-
tion, we go from sampling from P(g | stot, d, . . .) to sampling
from P(g0,γ | stot, d, . . .). As usual, drawing samples from
this joint distribution can be done by Gibbs sampling, so that
we first sample g0 from P(g0 | γ, stot, d, . . .) and then γ from
P(γ | g0, stot, d, . . .).

We should note that estimating g0 using only the orbital
dipole formally represents a violation of the Gibbs formalism,
as we no longer draw this particular parameter from its exact

6 Although not shown here, sampling from P(g | stot, ncorr, d, . . .)
would follow the exact same procedure, but with a noise covariance ma-
trix given by Nwn instead of Nwn + Ncorr. Nwn is a diagonal matrix, while
Ncorr is not, and since most operations are less heavy, computationally
speaking, when diagonal matrices are involved, the resulting sampling
process would also be lighter in that case.

conditional distribution. This is one of many examples for which
we “buy” stability with respect to systematic errors at the price
of increased statistical uncertainties. This is similar to the appli-
cation of a processing mask when estimating the zero-levels of
a CMB sky map (e.g., Planck Collaboration Int. XLVI 2016),
or fitting correlated noise parameters using only a sub-range of
all available temporal frequencies (e.g., Ihle et al. 2020). In all
such cases, parts of the data are disregarded in order to prevent
potential systematic errors from contaminating the parameter in
question.

For the split in Eq. (9) to be valid, we must ensure that∑
q,i γq,i = 0, such that γq,i represents only deviations from the

absolute calibration. For technical reasons, it turns out that this
will be easier to do if we also reparametrize γq,i,

γq,i = ∆gi + δgq,i, (10)

where ∆gi represents the detector-specific constant gain, and
δgq,i denotes deviations from ∆gi per scan. We can then sepa-
rately enforce

∑
i ∆gi = 0 and

∑
q δgq,i = 0 for each detector

i, which is computationally cheaper than enforcing both con-
straints simultaneously.

Thus, we split the gain into three nearly independent vari-
ables, and explore their joint distribution by Gibbs sampling.
The overarching goal for this section, then, is to derive sampling
algorithms for each of the three associated conditional distribu-
tions,

P(g0 | ∆gi, δgq,i, di, stot
i ,Ni, . . .) (11)

P(∆gi | g0, δgq,i, di, stot
i ,Ni, . . .) (12)

P(δgq,i | g0,∆gi, di, stot
i ,Ni, . . .). (13)

We now consider each of these in turn.

3.3. Sampling the absolute calibration, g0

To sample the absolute calibration using the orbital dipole alone,
we need to define a data model that depends only on g0 and sorb.
We do this by first subtracting the full signal model as defined
by the current joint parameter state, and then add back only the
orbital dipole term,

rt,i ≡ dt,i − (gcurr
0 + ∆gi + δgq,i)stot

t,i + gcurr
0 sorb

t,i

= g0sorb
t,i + ntot

t,i . (14)

Here gcurr
0 denotes the absolute gain at the current iteration in the

Gibbs chain, i.e., before drawing a new value for g0.
As noted earlier, working with this residual and using the

previous sample of g0 to estimate the current sample does rep-
resent a breaking of the Gibbs formalism, since the statistically
exact residual for g0 would be

dt,i − (∆gi + δgq,i)stot
t,i = g0stot

t,i + ntot
t,i . (15)

However, in this case we would also be calibrating g0 on the to-
tal sky signal instead of just the orbital dipole. Thus, we trade
mathematical rigour and statistical uncertainties for stronger ro-
bustness with respect to systematic effects.

As discussed in Sect. 3.1, the noise term in Eq. (14) includes
both correlated and white noise, and the appropriate covariance
matrix is therefore N = Ncorr + Nwn. Given this fact, Eq. (14)
corresponds to a simple univariate Gaussian model as a function
of g0, and the appropriate sampling algorithm is discussed in
Appendix A.2 of BeyondPlanck Collaboration (2020). Applying
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Fig. 6: Gibbs chains of the total gain for selected detectors and
PIDs.

Table 2: Smoothing window size limits for the LFI detectors.
All detectors within the same frequency band share the same
window size limits.

