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1 Problem 1
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Figure 1: 11%(¢)®. Gluon diagram calculated in Problem 1

We are calculating the gluonic vacuum polarization from this diagram.
Where I1%(¢)® is given by (in D = 4 — ¢ dimensions)

v a 1 —1 —l ac c v
I ()™ = —/d’p— g feet freaney,

2 p? (p+q)?
where D
p
dp =
and

N = [g"(q —p)” + 9" 2p + )" + 97" (—p — 2q)"]
X [85(p = @)o + Gpo (=20 + —q)" + 64(p + 2q),] -

We can simplify the integrand by using Feynman parametrization

1 _/1 dx
ab  Jy [b+ (a—b)x]?
we get

11 /1 dz B /1 dzx
(r+q)?2p* Jo PP+ ((+9?*—pH)2>  Jo [(P*+2p-qr + 2% — ¢?22 + ¢*x]?

B /1 dx B /1 dz
Jo o +ge)? + e —a?)2 Jy [P2—- AP
where P = p + gz and A = —x(1 — x)¢*
Now, using [ fbed = Cy(G)5% = 309, we get the following integral



I (q)* = —3—925“ / 1 dx / Pt N
¢ 2 0 [P? — AJ?

Lets move on to the numerator, N#¥. First we just multiply out

N =g"(q=p)-(p— @) + (@ —p)"(=2p = q)" + (p+ 2¢)"(¢ — p)"+
@p+ @) (p—a)”"+D2p+a)"(=2p— @) + (2p+ @)"(p + 29)"+
P —@)"(=p—2¢)" + (=p = 20)"(—2p — @)" + 9" (=p — 2¢) - (p + 29).
Now we want to write the numerator in terms of P, x,q and d. Note also
that we can drop all terms linear in P since the denominator is even in P

and these will not contribute to the integral. Using this, we get the following
substitutions when changing variables

2
PHpY — gwi
_D’

p2:P2—2P-qx+q2x2zp2—|—q2x2,
2

P
PP = PP = Pige = ¢"P'r + "¢ = g + ¢,

p'q" = P"q¢" — ¢"q"r = —¢"¢"x,

p-q=—qx
Note that all the terms on the right hand side are symmetric in x4 and

v so we can freely switch these indices when collecting terms. Lets put this
into the numerator

N® = —g"[q" = 2p-q+p* +4¢" +4p - ¢+ p*] — Dl¢"q" + 4p"q" + 4p'p”]
+ 2[=2¢"p" — ¢"q¢" + 2" + p"'q" + p'q” — D" + 2¢"q” — 2¢"p”
+ 2pMp" +4p"¢" + ¢"'p” + 2¢"¢"]

P2
—g"[*(5 — 22 + 22%) + 2P?] — D[¢"q"(1 — 4z + 42%) + 49“”3]

P2
+ 6" + ¢'q"* — "¢’z + ¢"¢"]
= —¢"P%[1 —1/D] — ¢"¢*[(2 — x)* + (1 + 2)’]

+ ¢"¢"[(2 - D)(1 —2x)? +2(1 + z)(2 — z)].
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We then get (using the table of Minkowski space integrals on page 807 is PS)

% (q)® = 39 =2 geb / / dp [PQN‘“’+N"”] =
3 [ g [ (FEU DD (1Y
2 0 ! (4m)P/2 2 \ A

(e ()

Where we define

N = —g™6[1 —1/D),

Ny = =g @?[(2 =)’ + (1+2)*] + ¢"¢"[(2 = D)(1 - 22)* +2(1 + 2)(2 — )].
Now we multiply N by A in both the numerator and the denominator.

This gives us

I (q)* = Lf&“b 1 ! (1 - D/2)g"¢*3[D — 1]z(1 — z)
c \4 2(47T)D/2 A2 ‘AN2-D/2 94

+0(2 = D/2)g"¢*[(2 — 2)* + (1 + 2)?]
—I'(2— D/2)¢"q"[(2 — D)(1 — 22)* + 2(1 + 2)(2 — )] |.
Note that this does not have the transverse Lorentz structure required by

the Ward identity. We have to combine it with the other terms to see what
we get.

