
Astronomy & Astrophysics manuscript no. noise_paper c©ESO 2022
March 15, 2022

BeyondPlanck VII. Noise characterization and modelling
H. T. Ihle1?, M. Bersanelli2, 3, 4, C. Franceschet2, 4, E. Gjerløw1, K. J. Andersen1, R. Aurlien1, R. Banerji1, S. Bertocco5, M. Brilenkov1,
M. Carbone6, L. P. L. Colombo2, H. K. Eriksen1, M. K. Foss1, U. Fuskeland1, S. Galeotta5, M. Galloway1, S. Gerakakis6, B. Hensley7,

D. Herman1, M. Iacobellis6, M. Ieronymaki6, J. B. Jewell8, A. Karakci1, E. Keihänen9, 10, R. Keskitalo11, G. Maggio5, D. Maino2, 3, 4, M. Maris5,
A. Mennella2, 3, 4, S. Paradiso2, 3, B. Partridge12, M. Reinecke13, A.-S. Suur-Uski9, 10, T. L. Svalheim1, D. Tavagnacco5, 14, H. Thommesen1,

D. J. Watts1, I. K. Wehus1, and A. Zacchei5

1 Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
2 Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, Milano, Italy
3 INAF-IASF Milano, Via E. Bassini 15, Milano, Italy
4 INFN, Sezione di Milano, Via Celoria 16, Milano, Italy
5 INAF - Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, Trieste, Italy
6 Planetek Hellas, Leoforos Kifisias 44, Marousi 151 25, Greece
7 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, U.S.A.
8 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, U.S.A.
9 Department of Physics, Gustaf Hällströmin katu 2, University of Helsinki, Helsinki, Finland

10 Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University of Helsinki, Helsinki, Finland
11 Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.
12 Haverford College Astronomy Department, 370 Lancaster Avenue, Haverford, Pennsylvania, U.S.A.
13 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
14 Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, Trieste, Italy

March 15, 2022

ABSTRACT

We present a Bayesian method for estimating instrumental noise parameters and propagating noise uncertainties within the global
BeyondPlanck Gibbs sampling framework, and apply this to Planck LFI time-ordered data. Following previous literature, we initially
adopt a 1/ f model for the noise power spectral density (PSD), but find the need for an additional lognormal component in the noise
model for the 30 and 44 GHz bands. We implement an optimal Wiener-filter (or constrained realization) gap-filling procedure to
account for masked data. We then use this procedure to both estimate the gapless correlated noise in the time-domain, ncorr, and to
sample the noise PSD spectral parameters, ξn = {σ0, fknee, α, Ap}. In contrast to previous Planck analyses, we only assume piecewise
stationary noise within each pointing period (PID), not throughout the full mission, but we adopt the LFI DPC results as priors on α
and fknee. On average, we find best-fit correlated noise parameters that are mostly consistent with previous results, with a few notable
exceptions. However, a detailed inspection of the time-dependent results reveals many important findings. First and foremost, we find
strong evidence for statistically significant temporal variations in all noise PSD parameters, many of which are directly correlated
with satellite housekeeping data. Second, while the simple 1/ f model appears to be an excellent fit for the LFI 70 GHz channel, there
is evidence for additional correlated noise not described by a 1/ f model in the 30 and 44 GHz channels, including within the primary
science frequency range of 0.1–1 Hz. In general, most 30 and 44 GHz channels exhibit deviations from 1/ f at the 2–3σ level in each
one hour pointing period, motivating the addition of the lognormal noise component for these bands. For some periods of time, we
also find evidence of strong common mode noise fluctuations across the entire focal plane. Overall, we conclude that a simple 1/ f
profile is not adequate to fully characterize the Planck LFI noise, even when fitted hour-by-hour, and a more general model is required.
These findings have important implications for large-scale CMB polarization reconstruction with the Planck LFI data, and the current
work is a first attempt at understanding and mitigating these issues.
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1. Introduction

One of the main algorithmic achievements made within the field
of CMB analysis during the last few decades is accurate and
nearly lossless data compression. Starting from data sets that
typically comprise O(108 − 1011) time-ordered measurements,
we are now able to routinely produce sky maps that contain
O(103 − 107) pixels (e.g., Tegmark 1997; Ashdown et al. 2007).
From these, we may constrain the angular CMB power spectrum,
which spans O(103) multipoles (e.g., Gorski 1994; Hivon et al.
2002; Wandelt et al. 2004). Finally, from these we may derive
tight constraints on a small set of cosmological parameters (e.g.,
Bond et al. 2000; Lewis & Bridle 2002; Planck Collaboration
V 2020; Planck Collaboration VI 2020), which typically is the
ultimate goal of any CMB experiment.

Two fundamental assumptions underlying this radical com-
pression process are that the instrumental noise may be mod-
elled to a sufficient precision, and that the corresponding induced
uncertainties may be propagated faithfully to higher-order data
products. The starting point for this process is typically to as-
sume that the noise is Gaussian and random in time, and does
not correlate with the true sky signal at any given time. Under
the Gaussian hypothesis, the net noise contribution therefore de-
creases as 1/

√
Nobs, where Nobs is the number of observations of

the given pixel, while the signal contribution is independent of
Nobs.

However, it is not sufficient to assume that the noise is sim-
ply Gaussian and random. One must also assume something
about its statistical properties, both in terms of its correlation
structure in time and its stationarity period. Regarding the cor-
relation structure, the single most common assumption in the
CMB literature is that the temporal noise power spectrum den-
sity (PSD) can be modelled as a sum of a so-called 1/ f term and
a white noise term (e.g., Bennett et al. 2013; Planck Collabo-
ration II 2020; Planck Collaboration III 2020). The white noise
term arises from intrinsic detector and amplifiers’ thermal noise,
and is substantially reduced by cooling the instrument to cryo-
genic temperatures, typically to ∼20 K for coherent receivers (as
in the case of Planck LFI) and to 0.1–0.3 K for bolometric de-
tectors. Traditionally, the white noise of coherent radiometers is
expressed in terms of system noise temperature, Tsys, per unit
integration time (measured in K Hz−1/2), while for bolometers
it is expressed as noise equivalent power, NEP (W Hz−1/2). The
sources of the 1/ f noise component include intrinsic instabili-
ties in the detectors, amplifiers and readout electronics, as well
as environmental effects, and, notably, atmospheric fluctuations
for sub-orbital experiments. In the case of Planck LFI, the 1/ f
noise was dominated by gain and noise temperature fluctuations
and thermal instabilities (Planck Collaboration II 2020), and was
minimized by introducing the 4 K reference loads and gain mod-
ulation factor to optimize the receiver balance; see, e.g., Planck

Collaboration II (2014, 2016) and BeyondPlanck (2022) for fur-
ther details.

Regarding stationarity, the two most common assumptions
are either that the statistical properties remain constant through-
out the entire observation period (e.g., Planck Collaboration II
2020), or that it may at least be modelled as piece-wise station-
ary within for instance one hour of observations (e.g., QUIET
Collaboration et al. 2011). Given such basic assumptions, the ef-
fect of the instrumental noise on higher-order data products has
then traditionally been assessed, and propagated, either through
the use of detailed end-to-end simulations (e.g., Planck Collabo-
ration XII 2016) or in the form of explicit noise covariance ma-
trices (e.g., Tegmark et al. 1997; Page et al. 2007; Planck Col-
laboration V 2020).

The importance of accurate noise modelling is intimately
tied to the overall signal-to-noise ratio of the science target in
question. For applications with very high signal-to-noise ratios,
detailed noise modelling is essentially irrelevant, since other
sources of systematic errors dominate the total error budget. One
prominent example of this is the CMB temperature power spec-
trum as measured by Planck on large angular scales (Planck
Collaboration IV 2018; Planck Collaboration V 2020). Its white
noise contribution can be misestimated by orders of magnitude
without making any difference in terms of cosmological parame-
ters, because the full error budget is vastly dominated by cosmic
variance.

The cases for which accurate noise modelling is critically
important are those with signal-to-noise ratios of order unity.
For these, noise misestimation may be the difference between
obtaining a tantalizing, but ultimately unsatisfying, 2σ result,
and claiming a ground-breaking and decisive 5σ discovery; or,
the worst-case scenario, erroneously reporting a baseless posi-
tive detection.

This regime is precisely where the CMB field is expected to
find itself in only a few years from now, as the next-generation
CMB experiments (e.g., CMB-S4, LiteBIRD, PICO, Simons Ob-
servatory, and many others; Abazajian et al. 2019; Suzuki et al.
2018; Sugai et al. 2020; Hanany et al. 2019; Ade et al. 2019) are
currently being planned, built and commissioned in the search
for primordial gravitational waves imprinted in B-mode polar-
ization. The predicted magnitude of this signal is expected to be
at most a few tens of nanokelvins on angular scales larger than
a degree, corresponding to a relative precision of O(10−8), and
extreme precision is required for a robust detection. It will there-
fore become critically important to take into account all sources
of systematic uncertainties, and propagate these into the final re-
sults.