Detector wmin wmax

30 GHz 400 1200
44 GHz 300 1500
70 GHz 400 1800

that general procedure to our special case, we may write down
the following sampling equation for ĝ0,7

ĝ0 =

∑
i(sorb

i )T N−1
i ri∑

i(sorb
i )T N−1

i sorb
i

+
η√∑

i(sorb
i )T N−1

i sorb
i

, (16)

where η ∼ N(0, 1) is a random number drawn from a standard
normal distribution. Here, and elsewhere, a T superscript indi-
cates the matrix transpose operator. The first term in this equa-
tion is the (Wiener filter) mean of the distribution P(g0 | ri,Ni),
while the second term ensures that g0 has the correct variance.

3.4. Sampling detector-dependent calibration

For ∆gi, we proceed similarly as with g0, with two exceptions.
First, ∆gi now represents the relative calibration between detec-
tors, and, as discussed in Sect. 2.1, we need to use a stronger
calibration signal than the orbital dipole to avoid significant po-
larization leakage. Secondly, we have to impose the constraint∑

i ∆gi = 0.
7 Note that we do not apply any priors on g0 in this paper, which cor-
responds to S−1 = 0, adopting the notation of BeyondPlanck Collab-
oration (2020), where S is the prior covariance of g0. The remaining
notational differences between Eq. (16) and Eq. (A.10) in that paper
arises from our organizing all vectors and matrices in terms of inde-
pendent detectors, using the fact that ntot is assumed to be independent
between detectors; this may not be strictly true in practice, as discussed
by Ihle et al. (2020), and future analyses may prefer to account for the
full joint matrix.

We start by defining the following residual,

rt,i ≡ dt,i − (g0 + δgq,i)stot
t = ∆gistot

t + ntot
t (17)

for each detector. This equation is structurally similar to Eq. (14),
with the main difference being that the total sky signal, which is
dominated by the Solar dipole, is retained on the right-hand side.
Otherwise, Eq. (17) still represents a Gaussian model, and we
should be able to proceed similarly as for g0 when drawing from
the conditional distribution. We do, however, need to ensure that∑

i ∆gi = 0, and this will significantly impact the form of the
target distribution. The numerically most convenient method for
imposing such a constraint is through the method of Lagrange
multipliers.

In general, the method of Lagrange multipliers allows the
user to minimize a function f (x) under some set of constraints
that may be formulated as g(x) = 0. Without these constraints,
one would of course determine x by solving d f /dx = 0. With ad-
ditional external constraints, however, it is convenient to instead
define the so-called Lagrangian,

L(x, λ) = f (x) + λg(x), (18)

and set the corresponding partial derivatives with respect to x
and λ equal to zero. It is readily seen that ∂L/∂λ = 0 corresponds
directly to g(x) = 0, which is precisely the desired constraint.

Our primary target distribution is

P(∆g | r, stot,N) ∝ P(r | ∆g, stot,N)P(∆g)

∝ exp


∑

i

(
ri − ∆gistot

)T
N−1

i

(
ri − ∆gistot

)
(19)

where the first line follows from Bayes’ theorem, and the second
follows from the fact that we assume vanishing covariance be-
tween detectors, and that ri is Gaussian distributed with a mean
of ∆gistot

i and covariance Ni. We are of course free to minimize
the logarithm of this function instead of the function itself, which
makes things easier as it takes the exponential away. We may
therefore define the following Lagrangian,

L(∆gi, λ) =
∑

i

(
ri − ∆gistot)T N−1

i
(
ri − ∆gistot) + λ

∑

i

∆gi, (20)

where λ is the Lagrange multiplier.
To optimize this function, we take the derivative with respect

to ∆gi and λ to obtain two coupled equations. The first equation
takes the form

∂L
∂∆gi

= 0

⇒ −2
(
ri − ∆gistot

i
)T N−1

i stot
i + λ = 0

⇒ ∆gi(stot
i )T N−1

i stot
i +

1
2
λ = (ri)T N−1

i stot
i , (21)

while the second simply reads

∂L
∂λ

= 0

⇒
∑

i

∆gi = 0. (22)

Jointly solving these linear equations for ∆gi provides es-
timates with the correct mean. What we require, however, is
a sample from the appropriate distribution, and not mean esti-
mates. We must therefore add a fluctuation term, as in Eq. (16).
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To do so, we note that if it were not for λ, Eq. (21) would have the
exact same form as Eq. (16), with stot substituted for sorb. Com-
paring Eq. (21) with Eq. (16), we then see that the final equation
for the desired sample must be

∆ĝi(stot
i )T N−1

i stot
i +

1
2
λ = (ri)T N−1

i stot
i + η

√
(stot

i )T N−1
i stot

i , (23)

where, as usual, η ∼ N(0, 1).