2 Problem 2

. 1w Nab
2.1 Tadpole diagram, IT;;(q)"
The tadpole diagram gives the following vacuum tensor contribution

1

v a —1 . v,a
I () = 5/@”19?(—@92)1\“‘ @,
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Figure 2: TI};(¢)*. Tadpole diagram calculated in Problem 2

where we have defined

Nﬂu,ab — gpg(;cd <fabefcd6 <gﬂpgucr _ guoguﬂ>

+ [ fr (g g — g7 g"P)

e fr (g 9P — g“pg"”))-

Applying the deltafunction and metric tensor we get
NHwab — ggab(gn ) ghv)

+30°(g"' D — g")
= 66g" (D —1).

Thus the integral now becomes

v al Qa v 1
I (q)* = —3¢g%6“°g" (D — 1) /d’p]; =0, (D—4)

This integral gives zero in dimensional regularization as we go to four
dimensions, put there is a pole at D = 2. We also note that one of the
terms in the amplitude from problem one has the same pole (the term with
['(1 — D/2)). If we write all the amplitudes on the same form we can see if
we cancel the pole at D = 2. If we multiply our expression with (¢+p)? both
in the numerator and denominator we can use exactly the same Feynman

parametrization as in problem 1.

(¢ +p)?
(¢ +p)?

2 a a v 1
1Y () = —3¢%6“° g (D — 1) / d'pz?



1
v a a v 1
H'gp (q) b = —3925 bgu (D — 1)/ dx/d’PmN,
0

where
N=(p+q°’=P +¢(1—2)

We apply the integral formulas and get

1 (1 — 1-D/2
wr--wero o] (SR (3) )

) , (iT2=D/2) [ 1\* P
e (W(Z) )]

3ig> . 7 1 s

12— D/2)g"q?2(D — 1)(1 — x)?] .

2.2 Ghost diagram, H’;Z(q)“b

Lets go on to the ghost diagram.

q+p
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Figure 3: Hgﬁ(q)“b. Ghost diagram calculated in Problem 2.

The amplitude of the ghost diagram is given by

l

H’“’qab:—/d’pi
o) p? (p+q)?

N,ul/,ab — fdac(p+Q)Hbed . _35ab(p+ q),upu'

(92 ) Np,l/,ab’

where



We get
I (q)* = —3¢%6* / d’pi;(p + q)!'p"”.
g p*(p+q)?

Here also we can use the same Feynman parametrization as in problem 1, we
get

1
1
Hul/ ab _ -3 2§ab/ d /d/P—N'uV
gh (q) g 0 X [P2 _ A]2 )
where the numerator is given by

P2
N =(p+ )" = 9" 5 +d"¢" (2" — ).

Using the integral formulas for dimensional regularization we get
! w [ _iT(1—D/2)D (1\"P"?
1) ab __ -3 25ab/ d g_ i e
o (4) 7 ) YD @mPz 2 \A

v iT(2—D/2) (1\* "/
+¢"q"(¢* — ) <—(47T)D/2 (Z) )

Lets write this on the same form as in the others so we can combine all the
expressions

H/U/ ab __ 37’92 5ab 1d 1 (1 D /2) g 2 1
oh () = o(4m)DR2 ; NS (1-D/2)g"q"z(1 — )

+I'(2 — D/2)¢"q"2x(1 — x)} :

2.3 Combining all three diagrams

Now we can combine the three contributions to see if they combine to an
expression on the required form.

T (q)™ =TIy () + T1fy ()™ + T1ky ()™
= 571 \D2 D/25a6/0 dmﬁ {F(l—D/Q)gW(f <x(1—x)(3[D—1]—D(D—l)—1)>
+F(2 — D/Q)g/“/q2((2 _ x)Z 4 (1 I 12)2 B 2(D _ 1)(1 B I)2>

7



4T(2 - D/2)q”q”< — (2= D)(1—22)* —2(1 +2)(2 — ) + 22(1 — x))} .
We can combine the two first terms by using
(1-D/2)I'(1—-D/2)=T(2—- D/2).