The BeyondPlanck project (BeyondPlanck 2022) is an ini-
tiative that aims to meet this challenge by implementing the
first global Bayesian CMB analysis pipeline that supports faith-
ful end-to-end error propagation from raw time-ordered data to
final cosmological parameters. One fundamental aspect of this
approach is a fully parametric data model that is fitted to the raw
measurements through standard posterior sampling techniques,
simultaneously constraining both instrumental and astrophysical
parameters. Within this framework, the instrumental noise is just
one among many different sources of uncertainty, all of which
are treated on the same statistical basis. The sample-based ap-
proach introduced by BeyondPlanck therefore represents a novel
and third way of propagating noise uncertainties (Keihänen et
al. 2022; Suur-Uski et al. 2022), complementary to the existing
simulation and covariance matrix based approaches used by tra-
ditional pipelines.
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As a real-world demonstration of this novel framework, the
BeyondPlanck collaboration has chosen the Planck LFI mea-
surements (Planck Collaboration I 2020; Planck Collaboration II
2020) as its main scientific target (BeyondPlanck 2022). These
data represent an important and realistic testbed in terms of
overall data volume and complexity, and they also have fairly
well-understood properties after more than a decade of detailed
scrutiny by the Planck team (see Planck Collaboration II 2014,
2016, 2020, and references therein). However, as reported in this
paper, there are still a number of subtle unresolved and unex-
plored issues relating even to this important and well-studied
data set that potentially may have an impact on higher-level sci-
ence results. Furthermore, as demonstrated by the current anal-
ysis, the detailed low-level Bayesian modelling approach is ide-
ally suited to identify, study and, eventually, mitigate these ef-
fects.

Thus, the present paper has two main goals. The first is
to describe the general algorithmic framework implemented in
the BeyondPlanck pipeline for modelling instrumental noise in
CMB experiments. The second goal is then to apply these meth-
ods to the Planck LFI observations, and characterize the perfor-
mance and systematic effects of the instrument as a function of
time and detector.

The rest of the paper is organized as follows. First, in Sect. 2
we briefly review the BeyondPlanck analysis framework and
data model, with a particular emphasis on noise modelling as-
pects. In Sect. 3, we present the individual sampling steps re-
quired for noise modelling, as well as some statistics that are
useful for efficient data monitoring. In Sect. 4 we discuss various
important degeneracies relevant for noise modelling, and how to
minimize the impact of modelling errors. Next, in Sect. 5 we give
a high-level overview of the various noise posterior distributions,
their correlation properties, as well as detailed specifications for
each detector. In Sect. 6 we discuss anomalies found in the data,
and interpret these in terms of the instrument and the thermal
environment. Finally, we summarize in Sect. 7.

2. The BeyondPlanck data model and framework

The BeyondPlanck project is an attempt to build up an end-to-
end data analysis pipeline for CMB experiments going all the
way from raw time-ordered data to cosmological parameters in
a consistent Bayesian framework. This allows us to character-
ize degeneracies between instrumental and astrophysical param-
eters in a statistically well-defined framework, from low-level
instrumental quantities such as gain (Gjerløw et al. 2022), band-
passes (Svalheim et al. 2022a), far sidelobes (Galloway et al.
2022b), and correlated noise via Galactic parameters such as the
synchrotron amplitude or spectral index (Andersen et al. 2022;
Svalheim et al. 2022b), to the angular CMB power spectrum and
cosmological parameters (Colombo et al. 2022; Paradiso et al.
2022).

The LFI dataset consists of three bands, at frequencies of
roughly 30, 44, and 70 GHz. These bands have two, three, and
six radiometer pairs each, respectively, which for historical rea-
sons are numbered from 18 to 28. The two radiometers in each
pair are labeled by M and S (Planck Collaboration II 2014). In
BeyondPlanck, the raw uncalibrated data, d, produced by each
of these radiometers is modelled in time-domain as follows,

d j,t = g j,tPtp, j

Bsymm
pp′, j

∑
c

Mc j(βp′ ,∆
j
bp)ac

p′ + Basymm
pp′, j

(
sorb

j,t + sfsl
j,t

) +

+s1hz
j,t + ncorr

j,t + nw
j,t.

(1)

Here the subscript t denotes a sample index in time domain; j
denotes radiometer; p denotes the pixel number; c denotes sig-
nal component; g denotes the gain; P denotes the pointing ma-
trix; Bsymm and Basymm denote the symmetric and asymmetric
beam matrices, respectively; a are the astrophysical signal am-
plitudes; β are the corresponding spectral parameters; ∆bp are
the bandpass corrections; Mc j is the bandpass-dependent com-
ponent mixing matrix; sorb is the orbital dipole; sfsl are the far
sidelobe corrections; s1hz represents electronic 1 Hz spike cor-
rections; ncorr is the correlated noise; and nw is the white noise.
For more details on each of these parameters see BeyondPlanck
(2022) and the other companion papers.

The goal of the Bayesian approach is now to sample from the
joint posterior distribution,

P(g, ncorr, ξn,∆bp, a, β,C` | d). (2)

This is a large and complicated distribution, with many degen-
eracies. However, using Gibbs sampling we can divide the sam-
pling process into a set of managable steps. Gibbs sampling
is a simple algorithm in which samples from a joint multi-
dimensional distribution are generated by iterating through all
corresponding conditional distributions. Using this method, the
BeyondPlanck sampling scheme may be summarized as follows
(BeyondPlanck 2022),

g ← P(g | d, ξn,∆bp, a, β,C`) (3)
ncorr ← P(ncorr | d, g, ξn,∆bp, a, β,C`) (4)
ξn ← P(ξn | d, g, ncorr, ∆bp, a, β,C`) (5)

∆bp ← P(∆bp | d, g, ncorr, ξn, a, β,C`) (6)
β ← P(β | d, g, ncorr, ξn,∆bp, C`) (7)
a ← P(a | d, g, ncorr, ξn,∆bp, β,C`) (8)

C` ← P(C` | d, g, ncorr, ξn,∆bp, a, β ). (9)

Here, ← indicates sampling from the distribution on the right-
hand side.

Note that for some of these steps we are not following the
strict Gibbs approach of conditioning on all but one variable.
Most notably for us, this is the case for the gain sampling step in
Eq. (3), where we do not condition on ncorr. In effect, we instead
sample the gain and correlated noise jointly by exploiting the
definition of a conditional distribution,

P(g, ncorr | d, · · · ) = P(g | d, · · · )P(ncorr | d, g, · · · ). (10)

This equation implies that a joint sample {g, ncorr} may be pro-
duced by first sampling the gain from the marginal distribution
with respect to ncorr, and then sampling ncorr from the usual con-
ditional distribution with respect to g. The advantage of this joint
sampling procedure is a much shorter Markov correlation length
as compared to standard Gibbs sampling, as discussed by Gjer-
løw et al. (2022).

A convenient property of Gibbs sampling is its modular na-
ture, as the various parameters are sampled independently within
each conditional distribution, but joint dependencies are still ex-
plored through the iterative scheme. In this paper, we are there-
fore only concerned with two of the above steps, namely Eqs. (4)
and (5). For details on the complete Gibbs chain and the other
sampling steps, see BeyondPlanck (2022) and the companion
papers.

The LFI time-ordered data are divided into roughly 45 000
pointing periods, denoted PIDs (pointing ID). Most PIDs have a
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duration of 30–60 minutes. When sampling the correlated noise
and the corresponding PSD parameters, we assume that the noise
is stationary within each PID, but independent between PIDs.
The gain is also assumed to be constant within each PID; how-
ever, this is not fit independently for each PID, but rather sam-
pled smoothly on longer timescales (Gjerløw et al. 2022).

Following previous literature (Planck Collaboration II 2014;
Tauber et al. 2019; Planck Collaboration II 2020), we start by
assuming that the noise PSD may be described by a so-called
1/ f model,

P( f ) = σ2
0

[
1 +

(
f

fknee

)α]
. (11)

Here f denotes a temporal frequency; σ0 quantifies the white
noise level of the time-ordered data1; α is the slope (typically
negative) of the correlated noise spectrum; and the knee fre-
quency, fknee, denotes the (temporal) frequency at which the vari-
ance of the correlated noise is equal to the white noise variance.

While 70 GHz noise properties are well described with the
1/ f model, we show in the following that this model is not suf-
ficient for representing the noise properties of the 30 and 44
GHz bands. These detectors often show a small amount of excess
power at intermediate temporal frequencies (0.01-1 Hz), which
is not well fit by the 1/ f model. In order to address this, we al-
low for an additional lognormal component in the noise PSD for
these bands

P( f ) = σ2
0

[
1 +

(
f

fknee

)α]
+ Ap exp

−1
2

(
log10 f − log10 fp

σdex

)2 ,
(12)

where Ap and fp are the amplitude and the frequency of the peak
of the lognormal component, and σdex denotes the width of the
component, in dex, around this peak. As the deviations from the
1/ f model are small, and not very significant in a single PID, we
will not be able to estimate the three parameters of the lognor-
mal, Ap, fp and σdex, for each PID. For this reason, we will keep
fp and σdex fixed, and only sample Ap for each PID. We use a
fairly wide lognormal centered on fp = 0.011 Hz with a width of
σdex = 1 in order to accomodate excess power in a wide range of
frequencies. A more detailed analysis would fit individual val-
ues for fp and σdex for each radiometer, allowing an even better
model fit, however we find that the current model leads to ac-
ceptable model fits, as quantified in the time stream χ2 values,
for all radiometers. The four PSD parameters that we will fit are
then collectively denoted ξn = {σ0, fknee, α, Ap}.