Casting this in terms of a linear system with ndetector + 1 un-
knowns, this may be solved straightforwardly with standard nu-
merical libraries. For a two-detector example, the resulting sys-

tem of equations takes the form

(stot)T N−1

1 stot 0 1
2

0 (stot)T N−1
2 stot 1

2
1 1 0




∆ĝ1
∆ĝ2
λ

 = (24)



(r1)totN−1
1 stot

1 + η1

√
(stot

1 )T N−1
1 stot

1

(r2)totN−1
2 stot

2 + η2

√
(stot

2 )T N−1
2 stot

2
0


. (25)

3.5. Sampling temporal gain variations

Finally, we consider the temporal gain variations, δgq,i. As be-
fore, we write down the following residual,

rt,i ≡ dt,i − (g0 + ∆gi)stot
t,i = δgq,istot

t,i + ntot
t,i , (26)

where we again employ the total signal as a calibrator. The only
difference with respect to Eq. (17) is that δgq,i now contains mul-
tiple elements per detector, and is now a vector in PID space. We
can make this point more explicit by writing

ri ≡ di − (g0 + ∆gi)stot
i = Tiδgi + ntot

i , (27)

where T is an nsamp × nscan-matrix that contains stot
t,i in element

(t, q) for all values of t in scan q. All other elements are zero.
Thus, T projects δg into the nsamp-dimensional space of ri and
ntot

i .
Once again following the procedure in Equation A.3 in Be-

yondPlanck Collaboration (2020), we may write down the fol-
lowing sampling equation,

TT
i N−1

i Ti δ ĝi = TT
i N−1

i ri + (TT
i N−1

i Ti)
1
2 η, (28)

where η ∼ N(0, 1) is a random Gaussian vector of length nPID.
In its current form, Eq. (28) assumes that δgq,i is uncorre-

lated between scans. As discussed by Planck Collaboration VIII
(2014), Planck Collaboration VIII (2016), Planck Collaboration
III (2020), and Planck Collaboration Int. LVII (2020), this is not
an efficient model for the Planck LFI data, because the gain is
primarily determined by the thermal environment of the instru-
ment, and this is quite stable in time. It is therefore advantageous,
and in practice necessary, to enforce some form of smoothing
between δgq,i to obtain robust results.
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Fig. 9: Comparison of gain estimates for the 30 GHz detectors for Planck 2018, NPIPE, and BeyondPlanck. The light grey lines are
the locations of hard-coded gain jumps at which we set hard stops for the smoothing algorithm, detailed in Table 1. The width of
the BeyondPlanck line is given by the Monte Carlo uncertainty of the chains.

The proper Bayesian way of handling this is to assign a co-
variance matrix to δgq,i, and then sample jointly from the likeli-
hood and prior for δgq,i, as is done for both the instrumental noise
and CMB fluctuations (BeyondPlanck Collaboration 2020; Ihle
et al. 2020; Colombo et al. 2020). However, due to time con-
straints, this is left for future work. In this paper, we instead
adopt a similar approach as the LFI DPC and NPIPE (Planck
Collaboration II 2020; Planck Collaboration Int. LVII 2020), and
smooth δgq,i using a variable-width smoothing window,

δgq,i =


q+nq,i∑

q−nq,i

wq,i



−1 q+nq,i∑

q−nq,i

wq,iδgq,i (29)

where wq,i ≡ (TT
i N−1

i Ti)−1/2 is the inverse noise variance weight
of δgq,i, and nq,i is the width of the smoothing window. Also fol-
lowing the LFI DPC, we let nq,i vary in time, depending on rela-
tive strength of the sky signal calibrator. Specifically, we define

mq,i = Var(ssky
t,i , t ∈ q) (30)

to be the empirical variance of ssky
t,i as seen by detector i in scan

q, and we define a minimum and maximum width, nmin and nmin,
for each frequency channel, as listed in Table 2. We then in-
terpolate linearly between these limits based on the local signal
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Fig. 10: Comparison of gain estimates for the 44 GHz detectors. The last half of PIDs for detectors 26M and 26S were not included
in the calibration dataset. See Fig. 9 for details.

strength,

nq,i = nmin
i +

mq,i − mlow

mhigh − mlow (nmax
i − nmin

i ), (31)

where mlow = 1 µK and mhigh = 5 µK; these values are adopted
directly from the LFI DPC.

