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a)

We have the Dirac equation for a charged particle in an electromagnetic field

[~α · ~π +mβ + V ] Ψ = i
∂Ψ

∂t
. (1)

We have ~π = ~p− e ~A(x), where ~p = −i~∇, and V = eA0.
We assume we can separate the wavefunction, Ψ, into a time dependent

and a time independent part in the following way

Ψ(x) = e−iEtΨE(~x) = e−iEt
(
φ(~x)
η(~x)

)
.

We split the energy into two parts, E = m + ENR. We also work in the
non-relativistic limit where |ENR| � m and |V | � m.

We easily find the time derivative

i
∂Ψ

∂t
= EΨ.

This means that the space dependent part of Ψ, ΨE(~x), has to satisfy the
following equation (analagous to the Time Independent Schrödinger Equation
from non-relativistic quantum mechanics.)

[~α · ~π +mβ + V ] ΨE(~x) = EΨE(~x).

Writing this on “block” matrix form, and using the Pauli representation
of the matrices (~α and β), we get(

V +m ~σ · ~π
~σ · ~π V −m

)(
φ(~x)
η(~x)

)
= E

(
φ(~x)
η(~x)

)
.
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We write out each of the two equations

(V +m)φ(~x) + (~σ · ~π)η(~x) = Eφ(~x). (2)

(~σ · ~π)φ(~x) + (V −m)η(~x) = Eη(~x). (3)

Solving for η in eqn (3) we get

η(~x) =
(~σ · ~π)φ(~x)

E +m− V
≈ (~σ · ~π)φ(~x)

2m
, (4)

where we have set E+m−V ≈ 2m since we are in the non-relativistic limit.
Putting the expression for η into eqn (2) we get

(V +m)φ(~x) +
(~σ · ~π)2

2m
φ(~x) = Eφ(~x). (5)

Using that E = m+ ENR we get[
(~π · ~σ)2

2m
+ V

]
φ(~x) = ENR φ(~x). (6)

b)

To go further we use the following property of the Pauli-matrices

(~a · ~σ)(~b · ~σ) = (~a ·~b)I + i(~a×~b)~σ.

We then get

(~π · ~σ)2 = (~π)2I + i(~π × ~π)~σ. (7)

It would seem that the cross product ~π × ~π is just zero, but we need to
remember that π = ~p− e ~A(x) is an operator. Note also that in the position

representation ~A(x) is just a function, while ~p is a derivative operator. Using

~p = −i~∇ and showing how the operator acts on the field φ we get

(~π × ~π)φ = (−i~∇− e ~A)× (−i~∇− e ~A)φ

= (−~∇× ~∇+ ie~∇× ~A+ ie ~A× ~∇+ e2 ~A× ~A)φ

= (ie~∇× ~A+ ie ~A× ~∇)φ

= ie ~Bφ+ ie ~(∇φ)× ~A+ ie ~A× ~(∇φ)

= ie ~Bφ,

where we have used that ~B = ~∇× ~A.
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We can now put everything together

[
(~π · ~σ)2

2m
+ V

]
φ(~x) =

[
(~π)2

2m
− e

2m
~σ · ~B + V

]
φ(~x) = ENR φ(~x). (8)

We recognize this as the (time-independent) Scrödinger equation for a
charged spin 1/2 particle in an electromagnetic field. I would like to note
that in non-relativistic quantum mechanics spin was something we had to
postulate, however we see that in the non relativistic limit of the Dirac equa-
tion the spin degrees of freedom arise naturally. Another thing that we see
is that the Dirac equation predicts a gyromagnetic ratio equal to 2 (before
corrections from QED). This is also a value that can not be derived from
non-relativistic quantum mechanics. We see that the spin is an inherently
relativistic quantity, and altough we see its effects in non-relativistic theories
we need special relativity to understand where these effects come from.
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We are to show that the trace of the matrices M · N , is given as a sum of
five terms

Tr(M ·N) = aTr(M) · Tr(N) + bTr(Mγ5) · Tr(γ5N)

+cTr(Mγµ) · Tr(γµN) + dTr(Mγµγ5) · Tr(γ5γ
µN)

+eTr(Mσµν) · Tr(σµνN). (9)

We use the different antisymmetric combinations of the Dirac matrices as
a basis, and write M and N as superpositions of these basis matrices. There
are 16 basis matrices in total, of five types

Type Number of this type
I 1
γµ 4

σµν = i
2
[γµ, γν ], (µ < ν) 6
γ5γ

µ 4
γ5 1

An important thing to note about these basis matrices is that the only
one with non-zero trace is the identity matrix, with trace of 4. Products of
the different basis matrices are also traceless unless it is a product of one basis
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matrix with itself, in which case the matrix product becomes the identity (up
to a sign). We can say that the basis matrices are orthogonal under trace.

We introduce the following notation for the 16 basis matrices

Θa,

we can expand a general matrix, R, in this basis

R =
16∑
a=1

raΘa. (10)

To find ra we introduce a set of corresponding basis matrices, Θa =
(Θa)−1, with the property that ΘaΘa = I (for a given value of a). The new
basis differs from the old one only up to a sign, so the matrices are still
orthogonal under trace.