3. Methods

As outlined above, noise estimation in the Bayesian Beyond-
Planck framework amounts essentially to being able to sample
from two conditional distributions, namely P(ncorr | d, ω \ ncorr)
and P(ξn | d, ω \ ξn). The first presentation of Bayesian noise
estimation for time-ordered CMB data that was applicable to the
current problem was presented by Wehus et al. (2012), and the
main novel feature presented in the current paper is simply the
integration of these methods into the larger end-to-end analy-
sis framework outlined above. In addition, the current analysis
1 σ0 has different units if we are talking about the uncalibrated data,
σ0 [V], calibrated data, σ0 [K] ≡ σ0 [V] /g, or the white noise PSD,
σ2

0 [K2 Hz−1] ≡ (σ0 [K] )2 2
Rsamp

, where Rsamp is the sample rate (in Hz)
of the time ordered data. Where this distinction is important, we include
the units explicitly.

also employs important numerical improvements as introduced
by Keihänen et al. (2022), in which optimal mapmaking is re-
phrased into an efficient Bayesian language.

The starting point for both conditional distributions is the
following parametric data model,

d = gstot + ncorr + nwn, (13)

where d denotes the raw time ordered data (TOD) organized
into a column vector; g is the gain; stot describes the total sky
signal, comprising both CMB and foregrounds, projected into
time-domain; ncorr represents the correlated noise in time do-
main; and nwn is white noise. The two noise terms are both
assumed to be Gaussian distributed with covariance matrices
Ncorr ≡ 〈ncorrnT

corr〉 and Nwn ≡ 〈nwnnT
wn〉, respectively. The com-

plete noise PSD is then (in Fourier space) given by P( f ) =

Nwn + Ncorr = σ2
0 + σ2

0

(
f

fknee

)α
+ Ap exp

[
− 1

2

( log10 f−log10 fp
σdex

)2]
.

3.1. Sampling correlated noise, P(ncorr | d, ξn, stot, g)

Our first goal is to derive an appropriate sampling prescription
for the time-domain correlated noise conditional distribution,
P(ncorr | d, ξn, stot, g). To this end, we start by defining the signal-
subtracted data, d′, directly exploiting the fact that g and stot are
currently conditioned upon,2

d′ ≡ d − gstot = ncorr + nwn. (14)

Since both ncorr and nwn are assumed Gaussian with known co-
variance matrices, the appropriate sampling equation for ncorr is
also that of a multivariate Gaussian distribution, which is stan-
dard textbook material; for a brief review, see Appendix A in Be-
yondPlanck (2022). In particular, the maximum likelihood (ML)
solution for ncorr

t is given by the so-called Wiener-filter equation,

(
N−1

corr + N−1
wn

)
ncorr = N−1

wnd′, (15)

while a random sample of ncorr may be found by solving the
following equation,(
N−1

corr + N−1
wn

)
ncorr = N−1

wnd′ + N−1/2
wn η1 + N−1/2

corr η2, (16)

where η1 and η2 are two independent vectors of ran-
dom variates drawn from a standard Gaussian distribution,
η1,2 ∼ N(µ = 0, σ2 = 1).

3.1.1. Ideal data

Assuming for the moment that both Ncorr and Nwn are diagonal
in Fourier space, we note that Eq. (16) may be solved in a closed
form in Fourier space,

ncorr
f =

d′f + C
(
N1/2

wn ( f )w1 + Nwn( f )N−1/2
corr ( f )w2

)
1 + Nwn( f )/Ncorr( f )

, (17)

for any non-negative frequency f , where the correlated noise
TOD has been decomposed as ncorr

f =
∑

t ncorr
t e−2πi f t. For com-

pleteness, C is a constant factor that depends on the Fourier con-

2 When a parameter appears on the right-hand side of a conditioning
bar in a probability distribution, it is assumed known to infinite preci-
sion. It is therefore for the moment a constant quantity, and not associ-
ated with any stochastic degrees of freedom or uncertainties.
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Fig. 1. Illustration of three constrained correlated noise realizations
(colored curves) drawn from P(ncorr | d, ξn, stot, g) for the Planck
30 GHz data (grey curve). Regions for which parts of the data have been
masked, either due to a processing mask or flagged data, are marked as
white gaps.

vention of the numerical library of choice,3 and w1,2 are two in-
dependent random complex samples from a Gaussian distribu-
tion,

w1,2 ≡
ηR + iηI
√

2
, (18)

where ηR,I ∼ N(µ = 0, σ2 = 1).
Figure 1 shows three independent realizations of ncorr that all

correspond to the same signal-subtracted Planck 30 GHz TOD
segment. Each correlated noise sample is essentially a Wiener-
filtered version of the original data, and traces as such the slow
variations in the data, with minor variations corresponding the
two random fluctuation terms in Eq. (17), as allowed by the
white noise level present in the data. We can also see that there
are gaps in the data, which we will need to deal with.

3.1.2. Handling masking through a conjugate gradient solver

When writing down an explicit solution of Eq. (16) in Eq. (17),
we assumed that both Ncorr and Nwn were diagonal in Fourier
space. However, as illustrated in Fig. 1, real observations have
gaps, either because of missing or flagged data. The most typical
example of missing data is the application of a processing mask
that removes all samples with too strong foreground contamina-
tion, either from Galactic diffuse sources or from extragalactic
point sources.

We can represent these gaps in our statistical model by set-
ting the white noise level for masked samples to infinity. This
ensures that Eqs. (15) and (16) are still well defined, albeit some-
what harder to solve. The new difficulty lies in the fact that while
Nwn is still diagonal in the time domain, it is no longer diagonal
in the Fourier domain. This problem may be addressed in two

3 We use the FFTW library, in which case C =
√nsamples, where nsamples

is the number of time samples.

0 20 40 60 80 100 120
Time [s]

4
2

0
2

4
6

samples (CG)
linear gap filling

Fig. 2. Illustration of the limitation of the linear gap-filling procedure
for simulated data with extreme noise properties and large gaps. In gen-
eral, the linear gap-filling procedure tends to underestimate the fluctua-
tions in ncorr on long timescales.

ways. Specifically, we can either solve Eqs. (15) and (16) di-
rectly, using an iterative method such as the conjugate gradient
(CG) method (Wehus et al. 2012; Keihänen et al. 2022), or we
can fill any gap in d′ with a simpler interpolation scheme, for
instance a polynomial plus white noise, and then use Eq. (17) di-
rectly. Clearly, the former method is mathematically superior, as
it results in a statistically exact result. However, the CG method
is in general not guaranteed to converge due to numerical round-
off errors, and since the current algorithm is to be applied mil-
lions of times in a Monte Carlo environment, the second ap-
proach is useful as a fallback solution for the few cases for which
the exact CG approach fails.

As shown by Keihänen et al. (2022), Eq. (16) may be recast
into a compressed form using the Sherman-Morrison-Woodbury
formula, effectively separating the masked from the unmasked
degrees of freedom, and the latter may then be handled with the
direct formula in Eq. (17). This approach, in addition to having
a lower computational cost per CG iteration, also needs fewer
iterations to converge compared to the untransformed equation.
We adopt this approach without modifications for the main Be-
yondPlanck pipeline.

Returning to Fig. 1, we note that the correlated noise sam-
ples have significant larger variance within the gaps than in the
data-dominated regime. As a result, one should expect to see a
slightly higher conditional χ2 inside the processing mask in a
full analysis than outside, since ncorr will necessarily trace the
real data less accurately in that range. This is in fact seen in
the main BeyondPlanck analysis, as reported by BeyondPlanck
(2022) and Suur-Uski et al. (2022). However, when marginaliz-
ing over all allowed correlated noise realizations, the final un-
certainties will be statistically appropriate, due to the fluctuation
terms in Eq. (16).

3.1.3. Gap-filling by polynomial interpolation

As mentioned above, the CG algorithm does not always con-
verge, and for Monte Carlo applications that will run millions of
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times without human supervision, it is useful to establish a robust
fallback solution. For this purpose, we adopt the basic approach
of simply interpolating between the values on each side of a gap.
Specifically, we compute the average of the non-masked points
among the 20 points on each side of the gap, and interpolate lin-
early between these two values. In addition, we add a white noise
component to d′, based on Nwn, to each masked sample.

An important limitation of the linear gap-filling procedure is
associated with estimation of the noise PSD parameters, ξn. As
described in Sect. 3.2, these parameters are estimated directly
from ncorr by Gibbs sampling. A statistically suboptimal sam-
ple of ncorr may therefore also bias ξn, which in turn may skew
ncorr even further. If the gaps are short, then this bias is usu-
ally negligible, but for large gaps it can be problematic. This
situation is illustrated in Fig. 2, which compares the linear gap
filling procedure with the exact CG approach. In general, the
linear method tends to underestimate the fluctuations on large
timescales within the gap.

Because of the close relative alignment of the Planck scan-
ning strategy with the Galactic plane that takes place every six
months (Planck Collaboration I 2011), some pointing periods
happen to have larger gaps than others. For these, two long
masked regions occur every minute, when the telescope points
toward the Galactic plane. Any systematic bias introduced by
the gap-filling procedure itself will then not be randomly dis-
tributed in the TOD, but rather systematically contribute to the
same modes, with a specific period equal to the satellite spin
rate. For these, the statistical precision of the CG algorithm is
particularly important to avoid biased noise parameters.

Overall, the linear gap filling procedure should only be used
when strictly necessary. In practice, we use it only when the CG
solver fails to converge within 30 iterations, which happens in
less than 0.03 % of all cases.

Another simpler and more accurate gap filling procedure is
suggested by Keihänen et al. (2022): We may simply fill the gaps
in d′ with the previous sample of the correlated noise, and then
add white noise fluctuations. This corresponds to Gibbs sam-
pling over the white noise as a stochastic parameter, which is sta-
tistically fully valid. However, this approach requires us to store
the correlated noise TOD in memory between consecutive Gibbs
iterations. Since memory use is already at its limit (Galloway et
al. 2022a), this method is not used for the main BeyondPlanck
analysis. However, for systems with more available RAM, this
method is certainly preferable over simple linear interpolation.