Finally, we recall that we require
∑

q δgq,i = 0, which is im-
posed by subtracting the mean after smoothing δgq,i as described
above. This does result in a statistically slightly sub-optimal es-
timate, as it gives equal weight to all scans, rather than assigning
inverse noise variance weights as in Eq. (25). Solving the time-
dependent system with Lagrange multipliers would be computa-
tionally prohibitively expensive, as it includes more than 44 000

individual PIDs per detector. We note that the current solution
is statistically unbiased, even if slightly sub-optimal, and we
leave implementation of the exact Wiener-filter approach to fu-
ture work.

4. Results

We are now finally ready to present gain estimates for each
Planck LFI radiometer, as estimated within the end-to-end
Bayesian BeyondPlanck analysis framework.
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Fig. 11: Comparison of gain estimates for the 70 GHz detectors. See Fig. 9 for details.

4.1. Gain posterior distributions

We start by considering the sampling efficiency of the Monte
Carlo chains produced with the above algorithm in terms of
mixing and Markov chain correlation lengths. Figure 6 shows
total gain as a function of Gibbs iteration for some representa-
tive radiometers and PIDs. Overall, most chains are stable and
mix well, but there are some cases for which the gain solution
is slowly drifting, and do not properly converge to a stationary
value within the length of the Gibbs chain. A particularly bad
example is the 30 GHz LFI 27M radiometer, PID 15 431. These
situations are in general more common for the 30 GHz channel
than the higher frequencies, because of the higher foreground
signal in this channel. They are also more common for PIDs for
which the Planck scanning strategy is closely aligned with the

Galactic plane, since a relatively larger fraction of the data are
rejected by the processing mask.

To globally characterize these issues, Fig. 7 shows the corre-
lation lengths across all PIDs. The black line shows the estimated
mean correlation length, whereas the blue bands show the esti-
mated standard deviation. Thus, for 44 and 70 GHz essentially
all cases have a correlation length shorter than 10–15 samples,
and therefore mix well. However, the correlation lengths for the
30 GHz channel are slightly worse, especially for the 27S and
28M radiometers, where samples separated by 20–30 steps have
a mean correlation of roughly 10 %. This behaviour is likely to
be improved in future processing, when better foreground mod-
elling will allow a smaller processing mask.
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Fig. 12: Map of the correlated noise, ncorr, of the Q Stokes pa-
rameter for the 44 GHz frequency channel, smoothed to an ef-
fective angular resolution of 5◦ FWHM. Reproduced from Suur-
Uski et al. (2020).

In Fig. 8, we show relative differences between the last sam-
ple of the chain and the first drawn sample (red line), and we
compare that to the similar relative difference with the second-
to-last sample in the chain (blue line), as well as an in-between
chain comparison (green line). We see that even the first sample
of the chain is as close to the final solution as the next-to-last
sample, and the conditional burn-in period with respect to the
gain does not significantly affect our results. Long-term burn-in
is caused indirectly through correlations with other parameters
in the system. Because of these external correlations, we follow
BeyondPlanck Collaboration (2020), and omit the first 50 sam-
ples when presenting the final gain estimates.

In Figs. 9–11, we compare the the gain factors derived by
BeyondPlanck, NPIPE, and Planck 2018 for each detector. For
BeyondPlanck, the widths of each curve represent 1σ posterior
confidence regions as evaluated directly from the Gibbs chains
(after omitting 50 samples for burn-in), while for the other two
solutions we only show final best-fit estimates.

Overall, the largest differences between BeyondPlanck and
the other two pipelines are observed in the 30 GHz channel. In
particular, we find that the BeyondPlanck gain model is system-
atically lower than the 2018 model by about 0.84 % and than
NPIPE by about 0.67 % for this channel, which translates into
frequency maps that are about 0.84 % (or 0.67 %) brighter. We
also see that the NPIPE and 2018 models agree very well for
three of the radiometers, while 28S is an outlier, for which NPIPE
is close to BeyondPlanck.