We can likewise expand the matrix, R, in the new basis

R =
16∑
a=1

raΘa.

We can use this new basis to find the coefficients ra.
Multiplying eqn (10) by Θb from the right we get

RΘb =
16∑
a=1

raΘaΘb = rbΘbΘb +
∑
a6=b

raΘaΘb.

Now we can take trace on both sides

Tr(RΘb) = rbTr(ΘbΘb),

and we get

ra =
1

4
Tr(RΘa). (11)

In the same way we have

ra =
1

4
Tr(RΘa). (12)

Now we need to find the right expressions for Θa. It is clear that (γµ)−1 =
γµ in the sense that for example γ2γ2 = I. We could try the same approach
and guess that (γ5γ

µ)−1 = γ5γµ but γ5γ
µγ5γµ = −4, so we get an extra minus

sign. We can take care of this sign by commuting γµ and γ5 past eachother
and we get

(γ5γ
µ)−1 = γµγ5.
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Since γ5γ5 = I it is its own inverse.
We also have that (σµν)−1 = σµν . Thus we now know the exact expres-

sions for both the basises

Θa = {I, γµ, σµν (µ < ν), γ5γ
µ, γ5}, (13)

Θa = {I, γµ, σµν (µ < ν), γµγ5, γ5}. (14)

Now we have all we need to calculate the trace of the product of two
matrices N and M . We expand M in the Θµ basis, and we expand N in the
Θµ basis

Tr(M ·N) =
∑
a

manaTr(Θ
aΘa) +

∑
a6=b

manbTr(Θ
aΘb)

= 4
∑
a

1

4
Tr(MΘa)

1

4
Tr(NΘa)

=
1

4
Tr(M) · Tr(N) +

1

4
Tr(Mγ5) · Tr(γ5N)

+
1

4
Tr(Mγµ) · Tr(γµN) +

1

4
Tr(Mγµγ5) · Tr(γ5γ

µN)

+
1

4
Tr(Mσµν) · Tr(σµνN). (15)

We see then that all the coefficients are equal to 1
4
.

If we had not restricted ourselves to µ < ν, we would get e = 1
8
, since

each of the six independent basis matrices in σµν would contribute twice. I
chose the restriction µ < ν to make it clear how many linearly independent
basis matrices σµν contains, and to fit all the different basis matrices into the
same general framework.

3

a)

We are looking at the first order term in the scattering of a positron in a
given Coulomb potential. We are calculating the amplitude

S
(1)
fi = 〈f |S(1]|i〉, (16)

where
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S(1) = −ie
∫
d4xN [ ¯ψ(x)γµψ(x)]Aµ(x).

The Dirac-field, ψ, we write in the following way

ψ =

ψ+ + ψ− =∑
r,~p

1√
2E~pV

cr(~p)ur(~p)e
−ipx

︸ ︷︷ ︸
destroys particles

+
∑
r,~p

1√
2E~pV

d†r(~p)vr(~p)e
ipx

︸ ︷︷ ︸
creates anti-particles

. (17)

The adjoint field, ψ̄, is defined as ψ†γ0 = ψ̄. This gives us

ψ̄ =

ψ̄+ + ψ̄− =∑
r,~p

1√
2E~pV

dr(~p)v̄r(~p)e
−ipx

︸ ︷︷ ︸
destroys anti-particles

+
∑
r,~p

1√
2E~pV

c†r(~p)ūr(~p)e
ipx

︸ ︷︷ ︸
creates particles

. (18)

The spinors, ur(~p) and vr(~p) are given as

ur(~p) =
√
E~p +m

(
χr

~σ·~p
E~p+m

χr

)
, vr(~p) =

√
E~p +m

(
~σ·~p

E~p+m
χr

χr

)
.

The initial and final states are states with one positron, but with different
spin and (3-) momentum. We write

|i〉 = |e+(~pσ)〉,

|f〉 = |e+(~p′σ′)〉.

Writing out the full amplitude we get

S
(1)
fi = 〈f |S(1]|i〉

= −ie〈e+(~p′σ′)|
[∫

d4xN [ ¯ψ(x)γµψ(x)]Aµ(x)

]
|e+(~pσ)〉. (19)
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Let us first look at what the normal ordering will give (I write out spinor
indices to avoid ambiguous notation)

N [ ¯ψ(x)γµψ(x)] = [ψ̄+
α γ

µ
αβψ

+
β − ψ

−
β γ

µ
αβψ̄

+
α + ψ̄−α γ

µ
αβψ

+
β + ψ̄−α γ

µ
αβψ

−
β ].

We see that only the second term here was affected by the normal order-
ing.

Lets look at each of the terms in order

ψ̄+
α γ

µ
αβψ

+
β

This term will annihilate a particle and then annihilate an anti-particle.
This term will not contribute to our process since ψ+ will just annihilate the
initial state (there are no particles in the initial state).