3.2. Sampling noise PSD parameters, P(ξn | ncorr)

The second noise-related conditional distribution in the Beyond-
Planck Gibbs chain is P(ξn | ncorr), which describes the noise
PSD. As discussed in Sect. 2, in this paper we model this func-
tion in terms of a 1/ f spectrum as defined by Eq. (11), with
an added lognormal component in the 30 and 44 GHz bands
Eq. (12). We emphasize, however, that any functional form for
P( f ) may be fitted using the methods described below. Figure 3
illustrates the PSD of the different components for a 70 GHz ra-
diometer, and our task is now to sample each of the noise PSD
parameters ξn = {σ0, fknee, α}, corresponding to the dashed blue
line in this figure.

3.2.1. Sampling the white noise level, σ0

We start with the white noise level, which by far is the most im-
portant noise PSD parameter in the system. We first note from
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Fig. 3. Comparison of temporal PSDs for different components. The
blue curve shows the PSD of the signal-subtracted data; the orange
curve shows the fitted correlated noise PSD; and the gray line shows
the PSD of the residual TOD. The dashed curves correspond to the best
fit 1/ f -noise model, with (blue) and without (orange) white noise. Note
that the 70 GHz channels do not have a lognormal component.

Eq. (11) that if α is close to zero, the correlated and white noise
terms are perfectly degenerate. Even for α ≈ −1 there is a signif-
icant degeneracy between the two components for a finite-length
TOD.

Of course, for other parameters in the full Gibbs chain, only
the combined P( f ) function is relevant, and not each compo-
nent separately. At the same time, and as described by Beyond-
Planck (2022), marginalization over the two terms within other
sampling steps happens using two fundamentally different meth-
ods: While white noise marginalization is performed analyti-
cally through a diagonal covariance matrix, marginalization over
correlated noise is done by Monte Carlo sampling of ncorr. It
is therefore algorithmically advantageous to make sure that the
white noise term accounts for as much as possible of the full
noise variance, as this will lead to an overall shorter Markov
chain correlation length.

For this reason, we employ a commonly used trick in radio
astronomy for estimating the white noise level, and define this to
be

σ2
0 ≡

Var(ri+1 − ri)
2

, (19)

where r ≡ d′ − ncorr. By differencing consecutive samples,
any residual temporal correlations are effectively eliminated, and
will therefore not bias the determination of σ0.

This method is equivalent to fixing the white noise level to
the highest frequencies in Fig. 3. Formally speaking, this means
that σ0 should not be considered a free parameter within the
Gibbs chain, but rather a derived quantity fixed by the data, d,
the gain, g, the signal model, stot, and the correlated noise, ncorr.
However, this distinction does not carry any particular statistical
significance with respect to other parameters, and we will in the
following therefore discuss σ0 on the same footing as any of the
other noise parameters.
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3.2.2. Sampling correlated noise parameters, fknee, α and Ap

With σ2
0 fixed by Eq. (19), the other noise parameters, fknee, α

and Ap, are sampled from their exact conditional distributions.
Since we assume that also the correlated noise component is
Gaussian distributed, the appropriate functional form is that of
a multivariate Gaussian,

P( fknee, α, Ap | σ0, ncorr) ∝
e−

1
2 (ncorr)T N−1

corr ncorr

√
|Ncorr|

P( fknee, α, Ap), (20)

where Ncorr = Ncorr( fknee, α, Ap), and P( fknee, α, Ap) is an optional
prior. This may be efficiently evaluated in Fourier space as

− ln P =

fmax∑
f = fmin

 |ncorr
f |

2

Ncorr( f )
+ ln Ncorr( f )

 − ln P( fknee, α, Ap), (21)

where Ncorr( f ) = σ2
0

(
f

fknee

)α
+ Ap exp

[
− 1

2

( log10 f−log10 fp
σdex

)2]
.

To explore this joint distribution, we iteratively Gibbs sam-
ple over fknee, α and Ap, using an inversion sampler for each
of the three conditional distributions, P( fknee | α, Ap, σ0, ncorr),
P(α | fknee, Ap, σ0, ncorr) and P(Ap | α, fknee, σ0, ncorr); see Ap-
pendix A in BeyondPlanck (2022) for details regarding the in-
version sampler.

If we naively apply our statistical model, all frequencies
should in principle be included in the sum in Eq. (21). At
the same time, we note that frequencies well above fknee ide-
ally should carry very little statistical weight, since the corre-
lated noise variance then by definition is smaller than the white
noise variance. This means that the sampled ncorr is almost com-
pletely determined by the prior (i.e., the previous values of
σ0, fknee, α, Ap), at these high frequencies. The sum in Eq. (21),
on the other hand, is completely dominated by those high fre-
quencies. The result of this is an excessively long Markov chain
correlation length when including all frequencies in Eq. (21); the
inferred values of α, fknee and Ap will always be extremely close
to the previous values.

One way to avoid these long correlation lengths would be
not to condition on ncorr at all, but rather use the likelihood for
d′ to sample α, fknee and Ap (and sample ncorr afterwards). This
is equivalent to sampling ξn from the marginal distribution with
respect to ncorr, and fully analogous to how the degeneracy be-
tween g and ncorr is broken through joint sampling. However, for
real world data, residual signal or systematics may leak into d′,
in particular at frequencies around and above the satellite scan-
ning frequency. While some of these systematics may also leak
into ncorr, in general ncorr is cleaner, especially at frequencies
below fknee, where ncorr is dominated by the random sampling
terms.

A useful solution that both makes the correlated noise pa-
rameters robust against modelling errors and results in a short
Markov chain correlation length is therefore to condition on ncorr

above some pre-specified frequency. In practice, we therefore
choose to only include frequencies below fmax = 3.7, 3.0 or 0.14
Hz for the 30, 44 and 70 GHz bands, respectively. That is, we
only use the part of ncorr where we are able to measure the 1/ f
slope with an appreciable signal to noise ratio. For the lower fre-
quency cutoff in Eq. (21), we adopt fmin > 0, and only exclude
the overall mean per PID.

3.2.3. Priors on α and f knee

As described by Planck Collaboration II (2020), the official
Planck LFI Data Processing Center (DPC) analyses assume the
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Fig. 4. Distribution of noise parameters for PID 3401 of radiometer
20M, one of the 70 GHz channels, for fixed stot and g. Dashed red lines
correspond to results obtained without an active prior, while the solid
line corresponds to results after including the active priors on fknee and
α from Eqs. (22) and (23). The black cross indicates the best fit values
derived by the DPC pipeline for this radiometer.

noise PSD to be stationary throughout the mission. Here we al-
low these parameters to vary from PID to PID, in order to ac-
commodate possible changes in the thermal environment of the
satellite. However, since the duration of a single PID is typically
one hour or shorter, there is only a limited number of large-scale
frequencies available to estimate the correlated noise parame-
ters, and this may in some cases lead to significant degeneracies
between α, fknee and Ap. In particular, if fknee is low (which of
course is the ideal case), α is essentially unconstrained. To avoid
pathological cases, it is therefore useful to impose priors on these
parameters, under the assumption that the system should be rel-
atively stable as a function of time.

Specifically, we adopt a log-normal prior for fknee,

− ln P( fknee) =
1
2

 log10 fknee − log10 f DPC
knee

σ fknee

2

+ ln fknee, (22)

where f DPC
knee is the DPC result for a given radiometer (Planck Col-

laboration II 2020) and σ fknee = 0.1. For α, we adopt a Gaussian
prior of the form

− ln P(α) =
1
2

(
α − αDPC

σα

)2

, (23)

where αDPC again is the DPC result for the given radiometer and
σα = 0.2. Figure 4 shows a comparison of the posterior distribu-
tions with (solid lines) and without (dashed lines) active priors
for a typical example.

The prior widths have been chosen to be sufficiently loose
that the overall impact of the priors is moderate for most cases.
The priors are in practice only used to exclude pathological
cases. Technically speaking, we also impose absolute upper and
lower limits for each parameter, as this is needed for gridding the
conditional distribution within the inversion sampler. However,
the limits are chosen to be sufficiently wide so that they have no
significant impact on final results. We do not use an active prior
on the amplitude Ap.
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Fig. 5. Residual maps, rν, for each of the three Planck LFI frequencies,
smoothed to a common angular resolution of 10◦ FWHM.

4. Mitigation of modelling errors and degeneracies

When applying the methods described above to real-world data
as part of a larger Gibbs chain, several other degeneracies and
artifacts may emerge beyond those discussed above. In this sec-
tion, we discuss some of the main challenges for the current
setup, and we also describe solutions to break or mitigate these
issues.