If we are to get the correct form of the amplitude we need the coefficients
of g""¢* to be equal to minus the coefficient of ¢*¢” this means that the
following two integrals over x need to be equal.

/0 dxﬁ [(2 —2)P+(1+2)?-2(D-1)(1—2)*+2(D-2)x(1 - :r;)}

— /01 dxﬁ [(2 —D)(1—-22)*+2(1+2)(2—2) — 2z(1 — x)}

It is not entirely obvious, but we can show that these two integrals are
equal if we exploit the symmetry of the denominator under the change of
variables z — (1 — x). In this way we can set

1 1 1
= — = — ]_ — — —
x 2(x+x) 2(x+( r)) 5
If we do this the expressions both get the form

1
1 2

Thus we get

v/ \a 3292 a ! F(2 _ D/Q) v v

We can evaluate the integral over x using the formula given in the problem

text
/1d D +2+4(2 — D)x? D/2 —1)['(D/2 1)
i
0

T(D—2)

o = 04

a2 - pyPD/2+ DID)2 - 1)1.

(D)
This gives us the final amplitude

3292 6abr(2 — D/2> uv 2

H“”(q)“bz2<47T)D/2 o (90— ') (=)
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T(D/2 — )I(D/2 — 1)

x [ (D + 2) T(D-9)
42— D)F(D/Q +F1<)£()D/2 - 1)

This is the whole amplitude (to all orders in €). It can be simplified a bit
by using the recursion relations of the gamma functions, but we would not
learn much. It is however interesting to look at the divergent part of the
expression.

The only part of this amplitude that diverges as D — 4 is the gamma
function, I'(2 — D/2).

If we let D — 4 in the finite parts we get the divergent part of the
amplitude (technically only the first term in the expansion of I'(2 — D/2) is
divergent)

v 3i92 ab O
1 (Q)Dbzv = W(S b=

;L(2-D/ 2)(9"¢* — ¢"¢").



3 Problem 3

Figure 4: AT**(k,k',q). Vertex correction term calculated in problem 3

The amplitude coming from the vertex correction with three gluons (not
the three gluon vertex!). In the massless fermion and zero external gluon
momentum limit, the amplitude is given by

. W, (—1i)?
ATH(k, k) = /d’p 197t = (igypt¢) ————
( ) ( )pg( P )((k_p)2)2
g f*[g" (k — p)° — 29" (k — p)* + g™ (k — p)"].
We can simplify this by using the relation (p 806 PS)

1
foreehts = FC(G)

we get
3

ATHA (. k) — o [ dpy,
(k. k) 9 / Py lf’ypr((/{? —p)2)?’

NHvp

where
NP = g (k — p)f — 29" (k — p)" + g”(k — p)”.

Now, applying Feynman parametrization we get

1 B 2/1 xdx
((k —p)?)*p? o [(k—p)2x+p*(l-— x)}g
We change the variables to P = p — kx and this becomes
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! xdx
2
/0 [(k —p)2z +p2(1 — 2)]°

where A = —k?z(1 — z).
Lets work on the numerator. First we note that we have the following
transformations in the numerator of this integral

2 uv
g#

P
PP = (Pka) (Pkz)” = P*PY 4 PrR a4 ki PY 4 kikY o? = R,
Pk = kPEY x.
We get
VYoVl (9" (k — p)’ — 29”7 (k — p)" + g™(k — p)"]
P2 P2
= VYo Yp [g“”(/{;”k”x(l —r)— Fg””) —2¢"P(k°kFx(l — x) — Eg(’“)
P2
FP (1 = ) - ™)

2

=5 (27”7“% — YHyPy, — 7"%7"’)

+2x(1 — ) (YKl — APy, k")
A(D —1)P?

— _Ty“ +22(1 — z)(v*k* + (D — 2)Kk").