The 30 GHz channel is the most difficult to calibrate among
all three LFI channels, because of its brighter foreground signal,
and the different ways in which the three pipelines handle this
fact makes the abovementioned gain solution differences less
surprising: The NPIPE process treats this channel separately, in
that this channel is analyzed without priors on polarized fore-
grounds. The resulting map is then subsequently used as a spa-
tial polarization prior for the 44 and 70 GHz channels (Planck
Collaboration Int. LVII 2020). In comparison, the 2018 approach
also assumes vanishing CMB polarization during calibration, but
this approach make no distinction between the orbital and Solar
dipole with respect to absolute gain calibration (as both NPIPE
and BeyondPlanck do), but rather assumes that the fitted fore-

ground model is sufficiently accurate. In contrast, the Beyond-
Planck pipeline does not treat the 30 GHz channel differently
in any way, and also does not assume that the CMB polariza-
tion signal vanishes (except for the single quadrupole mode, as
discussed in Sect. 2.4). Instead, it uses WMAP information to
support the foreground modelling, and to constrain the poorly
measured modes in LFI. Overall, these algorithmic differences
lead to the observed deviations between the various solutions.

The relative differences are smaller for 44 and 70 GHz:
−0.14 % (44 GHz) and −0.69 % (70 GHz) between Beyond-
Planck and the Planck 2018 model, and 0.02 % (44 GHz) and
-0.08 % (70 GHz) between BeyondPlanck and NPIPE. For 44
and 70 GHz the agreement between BeyondPlanck and NPIPE is
generally excellent, while the 2018 model generally has slightly
higher absolute calibration than other two in the 70 GHz channel.
The main visual difference between BeyondPlanck and NPIPE
lies in the fact that BeyondPlanck smoothes the gain solution
after estimation, while NPIPE does not.

4.2. 44 GHz correlated noise stripes

As discussed by Suur-Uski et al. (2020), the BeyondPlanck
44 GHz correlated noise maps exhibit a number of strong
“stripes” in the 44 GHz channel. This effect is shown in Fig. 12
for the Stokes’ Q parameter, as reproduced from Suur-Uski et al.
(2020). Significant effort has been spent on identifying the ori-
gin of these stripes, but no firm conclusions have been reached
yet. One example of the tests that we have done is to reduce the
smoothing window widths listed in Table 2 by a factor of two. In
this case, we do note that the stripes disappear from ncorr, but at
the same time, we also see large spikes appearing in the gain so-
lution for PID ranges for which the scanning direction is aligned
with the dipole minimum, and thus for which the signal-to-noise
is low for purposes of gain estimation.

Another line of investigation has been to modify the process-
ing masks shown in Fig. 4, noting that strong point sources or
signal gradients can induce stripes like this. However, we have
not yet been able to construct any mask that solves this prob-
lem, or, indeed, modifying the general behaviour of the stripes
notably.

A third hypothesis that has been considered is the potential
presence of undetected large gain jumps, similar to those listed in
Table 1. In the current implementation, this list is adopted with-
out modification from previous analysis pipelines. Noting that
the 44 GHz radiometers generally appear more susceptible to
non-thermal artefacts than the other two frequency channels, it is
reasonable to speculate that some subtle hardware failures could
affect one or more of the 44 GHz radiometers, similar to what is
seen in the 44 GHz LFI 26S radiometer around PID 20 800. We
have, however, not yet been able to identify any obvious gain
jumps of this type, and this is therefore still only speculation.

Understanding and mitigating these stripes is clearly one of
the top priorities for future BeyondPlanck analysis, as they cur-
rently appear to limit our ability to extract reliable CMB po-
larization information from the Southern Galactic hemisphere
(Colombo et al. 2020; Paradiso et al. 2020).