4.1. Signal modelling errors and processing masks

First, we note that the correlated noise component is by nature
entirely instrument specific, and depends directly on the ther-
mal stability of the detectors. It is therefore difficult to impose
any strong spatial priors on ncorr, beyond the loose PSD priors
described above, and these provide only very weak constraints
in map-domain. The correlated noise is from first principles the
least known parameter in the entire model, and its allowed pa-
rameter space is able to describe a wide range of different TOD
combinations, without inducing a significant likelihood penalty

Fig. 6. Processing masks used for correlated noise sampling. Different
shades of gray indicate different frequency masks. The allowed 30 GHz
sky fraction (light) is fsky = 0.73; the 44 GHz sky fraction (intermediate)
is fsky = 0.81; and the 70 GHz sky fraction (dark) is fsky = 0.77.

relative to the noise PSD model. As a result, a wide range of
systematic errors or model mismatches may be described quite
accurately by modifying ncorr, rather than ending up in the resid-
ual,

r ≡ d − ncorr − gstot. (24)

Colloquially speaking, the correlated noise component may
in many respects be considered the “trash can” of CMB time-
ordered analysis, capturing anything that does not fit elsewhere
in the model. This is both a strength and a weakness. On the one
hand, the flexibility of ncorr protects against modelling errors for
other (and far more important) parameters in the model, includ-
ing the CMB parameters. On the other hand, in many cases it is
preferable that modelling errors show up as χ2 excesses, so that
they can be identified and mitigated, rather than leaking into the
correlated noise. To check for different types of modelling errors,
it is therefore extremely useful to inspect both χ2’s and binned
sky maps of rν and ncorr for artifacts. For an explicit example
of this, see the discussion of data selection for BeyondPlanck in
Suur-Uski et al. (2022), where these statistics are used as effi-
cient tools to identify bad observations.

In general, the most problematic regions of the sky are those
with bright foregrounds, either in the form of diffuse Galactic
emission or strong compact sources. If residuals from such fore-
grounds are present in the signal-subtracted data, d′, while es-
timating the correlated noise TOD, the correlated noise Wiener
filter in Eq. (16) will attempt to fit these in ncorr, and this typi-
cally results in stripes along the scanning path with a correlation
length defined by the ratio between fknee and the scanning fre-
quency.

To suppress such artifacts, we impose a processing mask for
each frequency, as discussed in Sect. 3.1. In the current analysis,
we define these masks as follows:

1. We bin the time-domain residual4 in Eq. (24) into an IQU
pixelized sky map for each frequency (as defined by Eq. (77)
in BeyondPlanck 2022), and smooth this map to an angular
resolution of 10◦ FWHM.

2. We take the absolute value of the smoothed map, and then
smooth again with a 30′ beam to account for pixels which
the raw residual map changes sign.

4 Note that the residual used here is based on a preliminary test run,
since these masks are used internally in the final analysis.
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Fig. 7. Correlated noise intensity sample for the 30 GHz band when
fitting a model that assumes constant gains throughout the mission. This
map has been smoothed to an angular resolution of 2.5◦ FWHM.
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Fig. 8. Three subsequent samples (colored curves) of the correlated
noise PSD for 23S, one of the 70 GHz radiometers. The black line shows
the PSD of the signal-subtracted data.

3. We then compute the maximum absolute value for each pixel
over each of the three Stokes parameters. The resulting maps
are shown in Fig. 5 for each of the three Planck LFI frequen-
cies.

4. These maps are then thresholded at values well above the
noise level, and these tresholded maps form the main input
to the processing masks.

5. To remove particularly bright compact objects that may not
be picked up by the smooth residual maps described above,
we additionally remove all pixels with high free-free and/or
AME levels, as estimated in an earlier analysis.

The final processing masks are shown in Fig. 6, and allow 73,
81, and 77 % of the sky to be included while fitting correlated
noise at 30, 44, and 70 GHz, respectively.

4.2. Degeneracies with the gain

The brightest component of the entire BeyondPlanck signal
model is the Solar CMB dipole, which has an amplitude of 3 mK.
This component plays a critical role in terms of gain estimation
(Gjerløw et al. 2022), and serves as the main tool to determine
relative calibration differences between detectors. Both the gain
and CMB dipole parameters are of course intrinsically unknown
quantities, and must be fitted jointly. Any error in the deter-
mination of these will therefore necessarily result in a nonzero
residual, in the same manner as Galactic foregrounds described
above, and this may therefore potentially also bias ncorr. Unlike
the Galactic residuals, however, it is not possible to mask the
CMB dipole, since it covers the full sky. The correlated noise
component is therefore particularly susceptible to errors in ei-
ther the gain or CMB dipole parameters, and residual large-scale
dipole features in the binned ncorr map is a classic indication
of calibration errors. To illustrate the effect of an incorrect gain
model, Fig. 7 shows a 30 GHz correlated noise sample when as-
suming that the gain is constant throughout the entire Planck
mission.

The gain also has a direct connection with the white noise
level, σ0. This manifests itself in different ways, depending on
the choice of units adopted for σ0. When expressed in units of
volts, the white noise level is simply given by the radiometer
equation,

σ0[V] ∝ gphysTsys, (25)

where gphys is the actual physical gain of the radiometer, and Tsys
is the system temperature (BeyondPlanck 2022). In calibrated
units of KCMB, however, the white noise level is

σ0[K] ∝
gphys

gmodel
Tsys, (26)

where gmodel is the gain estimate in our model. When consid-
ering the evolution of the noise parameters as a function of
time, we then note that σ0[V] will correlate with the physical
gain, which depends strongly on the thermal environment at any
given time. On the other hand, if our gain model is correct, i.e.,
gmodel ≈ gphys, these fluctuations will cancel in temperature units,
and σ0[K] should instead correlate with the system temperature,
Tsys. The system temperature also depends on the physical tem-
perature, Tphys, as the amplifiers’ noise and waveguide losses
increase with temperature. These were measured in pre-flight
tests to be at a level dTsys/dTphys ≈ 0.2–0.5 K/K, depending on
the radiometer (Terenzi et al. 2009). In conclusion, if we ob-
serve a sudden change in σ0[K] that is not present in σ0[V], this
might indicate a problem in the gain model. We also expect that
changes in σ0[K] reflect genuine variations of the white noise
level, mainly driven by changes in the 20 K stage. In the follow-
ing, we will plot σ0 as a function of time in both units of volts
and kelvins, and use these to disentangle gain and system tem-
perature variations.

5. Results

We are now ready to present the main results obtained by apply-
ing the methods described above to the Planck LFI data within
the BeyondPlanck Gibbs sampling framework (BeyondPlanck
2022), as summarized in terms of the posterior distributions for
each of the noise parameters. In total, four independent Gibbs
chains were produced in the main BeyondPlanck analysis, each
chain including 500–1000 samples, for a total computational
cost of about 620 000 CPU-hours (BeyondPlanck 2022; Gal-
loway et al. 2022a).
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Fig. 9. Maps of a single Gibbs sample of the correlated noise added over all radiometers in the 30 GHz (left), 44 GHz (middle) and 70 GHz (right)
bands. From top to bottom, rows show Stokes I, Q and U, respectively. Maps have been smoothed to a common angular resolution of 5◦ FWHM.

5.1. Posterior distributions and Gibbs chains

First, we recall that at every step in the Gibbs chain, we sam-
ple the correlated noise parameters for each pointing period and
each radiometer, both the time-domain realization ncorr and the
PSD parameters ξn. To visually illustrate the resulting variations
from sample to sample in terms of PSDs, Fig. 8 shows three
subsequent spectrum samples for a single pointing period for the
23S radiometer. We see that the correlated noise follows the data
closely at low frequencies, while at high frequencies the PSD
is effectively extrapolated based on the current model. The scat-
ter between the three colored curves shows the typical level of
variations allowed by the combination of white noise and degen-
eracies with other parameters in the model.

Figure 9 shows the pixel-space correlated noise correspond-
ing to a single Gibbs sample, obtained after binning ncorr for
all radiometers and all PIDs into an IQU map. Columns show
different frequency maps (30, 44, and 70 GHz), and rows show
different Stokes parameters (I, Q, and U). Overall, we see that
the morphology of each map is dominated by stripes along the
Planck scanning strategy, as expected for correlated 1/ f noise,
and we do not see any obvious signatures of either residual
foregrounds in the Galactic plane, nor CMB dipole leakage at
high latitudes. This suggests that the combination of the data
model and processing masks described above performs reason-
ably well. We also note that the peak-to-peak values of the total
correlated noise maps are O(1 µK), which is of the same order
of magnitude as the predicted signal from cosmic reionization
(Planck Collaboration IV 2018). Thus, correlated noise estima-

tion plays a critical role for large-scale polarization reconstruc-
tion, while it is negligible for CMB temperature analysis.

For both ncorr and ξn, the main result of the BeyondPlanck
pipeline are the full ensembles of Gibbs samples. These are too
large to visualize in their entirety here, and are instead provided
digitally.5 In the following, we will therefore focus on ξn, and
as an example Fig. 10 displays one of the full Gibbs chains for
two different PIDs for one radiometer from each LFI frequency
band. We see that the Gibbs chains appear both stable and well-
behaved. Some chains have longer Markov chain autocorrelation
lengths than others, as expected from their different levels of de-
generacies both within the noise model itself, and between the
noise and the signal or gain. In particular, the lognormal ampli-
tude, Ap, shows a long autocorrelation time, due to the degen-
eracy with fknee and α. However, while the long autocorrelation
times are not ideal, all the chains are converging and seem to
explore the full range of the distributions. In any case, moving
power between the lognormal and the 1/ f components has no ef-
fect on the rest of the model. To account for burn-in we remove
the first 50 samples from each chain.

The main results are shown in Figs. 11–16, which summarize
the noise PSD parameters for each LFI radiometer in terms of
distributions of posterior means (top section; histograms made
from the posterior means for all PIDs) and as average quanti-
ties as a function of PID (bottom section). The former are useful
to obtain a quick overview of the mean behavior of a given ra-
diometer, while the latter is useful to study its evolution in time.
Blue, red, and green correspond to 30, 44, and 70 GHz radiome-

5 http://cosmoglobe.uio.no
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Fig. 10. Gibbs samples of noise parameters for two different PIDs for
detectors 27M, 24S and 20M of the 30, 44 and 70 GHz bands respec-
tively.

ters, respectively. Mean ξn values are tabulated in Table 1, while
the average noise properties of all radiometers in each band are
plotted as a function of time in Fig. 17.