−ψ−β γ
µ
αβψ̄

+
α

This term will annihilate an anti-particle and then create an anti-particle.
This term will contribute to our process since the final state is also a anti-
particle.

ψ̄−α γ
µ
αβψ

+
β

This term will annihilate a particle and then create a particle.This term
will not contribute to our process since it will just annihilate the initial state.

ψ̄−α γ
µ
αβψ

−
β

This term will create a particle and then create an anti-particle. This
term will not contribute to our process since the final state is not a 3-particle
state.

In conclusion we see that only the second term contributes to our process.
We get

S
(1)
fi = ie〈e+(~p′σ′)|

[∫
d4xψ−β (x)γµαβψ̄

+
α (x)Aµ(x)

]
|e+(~pσ)〉. (20)

Lets first see what we get by acting with ψ̄+ on the initial state
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ψ̄+|e+(~pσ)〉 =
∑
r,~k

1√
2E~kV

dr(~k)v̄r(~k)e−ikx|e+(~pσ)〉

=
∑
r,~k

1√
2E~kV

v̄r(~k)e−ikxδ~k,~pδrσ|0〉

=
1√

2E~pV
v̄σ(~p)e−ipx|0〉.

We can also find the rest of the inner product

〈e+(~p′σ′)|ψ−|0〉 = 〈e+(~p′σ′)|
∑
r,~k

1√
2E~kV

d†r(
~k)vr(~k)eikx|0〉

=
∑
r,~k

1√
2E~kV

vr(~k)eikx〈e+(~p′σ′)|e+(~kr)〉

=
1√

2E~p′V
vσ′(~p′)eip

′x.

This gives us

S
(1)
fi = ie

1

2V
√
E~p′E~p

[∫
d4x vβσ′(~p′)e

ip′xγµαβAµ(x)v̄ασ (~p)e−ipx
]

(21)

= ie
1

2V
√
E~p′E~p

[∫
d4x v̄ασ (~p)γµαβAµ(x)vβσ′(~p′)e

−i(p−p′)x

]
. (22)

In the given vectorpotential, A0 = C
|~x| , Ai = 0, we get the following

S
(1)
fi = ie

v̄σ(~p)γ0vσ′(~p′)

2V
√
E~p′E~p

∫
d4x

C

|~x|
e−i(p−p

′)x. (23)

b)

Taking the integral over the time part of eqn (23) we get

S
(1)
fi = ie

v̄σ(~p)γ0vσ′(~p′)

2V
√
E~p′E~p

∫
d3~x

C

|~x|
e−i(~p−~p

′)~x2πδ(Ep − Ep′). (24)
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Using the integral identity given in the problem text we get

S
(1)
fi = ie

v̄σ(~p)γ0vσ′(~p′)

2V E~p

8π2C

|~p− ~p′|2
δ(Ep − Ep′). (25)

We see from the delta-function in energy that the energy of the positron
is conserved.

c)

Lets look more closely at the spinor product in eqn (25)

v̄σ(~p)γ0vσ′(~p′) = v†σ(~p)vσ′(~p′).

First we look at the non-relativistic limit and quantize the spin along the
same fixed axis.

This gives us

v†σ(~p)vσ′(~p′) = (E~p +m)
(
χ†σ

~σ·~p
E~p+m

χ†σ

)( ~σ·~p′

E~p+m
χσ′

χσ′

)

= (E~p +m)

[
χ†σ

~σ · ~p
E~p +m

~σ · ~p′
E~p +m

χσ′ + χ†σχσ′

]
. (26)

But we have |~p| � m, so we can neglect the first term and we get

v†σ(~p)vσ′(~p′) ≈ (E~p +m)χ†σχσ′ = (E~p +m)δσσ′ . (27)

We see that in the non-relativistic limit, the amplitude vanishes unless
σ = σ′, this means that (in this limit) the spin of the positron is approxi-
mately conserved.

When we look at the ultra-relativistic limit (or equivalently the massless
limit), we want to show that the helicity is conserved. We therefore quantize
the spin of the incoming particle along its momentum, ~p. Correspondingly
we quantize the spin of the outgoing particle along its momentum, ~p′. Since
we have quantized the spin in the direction of the momentum, the spinors
χλ satisfy the following condition

(~σ · p̂)χλ = ±χλ,

where p̂ is the unit vector along ~p, and ± means positive or negative helicity.
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In this limit E~p +m ≈ |p| and we get

v†σ(~p)vσ′(~p′) ≈ (E~p +m)
[
χ†λ(~σ · p̂)(~σ · p̂′)χλ′ + χ†λχλ′

]
= (E~p +m)

[
±χ†λχλ′ + χ†λχλ′

]
, (28)

where ± in the last case is + if the helicity eigenvalues are equal and − if
they are different.

We see that in the ultra-relativistic limit, the amplitude vanishes if the
initial and final states have opposite eigenvalues of helicity. We do not how-
ever get a simple delta-function in the case where the eigenvalues are the
same, this is because the spin is quantized in different directions. In general
this amplitude is dependent on the angle between the incoming and outgoing
momenta.
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