4.3. Comparison with external data

To understand the combined impact of the various gain model
differences discussed above, it is useful to compare the final Be-
yondPlanck frequency maps with externally processed observa-
tions, both from WMAP and Planck. In this respect, we note that
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Fig. 13: Gain residual template for the LFI 30 GHz channel, produced by the Planck DPC through manual iteration between cali-
bration, mapmaking and component separation (Planck Collaboration II 2020).
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Fig. 14: Differences between BeyondPlanck and 2018 or NPIPE frequency maps, smoothed to a common angular resolution of 2◦
FWHM. Columns show Stokes T , Q and U parameters, respectively, while rows show pair-wise differences with respect to the
pipeline indicated in the panel labels. A constant offset has been removed from the temperature maps, while all other modes are
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Planck Collaboration (2020).
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Fig. 15: Difference maps between the Planck 30 GHz and WMAP K-band maps for Planck 2018 (first row), NPIPE (second row),
and BeyondPlanck (third row). All maps have been smoothed to a common angular resolution of 3◦ FWHM before evaluating the
differences. The WMAP K-band map has been scaled by a factor of 0.495 to account for different center frequencies, assuming
a synchrotron spectral index of βs = −3.1. The bottom row shows one of the WMAP K-band transmission imbalance templates
discussed by Jarosik et al. (2007), which accounts for known poorly measured modes in the WMAP data.
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both the Planck 2018 and WMAP data sets are associated with
sets of correction templates that track known systematic effects
(or poorly measured modes) in the respective sky maps. For the
Planck 2018 30 GHz channel, this template is shown in Fig. 13.
As discussed by Planck Collaboration II (2020), this template
was produced by iterating between calibration and component
separation, and therefore trace uncertainties in the gain model
due to foreground uncertainties. Furthermore, due to limited
time, only four full iterations of this type was completed for the
Planck 2018 analysis, and one must therefore expect that there
are still residuals of this type present in the final sky maps at
some level.

With this in mind, we show in Fig. 14 BeyondPlanck–NPIPE
and BeyondPlanck–Planck 2018 difference maps for Stokes I,
Q, and U (columns), for all three LFI frequencies (rows). The
first, third and fifth rows show differences with respect to Planck
2018, while the second, fourth and sixth rows show differences
with respect to NPIPE. Several features in these difference maps
are interesting from the calibration perspective. Starting with the
NPIPE temperature difference maps, we see that all three chan-
nels are dominated by a clean dipole-like residual aligned with
the Solar CMB dipole. This shows that the BeyondPlanck and
NPIPE temperature maps are morphologically very similar, but
have different absolute calibration. We also see that the tempera-
ture map difference between BeyondPlanck and NPIPE exhibits
a flip in the dipole direction going from 30 to 44 to 70 GHz. This
sign change is consistent with the differences in the calibration
factors between 44 and 70 GHz reported in Table 10 in Planck
Collaboration Int. LVII (2020), finding a difference of 0.31 %
between the absolute calibration of the 44 and 70 GHz channels.
Since the CMB Solar dipole has an amplitude of about 3360 µK,
this relative difference translates into an absolute temperature
difference of roughly 10 µK in the observed sky signal, which is
fully consistent with the dipole differences we see in Fig. 14. In
comparison, the Planck 2018 temperature difference maps show
a more prominent quadrupolar structure with a morphology that
might resemble the effect of bandpass mismatch leakage (Planck
Collaboration X 2016; Planck Collaboration Int. LVII 2020).

For polarization, the most striking differences are seen in the
30 GHz channel, for which variations at the 4 µK level are seen
over large fractions of the sky. Furthermore, these residuals cor-
related very closely with the LFI DPC gain template shown in
Fig. 13, suggesting that they are indeed caused by foreground-
induced gain residuals. The same patterns are also seen in the
NPIPE difference maps, but with a notably lower level.

For the 44 GHz maps, the visually most obvious feature is
a high white noise level, which is due to BeyondPlanck reject-
ing data from horn 26 for more than half the mission because
of noise instabilities (Ihle et al. 2020; Suur-Uski et al. 2020). In
addition, we note that the Stokes Q difference maps show corre-
lated noise stripes similar to those highlighted in Fig. 12. How-
ever, we also note that these structures have different amplitudes
in the NPIPE and Planck 2018, and these stripes are therefore
present in at least one of the other pipelines as well, and possi-
bly both.