Regarding mean values, we see that the 30 GHz radiometers
generally have fairly high knee frequencies, fknee ∼ 100 mHz,
and shallow power law slopes, α ∼ −0.85. The 70 GHz channels,
on the other hand, have lower knee frequencies, fknee ∼ 20 mHz,
and steeper slopes, α ∼ −1.2. The 44 GHz channels generally

Table 1. Distribution of posterior mean noise parameters for each ra-
diometer. Error bars represent variation over time of the posterior mean
values, and not the width of the posterior distribution for any given PID.

Det α fknee [mHz] σ0 [mK] Ap/σ
2
0

30
G

H
z 27M −0.71+0.06

−0.08 254+29
−66 1.535+0.019

−0.016 0.40+0.54
−0.24

27S −0.83+0.07
−0.09 102+16

−13 1.706+0.010
−0.015 0.57+0.24

−0.23

28M −0.85+0.12
−0.17 122+28

−36 1.781+0.014
−0.013 0.7+0.5

−0.4

28S −0.98+0.18
−0.25 37+13

−13 1.632+0.009
−0.012 0.45+0.27

−0.31

44
G

H
z

24M −1.05+0.16
−0.13 23.3+3.3

−2.6 3.149+0.015
−0.013 0.22−0.11

+0.11

24S −0.90+0.05
−0.05 73+10

−8 2.714+0.014
−0.013 0.20+0.33

−0.09

25M −1.04+0.24
−0.13 17.7+2.7

−2.1 2.823+0.012
−0.017 0.28+0.11

−0.16

25S −1.07+0.15
−0.12 38+6

−6 2.681+0.020
−0.017 0.45+0.13

−0.20

26M −0.94+0.12
−0.13 57+8

−8 3.263+0.019
−0.021 0.25+0.25

−0.10

26S −0.68+0.21
−0.19 67+36

−21 2.829+0.026
−0.065 0.25+0.39

−0.15

70
G

H
z

18M −1.02+0.13
−0.15 15+4

−3 4.568+0.031
−0.026 -

18S −1.11+0.13
−0.13 19+4

−4 4.174+0.023
−0.031 -

19M −1.13+0.13
−0.13 12.2+3.8

−2.5 5.198+0.012
−0.039 -

19S −1.06+0.12
−0.12 14.2+3.4

−2.5 4.960+0.019
−0.034 -

20M −1.07+0.13
−0.14 8.2+3.7

−2.9 5.258+0.022
−0.027 -

20S −1.11+0.13
−0.13 6.1+2.9

−2.1 5.563+0.020
−0.045 -

21M −1.31+0.15
−0.12 39+9

−7 4.029+0.016
−0.015 -

21S −1.10+0.11
−0.14 13.5+3.5

−2.6 5.016+0.026
−0.023 -

22M −1.26+0.14
−0.16 11+8

−4 4.377+0.020
−0.020 -

22S −1.15+0.15
−0.22 14+10

−5 4.745+0.022
−0.025 -

23M −1.03+0.09
−0.11 32+5

−4 4.494+0.020
−0.021 -

23S −1.19+0.08
−0.07 60+7

−5 4.813+0.020
−0.028 -

fall between these two extremes. The (normalized) 30 GHz am-
plitudes of the lognormal noise PSD component, Ap/σ

2
0, are typ-

ically a bit larger, fluctuating between ∼ 0 − 2, than the 44 GHz
ones, fluctuating between ∼ 0 − 1.

The dashed lines in Figs. 11–16 show the Planck LFI DPC
values for each parameter (Planck Collaboration II 2020), which
are assumed to be constant throughout the mission. In most
cases, these agree well with the results presented here. The main
exception is the 30 GHz white noise level, σ0, for which we on
average find 2 % lower values. It is difficult to precisely pinpoint
the origin of these differences, but we do note that Galactic fore-
grounds are particularly bright at 30 GHz. One possible hypoth-
esis is therefore that these are fitted slightly better in the joint
and iterative BeyondPlanck approach, as compared to the linear
pipeline DPC approach.

5.2. Time variability and goodness-of-fit

Perhaps the single most important and visually immediate con-
clusion to be drawn from these plots is the fact that the noise
properties of the LFI instrument vary significantly in time. This
is evident in all three frequency channels and all radiometers.
Furthermore, by comparing the time evolution between differ-
ent radiometers, we observe many common features, both be-
tween frequencies and, in particular, among radiometers within
the same frequency band. Many of these may be associated with
specific and known changes in the thermal environment of the
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Fig. 11. Noise characterization of the Planck LFI 30 GHz radiometers; 27M (top left), 27S (top right); 28M (bottom left), and 28S (bottom right).
For each radiometer, the top figure shows distributions of noise parameters PSD, ξn = {σ0, fknee, α, Ap}, averaged over all Gibbs samples for the
full mission. The bottom figure shows the time evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution
in reduced normalized χ2 in units of σ. Black dashed curves and crosses show corresponding values as derived by, and used in, the official Planck
LFI DPC pipeline.
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Fig. 12. Noise characterization of the Planck LFI 44 GHz radiometers; 24M (top left), 24S (top right); 25M (bottom left), and 25S (bottom right).
For each radiometer, the top figure shows distributions of noise parameters PSD, ξn = {σ0, fknee, α, Ap}, averaged over all Gibbs samples for the
full mission. The bottom figure shows the time evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution
in reduced normalized χ2 in units of σ. Black dashed curves and crosses show corresponding values as derived by, and used in, the official Planck
LFI DPC pipeline.
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Fig. 13. Noise characterization of the Planck LFI 44 GHz radiometers; 26M (left), 26S (right). For each radiometer, the top figure shows distri-
butions of noise parameters PSD, ξn = {σ0, fknee, α, Ap}, averaged over all Gibbs samples for the full mission. The bottom figure shows the time
evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution in reduced normalized χ2 in units of σ. Black
dashed curves and crosses show corresponding values as derived by, and used in, the official Planck LFI DPC pipeline.

satellite, and can be traced using thermometer housekeeping
data; this will be a main topic for the next section.

The bottom panels in Figs. 11–16 show a χ2 per PID of the
following form,

χ2 ≡

∑nsamp

i=1

(
ri
σ0

)2
− nsamp√

2nsamp
(27)

where nsamp is the number of samples, and ri is the residual for
sample i as defined by Eq. (24). Thus, this quantity measures the
normalized mean-subtracted χ2 for each PID, which should, for
ideal data and nsamp � 1, be distributed according to a standard
Gaussian distribution.

Starting with the 70 GHz channel, which generally is the
most well-behaved, we see that the χ2 fluctuates around zero for
most channels, with a standard deviation of roughly unity. In
general, the 30 and 44 GHz channels appear less stable than the
70 GHz channels in terms of overall χ2, with several detectors
showing a positive bias of 1–2σ per PID, with internal temporal
variations at the 1σ level. This suggests that, while the addition
of the lognormal noise PSD component certainly improves the
fit of the noise PSD model, we still do not always get a per-
fect fit. This is not very surprising, since the shape parameters
of the lognormal component are not chosen separately for each
radiometer, only the overall amplitude is fit. Sampling the log-
normal shape parameters independently for each radiometer is a
main goal for future LFI analysis.

As a typical illustration of noise PSD model fits, Fig. 18
shows the PSD for a range of 18 PIDs for the 28M 30 GHz ra-
diometer. Here the 1/ f model is not able to fit the correlated
noise to sufficient statistical accuracy at intermediate temporal
frequencies, between 0.1 and 10 Hz, but rather shows a generally
flatter trend. The addition of the lognormal component greatly
improves the fit between about 0.3–3 Hz, but we still see sig-
nificant deviations from the model at slightly lower frequencies
this is an example of features that could be better fit if the shape
parameters were fit individually for each radiometer. Similar be-
havior is seen in many 30 and 44 GHz radiometers, while the
70 GHz radiometers are better behaved, probably simply because
of their lower fknee values.

Turning our attention to the ξn parameters, we see much
larger variability than in the χ2. First, we note a period of signifi-
cant instability in most channels between PIDs 8000–20 000, but
most strikingly in the 70 GHz α estimates. This feature will be
discussed in more detail in Sect. 6, where it is explicitly shown
to be correlated with thermal variations. We note, however, that
the noise model seems flexible enough to adjust to these partic-
ular changes, as no associated excess χ2 is observed in the same
range.