Now we are ready to do the integral over P, we get

3l 4D —=1)in* DT(2—=D/2) [/ 1\* P2
AF“’“(k,k)ZBit“/ da:2x[ (D —Lin" DI ”(-)
0

2 D(4m)P2 2 T(3) A

(3 — 3-D/2
b 22(1 — 2)(Y + (D — 2)%#)% (%) ]

_Big Lt @ |AD-1) V2 + (D — 2) Kk
= @npr’ /0 “repp |1 1 F(2—D/2)—¥ e I'(3—D/2)

TV VvV
Finite Divergent Finite

11



We can use the function given in the exercise text to do the integral over x

/1 dor—"  — (_k,Z)D/z—zF(D/Q)F(D/Q -1

A2-D/? T(D—1)
We get
ja _ 3ig> . appaD(D/2)T(D/2-1)[4D-1) ,
AT (k,k)_ﬁt (—k2)P/ SO [ —'T(2-D/2)

V2 4 (D — 2)ikH
- g I'(3— D/Q)] .

If we want to look at just the divergent part of this then we get

. 3ig® . .[3
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4 Problem 4

q
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Figure 5: Diagrams A, B and C. 2 - loop contributions to 2-point function
(self energy) in ¢* theory

For the first diagram we get the amplitude

(—i)? / o i i i
A= d'kd
3! q(q+k)2—m2q2—m2(p+k)2—m2
—i\? 1 1 1
= d'kd
3! / T2 =g+ k)2m? —@m? — (p+ k)2

Now we preform a Wick rotation (i will not bother to re-label all variables
with a subscript F, but this is to be understood implicitly until we go back
to Minkowski space)

P = —p
dk —idk.
—iN2(4)? 1 1 1
Ap = ——— | dkd
F 3! / T g+ kPm? + @ m2 + (p+ k)2
N 1
= d'kd d
3 Q/ $Q2+A] T (p+ B2

where Q = g + zk and A = m? + z(1 — z)k*. We get

X /d, / o r(2-D/2) 1
(4r) D/2 m2 + 2(1— 2)k22 P2 m? + (p + k)2

2-D/2
M2/d’ /dm (1-2)] D/2 Q}F( —D/2) 1 /
AP |

z(l—x)

1
24+ (p+k)?

13



Now, using the general Feynman parametrization formula (p.342 PS) we get

e b T2~ DJ2) T3 DJ2)
=5 [ / dedyle(1 =) e TG - DT

3—-D/2

y1—D/2 [

Yatise +uk? + (1= y)[m? + (p+ k)?]

S 5 1 pel(3=D/2) 1 PP
. d/ d d D/2—-2,1-D/2
/ / zdyle(l —2)]77y @mP2 | K2+ A ’

where K =k + (1 —y)p and A = py(1 —y) + m*(1 —y) + y .

iN? I'(3—D)
A — D/2-2, 1-D/2
T dxdy[ (1—x)] Y (47)P

3—D
1
X .
p2y(1 - y) + m2(1 - y) T Yoaa (1 x)

Now we can take the limit m — 0 we get the following

2% ' D/2-2, 1-D/2
—_ dxd 11— BT

(3 D)
[P?y(1 —y)]*=P

Now we also take the limit D = 4 — ¢ — 4, using the limits

E =

1
lim [ defz(l —z)]7? =1,

e—0 0

1
1
: —€/2(1 _ ,\1—e _ =
fig | dyy (1-vy) 5
e—=0:2'"~x—xn(x)e+ ..

1
e—=0:Te—1)~ ——+ ...
€

We now get
iN? A2 1
Ap=——T(e=1)p)" " +..=—ip? ——In(pH)+...).

Going back to Minkowski-space we get

A——'Z)\—2 —l—i-l(— 2)+
= —ip 12047)1 ; n(—p o]
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It seems I have a slightly different result compared to that found in the
exercise text in PS (the sign of the argument of the loartithm). I am not
sure if it is because of an error in PS or an error in my calculation.

The second (tadpole) diagram, B, is given by the following amplitude

—i0) z —i6y T'(1—D/2)
oo | B 2= D - 4).

We see that this diagram vanishes in the massless limit as D — 4. This
means that the last diagram, C', must cancel the divergence we got from A.
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