Figure 15 shows a similar comparison between the various
Planck 30 GHz maps and the WMAP K-band channel (Bennett
et al. 2013). In this case, all maps have been smoothed to a com-
mon angular resolution of 3◦ FWHM, and the K-band map has
been scaled by a factor of 0.495 to account for the different cen-
ter frequencies of the two maps while adopting a synchrotron-
like spectral index of βs = −3.1. From top to bottom, the first
three rows show difference maps with respect to Planck 2018,
NPIPE, and BeyondPlanck.

Overall, we see a clear progression in agreement with re-
spect to WMAP K-band, in the sense that BeyondPlanck shows
smaller residuals than NPIPE, which in turn shows smaller resid-
uals than Planck 2018. Furthermore, we note that the strong
residuals traced by the LFI gain template in Fig. 13 are most
pronouced in the Planck 2018 map.

At the same time, we also observe significant coherent large-
scale features in the difference map between BeyondPlanck
and K-band. To at least partially understand these, we show
the WMAP transmission imbalance templates derived by Jarosik
et al. (2007) in the bottom row of Fig. 14. These templates
trace poorly measured modes due to the differential nature of
the WMAP instrument. Although corrections for this effect are
applied to the final K-band sky maps, the uncertainty on the tem-
plate amplitudes is estimated to 20 %. Considering the tight cor-
relation between the BeyondPlanck–WMAP difference map and
the transmission imbalance template, it seems clear that at least
a significant fraction of the remaining residual may be explained
in terms of this effect. Of course, this also suggests that a future
joint analysis between Planck and WMAP in time-domain will
be able to constrain the WMAP transmission imbalance param-
eters to much higher precision, and Planck data can thereby be
used to break an important internal degeneracy in WMAP. As
reported by Watts et al. (2020), this work has already started,
but a full exploration of time-ordered WMAP data is outside the
scope of the current analysis. We also emphasize that the current
BeyondPlanck analysis only use low-resolution WMAP polar-
ization data for which a full covariance matrix is available, and
these modes are appropriately downweighted in those matrices.

5. Conclusions

We have presented the BeyondPlanck approach to gain calibra-
tion within the larger Commander Gibbs sampling framework.
This framework relies directly on the Solar and orbital dipoles
for relative and absolute calibration, respectively, and accounts
for astrophysical foreground and instrumental confusion through
global modelling.

One critically important difference with respect to previous
Planck LFI analysis efforts is the fact that we actively use ex-
ternal data to break internal Planck degeneracies, and in partic-
ular WMAPobservations. This significantly alleviates the need
for imposing strong algorithmic priors during the calibration
process. Most notably, while both the Planck 2018 and NPIPE
pipelines assumed CMB polarization to be negligible on all an-
gular scales during the calibration phase, we only assume that
the CMB quadrupole is negligible. The reason we still make this
assumption is that the Planck scanning strategy renders the CMB
quadrupole very nearly perfectly degenerate with the CMB Solar
dipole coupled to subtle gain fluctuations; a hypothetical future
and well-designed satellite mission should not require this prior,
as long as its scanning strategy modulates the CMB dipole on
sufficiently short time-scales and with good cross-linking.

Overall, we find good agreement between the BeyondPlanck
and previous gain models. The biggest differences are observed
in the LFI 30 GHz channel, with gain variations of 0.84 % be-
tween Planck 2018 and BeyondPlanck. These differences result
in subtle but significant temperature and polarization residuals.
When comparing these with external WMAP K-band observa-
tions, it seems clear that the BeyondPlanck LFI maps are gener-
ally cleaner than previous renditions with respect to gain resid-
uals. At the same time, we emphasize that these differences are
also consistent with previously published error estimates, as pre-
sented by the Planck 2018 and NPIPE teams themselves. For in-
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stance, the morphology of the Planck 2018 polarization resid-
uals matches previously published LFI DPC gain residual tem-
plates (Planck Collaboration II 2020), and the NPIPE absolute
calibration differences are fully consistent with internal NPIPE
estimates (Planck Collaboration Int. LVII 2020). These results
are thus neither novel nor surprising, but they simply highlight
the inherent advantages of global analysis, using complementary
data sets to break internal degeneracies.

Finally, we note that even though the procedures outlined in
this paper have been aimed at modelling the LFI detectors, there
is nothing about the data model or methodology that is unique
for LFI. The method should be directly applicable for other data
sets and experiments as well, and, indeed, a preliminary WMAP
analysis is already underway (Watts et al. 2020).
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