Next, when considering the white noise level, σ0, given in
units of volts or kelvins, we see the pattern anticipated in the
previous section. The uncalibrated white noise in units of volts
follows the slow drifts of the gain, which typically manifests it-
self in slow annual gain oscillations. In contrast, the calibrated
noise in units of KCMB is far more stable.
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Fig. 14. Noise characterization of the Planck LFI 70 GHz radiometers; 18M (top left), 18S (top right); 19M (bottom left), and 19S (bottom right).
For each radiometer, the top figure shows distributions of noise parameters PSD, ξn = {σ0, fknee, α}, averaged over all Gibbs samples for the full
mission. The bottom figure shows the time evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution in
reduced normalized χ2 in units of σ. Black dashed curves and crosses show corresponding values as derived by, and used in, the official Planck
LFI DPC pipeline.
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Fig. 15. Noise characterization of the Planck LFI 70 GHz radiometers; 20M (top left), 20S (top right); 21M (bottom left), and 21S (bottom right).
For each radiometer, the top figure shows distributions of noise parameters PSD, ξn = {σ0, fknee, α}, averaged over all Gibbs samples for the full
mission. The bottom figure shows the time evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution in
reduced normalized χ2 in units of σ. Black dashed curves and crosses show corresponding values as derived by, and used in, the official Planck
LFI DPC pipeline.
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Fig. 16. Noise characterization of the Planck LFI 70 GHz radiometers; 22M (top left), 22S (top right); 23M (bottom left), and 23S (bottom right).
For each radiometer, the top figure shows distributions of noise parameters PSD, ξn = {σ0, fknee, α}, averaged over all Gibbs samples for the full
mission. The bottom figure shows the time evolution of the posterior mean of the noise parameters, and the bottom panel shows the evolution in
reduced normalized χ2 in units of σ. Black dashed curves and crosses show corresponding values as derived by, and used in, the official Planck
LFI DPC pipeline.
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Other significant features include sharp jumps in noise prop-
erties, most notably seen around PID 20 000 for radiometer 26S,
but also seen in most radiometers in the period before and after
PID 11 000. Both will be discussed in Sect. 6.

6. Systematic effects

Previous LFI analyses have assumed a stationary noise model
with three fixed parameters (σ0 [K], fknee, and α) for each of the
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Fig. 19. High-level comparison of measurements from eight tempera-
ture sensors that are particularly relevant for LFI. Sensors TS5L, TS6L,
TS1R, TS2R are installed in the 20 K focal plane frame, while LVHX1
is the liquid-vapour heat exchanger providing 18 K to HFI; sensors
L1_4K, L2_4K and Cernox_4K are on the HFI 4 K stage supporting the
LFI 4 K reference loads. The step-like increases in the 20 K stage are
visible both before and after the sorption cooler switchover event (near
PID 11 000). For details on the locations of the various temperature sen-
sors, see Fig. 21 of Bersanelli et al. (2010) and Fig. 18 of Lamarre et al.
(2010). For visualization purposes, the mean value has been subtracted
from each data set, and some have been scaled by one or two orders of
magnitude, as indicated in the legend.

22 radiometers. In contrast, each of these parameters is in Be-
yondPlanck estimated for every PID, increasing the total num-
ber of PSD noise parameters from 66 to more than 3 million.
This increase of information allows us to capture the effects of
evolution in the radiometer responses and local thermal environ-
ment, as well as subtle interactions between them. In this section,
we will use this new information to characterize potential resid-
ual systematic effects in the data, and, as far as possible, asso-
ciate these with independent housekeeping data or known satel-
lite events. An overview of the measurements from eight temper-
ature sensors that are particularly important for LFI is provided
in Fig. 19. For details on the locations of the various tempera-
ture sensors, see Fig. 21 of Bersanelli et al. (2010) and Fig. 18
of Lamarre et al. (2010).

6.1. Temperature changes in the 20 K stage

A key element for the LFI thermal environment was the Planck
sorption cooler system (SCS), which provided the 20 K stage to
the LFI front-end and the 18 K pre-cooling stage to HFI. The
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SCS included a nominal and a redundant unit (Planck Collab-
oration II 2011). In August 2010 (around PID 11 000), a heat
switch of the nominal cooler unit reached its end-of-life, and the
SCS was therefore switched over to the redundant cooler.6 This
“switchover” event implied a major redistribution of the temper-
atures in the LFI focal plane, with variations at ∼1 K level, for
two main reasons. First, the efficiency of the newly active redun-
dant cooler led to an overall decrease of the absolute tempera-
ture. Second, because of the different location of the interface
between the focal plane structure and the cold-end for the redun-
dant cooler, a change of temperature gradients appeared across
the focal plane.

Since the SCS dissipated significant power, changes in its
configuration produced measurable thermal effects in the entire
Planck spacecraft, and most directly in the 20 K stage. In the
period preceding the switchover, starting around PID 8000, a se-
ries of power input adjustments were commanded to reduce ther-
mal fluctuations in the 20 K stage while optimizing the sorption
cooler lifetime, which generated a number of step-like increases
in the LFI focal plane temperature. These are measured by all
the LFI temperature sensors located in the 20 K focal plane unit,
as shown in Fig. 19.

Following the switchover, in the period with PIDs 11–
15 000, a significant increase of 20 K temperature fluctuations
was observed. These excess fluctuations were understood as due
to residual liquid hydrogen sloshing in the inactive cooler and
affecting the cold-end temperature. The issue was resolved by
heating the unit and letting the residual hydrogen evaporate. Af-
terwards, to optimize the performance and lifetime of the oper-
ating cooler, several periodic, step-like adjustments were again
introduced in the operational parameters of the cooler. This re-
sulted in a semi-gradual, monotonic increase of the LFI focal
plane temperature from switchover to end of mission of ∼1.3 K.

In Fig. 19 the sudden discontinuity at switchover (PID
11 000) is visible for all temperature sensors, and the stepwise
up-ward trend driven by SCS operational adjustments can be
seen in all 20 K sensors. These temperature variations directly
affected the LFI noise performance for most radiometers, as ob-
served in the lower panels of Figs. 11–16. To see this, it may be
useful to concentrate on a well-behaved case (e.g., radiometers
22 or 23, Fig. 16) and then recognize the same features in other
radiometers.

The effect of the SCS switchover shows up as a sharp dis-
continuity also in the white noise levels near PID 11 000. The
sudden decrease of the focal plane temperature of about 1 K im-
plies a change in radiometer gain, as well as a genuine reduction
in radiometer noise. This leads to a decrease not only of σ0 [V]
but also of σ0 [K]. Furthermore, due to the change in cold-end
interface, the temperature drop at switchover was larger on the
top-right-hand side of the focal plane (as defined by the view
in Fig. 6 of BeyondPlanck 2022) than in other regions. In partic-
uclar, we see in Figs. 11–16 that the drop in σ0 [K] is particularly
pronounced for radiometers 21, 22, 23, 27 (both M and S), which
are all located in that portion of the focal plane.

Using again Fig. 16 as a guide, we can also recognize the
effect of the incremental increase of focal plane temperature due
to sorption cooler adjustments, both before and after switchover.
The increasing physical temperature of the focal plane drives a
corresponding increase of σ0 [K], which is visible for most of
the radiometers in Figs. 11–16. However, we cannot exclude that
part of the observed slow increase of white noise is due to aging

6 This operation took place at PID 10911, corresponding to Operation
Day (OD) 454.
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Fig. 21. Same as Fig. 20, but zoomed in on PIDs 7000–11 000.

effects degrading the intrinsic noise performance of the front-end
amplifiers. To disentangle these two components would require
a more detailed thermal and radiometric model.

6.2. Temperature fluctuations and 1/ f parameters

In Fig. 20 (top four panels) we report the value and rms of repre-
sentative temperature sensor of the 4 K and 20 K stages (L1_4K
and TS5L). During the thermal instability period that followed
the switchover, the noise properties of essentially all the 70 GHz
radiometers markedly changed their 1/ f noise behavior (with
the only notable exception of 21M). This is highlighted in the
lower two panels of Fig. 20, which show the averaged values
of α and fknee for all the 70 GHz radiometers. The correlation
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between 1/ f noise parameters and temperature fluctuations is
very strong, with higher fluctuations producing an increase in
fknee and a steepening (i.e., more negative) slope α. The latter is
a typical behavior of thermally driven instabilities, which tend
to transfer more power to low frequencies, and thus steepen the
1/ f tail. This behavior shows up also in the individual 70 GHz
radiometers (Figs. 14–16).

Figure 21 is a zoom into the pre-switchover period (PID
7000–11 000) of the upper plot. Here we see the effect of some
of the step-wise adjustments in the sorption cooler operation,
whose main effect is to temporarily reduce the temperature fluc-
tuations. The observed tight correlation with the steepening of
the slope is striking.

For a specific example of how noise property variations
modify the noise PSD, Fig. 22 shows the average PSD for 10
PIDs between 3000–4000 (black) compared to 10 PIDs between
12 000–13 000 (grey) for the 70 GHz 20M radiometer. We see
large increases in power at low frequencies, and a shift in the
knee frequency.

These correlations appear more weakly in the 30 and 44 GHz
radiometers (see Fig. 17). In particular, there is no correlation
with the knee frequency. This behavior could be partly explained
by the fact that, by mechanical design, the front-end modules
(FEMs) of the 30 and 44 GHz are less thermally coupled to the
frame and cooler front-end; or it could be indicative of an addi-
tional source of non-thermal correlated noise that dominates the
slope and knee frequency of these channels. This could be the
case also for the 70 GHz radiometer 21M, for which the lack of
correlation cannot be explained in terms of poor thermal cou-
pling.

These hypotheses are supported by Fig. 18, which compared
the PSD of the 30 GHz 28M signal-subtracted data, averaged
over 18 PIDs in a typical stable period, with both the Beyond-
Planck and LFI DPC noise models for the same period. We see
that the 1/ f model is not able to properly describe the observed
data. The deviation indicates that there is an excess power in the
frequency range between 0.1 and 5 Hz. This and similar excesses
in many of the other 30 and 44 GHz channels are the motivation

for adding the lognormal component to the noise model for these
bands.

6.3. Seasonal effects and slow drifts

The changing Sun-satellite distance during the yearly Planck or-
bit around the Sun produced a seasonal modulation of the so-
lar power absorbed by the spacecraft. The corresponding effect
on the LFI thermal environment was negligible for the actively-
controlled front end, as demonstrated by the lack of yearly mod-
ulation in the 20 K temperature sensors (see Fig. 19 and upper
panel of Fig. 20). However, the 300 K environment and the pas-
sive cooling elements (V-groove radiators) were affected by a
∼1 % seasonal modulation (see Fig. 6 of Planck Collaboration I
2014).

Since the radiometer back-end modules (BEMs) provided a
major contribution to the radiometer gain g, and these are located
in the 300 K service module (SVM), the thermal susceptibility
of the BEMs coupled with local thermal changes is expected to
induce radiometer gain variations. On the other hand, since the
BEMs are downstream relative to the >30 dB amplification from
the FEMs, their contribution to the noise temperature, Tsys, is
negligible. Therefore we may expect the LFI uncalibrated signal
(and the uncalibrated noise σ0 [V]) to show a seasonal modula-
tion due to thermally-driven BEM gain variations, with essen-
tially no degeneracy with Tsys.

Figures 11–16 show that several LFI radiometers ex-
hibit such modulation in the uncalibrated white noise, σ0 [V],
throughout the four year survey. For all of these, the modula-
tion disappears inσ0 [K], indicating that our gain model properly
captures this effect. We also observe that the sign of the modu-
lation is opposite for the 70 GHz and the 30–44 GHz radiome-
ters. Furthermore, all radiometers that exhibit seasonal modula-
tion also show a systematic slow drift of σ0 [V] throughout the
mission with the same sign as the initial modulation (which cor-
responds to increasing physical temperatures in the SVM). Since
the spacecraft housekeeping recorded a slow overall increase in
temperature throughout the mission (∆T ≈ 5 K), the observed
drift of σ0 [V] is qualitatively consistent with the hypothesis of
BEM susceptibility as the origin of the effect.

For each radiometer, the amplitude of the modulation de-
pends on the details of the thermal susceptibility of the LFI
elements down-stream relative to the third V-groove, includ-
ing waveguide losses, BEM components, particularly low-noise
amplifiers (LNAs), detector diodes, data acquisition electronics
(gain and offset), etc. The dominant element is the BEM, whose
thermal susceptibility was measured in the LFI pre-launch test
campaign for the 30 and 44 GHz radiometers (Villa et al. 2010).
The change in BEM output voltage, ∆Vout, as a function of the
variation in BEM physical temperature, ∆TBEM, can be written
as

∆Vout ∝ φBEM∆TBEM

(
Tsys + Tin

)
, (28)

where Tin is the input signal temperature (either sky or refer-
ence load) and φBEM is a transfer function quantifying the BEM
thermal susceptibility. The measured values of φBEM (Villa et al.
2010) were slightly negative for all the 30 and 44 GHz radiome-
ters, ranging from −0.01 to −0.02, and this is consistent with
both the observed overall drift and the seasonal effect. No such
ground tests could be done for the 70 GHz instrument. However,
in-flight tests during commissioning (Cuttaia & Terenzi 2011)
revealed that the sign of φBEM for the 70 GHz radiometers was
opposite to those of 30 and 44 GHz, which is consistent with our
interpretation.
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6.4. Inter-radiometer correlations

So far, we have mostly considered noise properties as measured
separately for each radiometer. However, given the significant
sensitivity to external environment parameters discussed above,
it is also interesting to quantify correlations between detectors.
As a first measure of this, we plot in Fig. 23 the correlation
of ncorr averaged over all pairs of radiometers within each fre-
quency band as a function of PID. As expected from the previous
discussion, we find a large common correlation for the 70 GHz
channel that peaks in the post-switchover period. Similar coher-
ent patterns are seen in the 30 and 44 GHz channels, but at some-
what lower levels.

As a specific example of such common mode noise, Fig. 24
shows the signal subtracted timestreams for one radiometer from
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Fig. 25. Average cross correlation between timestreams of all 70 GHz
radiometers for PID 12301. Orange points show average correlation be-
tween the correlated noise components, while the grey points shows
average correlation between the residuals. We see that even though the
correlation between the correlated noise components is large, the resid-
uals are completely uncorrelated, indicating that this correlated signal
does not leak into the rest of the pipeline, but is all incorporated into the
correlated noise.

each band for PID 12 301, which is representative for the pe-
riod of maximum correlation. Here we see that the same large
scale fluctuations are present in all three bands. In Fig. 25 we
show the average cross-correlation between time streams of all
70 GHz radiometers for the same PID. We compare the aver-
age correlation between the correlated noise components, ncorr,
with the correlation between the residuals, d′ − ncorr. We see that
even though the correlations between the ncorr components are
large, the residuals are highly uncorrelated. This is an indication
that the common mode signal is efficiently described by ncorr,
and it therefore does not leak into the rest of the BeyondPlanck
pipeline.

Figure 26 shows a global correlation matrix of all the noise
parameters for all the LFI radiometers throughout the mission. A
number of interesting features can be recognized in this diagram:

1. We note that all 70 GHz radiometers exhibit an internally co-
herent trend, where fknee and α behave essentially as a com-
mon mode for the entire 70 GHz array, with the only excep-
tion being 21M. This coherent behavior reflects the common
thermal origin of the 1/ f noise of the 70 GHz radiometers,
as discussed in S ect. 6.2. We also see that σ0 [K] shows a
similar common mode behavior for the 70 GHz radiometers
and, to a lesser extent, it correlates also with the σ0 [K] of
the 44 and 30 GHz radiometers. This is indicative of the fact
that changes in the LFI radiometers’ sensitivity are driven by
the global LFI thermal environment, most importantly by the
slow increase in temperature at the 20 K temperature stage.

2. For 30 and 44 GHz we do not observe the same common
mode behavior for fknee and α as for the 70 GHz. Rather, we
see positive correlation (red pixels in Fig. 26) between fknee
and α within each single radiometer. This suggests that (a)
the dominant source of 1/ f noise is independent for each
30 and 44 GHz radiometer, and (b) for a given radiometer,
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as fknee increases, the slope becomes flatter (i.e., α becomes
less negative). This behavior further supports the hypothesis
that the dominant source of correlated noise in the 30 and
44 GHz is not of thermal origin.

3. We see that the amplitude of the lognormal noise component,
Ap, is negatively correlated with both α and fknee. This makes
sense since the with the lognormal component added, α and
fknee no longer have to adjust to the intermediate frequency
noise signal, which means that fknee is lower and α gets more
steep.

4. Finally, we observe an anti-correlation between fknee and σ0
(as a common mode at 70 GHz and individually for 30 and
44 GHz). Slightly larger values of fknee for lower σ0 can be
understood in terms of the correlated fluctuations becoming
subdominant near fknee when the white noise increases dur-
ing the mission time.

6.5. Correlation with housekeeping data

Next, we correlate the LFI noise parameters with housekeeping
data, and in particular with temperature sensor that are relevant
for LFI. This is summarized in Fig. 27, showing the correlation
coefficients with respect to several sensors that monitor the 20 K
stage (TS5L, TS2R, TS6L, TS1R, LVHX1) and the 4 K stage
(L1_4K, L2_4K, Cernox_4K). Some significant patterns appear
that can be interpreted in terms of the general instrument behav-
ior:

1. For the 70 GHz radiometers, both the rms and the peak-to-
peak of the 20 K temperature sensor fluctuations correlate
with fknee and anti-correlate with α (i.e., they prefer a steeper
power-law slope). This indicates that the 1/ f noise of the
70 GHz radiometers is dominated by residual thermal fluc-
tuations in the 20 K stage. A similar trend can be seen also
at 30 GHz in the two horn-coupled receivers 28M and 28S.
However, the 44 GHz channels show no sign of this behavior.
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Fig. 27. Correlation in time, for the complete mission, between noise
parameters and the temperature sensors. For each sensor we show the
results (from left to right) from the mean temperature, the temperature
rms and the peak-to-peak temperature of each sensor within each point-
ing period. The results here are for the calibrated white noise level,
σ0 [K]. We have imposed a mild highpass-filter in time of the differ-
ent datasets in order to avoid random correlations on the very longest
timescales.
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Fig. 28. PSD of signal subtracted data from radiometer 26S, averaged
over 10 PIDs (at intervals of 100 PIDs) in the ranges 12 000–13 000
(black) and 32 000–33 000 (grey). We see that there is significantly more
power in the frequency range 0.1–10 Hz in the later period.

Combined with the lack of correlation with the 4 K sensors,
this is consistent with the hypothesis that the 1/ f noise of the
44 GHz (and partly the 30 GHz) radiometers is dominated by
non-thermal fluctuations.

2. Weaker correlations are seen between the various noise pa-
rameters and the 4 K temperature sensors. The lack of signif-
icant correlation of the rms and peak-to-peak of 4 K sensors
with any of the 1/ f parameters, fknee and α, is an indication
that the 4 K reference loads do not contribute significantly to
the radiometers correlated noise.

3. A strong anti-correlation (correlation) of the gain g with
the absolute value of the 20 K sensors for the 70 GHz (30–
44 GHz) radiometers is observed. Based on the discussion
in Sect. 6.3, this pattern can be understood by noting that
the 20 K stage temperature systematically increased through-
out the mission, driven by sorption cooler adjustments. The
same monotonic trend was also on-going in the 300 K stage,
which controls the BEM amplifiers. This is thus a spurious
correlation, for which the increasing back-end temperature
actually leads to lower (higher) values of g for the 70 GHz
(30–44 GHz) radiometers.

6.6. Issues with individual radiometers

In addition to the overall behavior and correlations that are com-
mon to many or most radiometers, there are issues that only seem
to affect individual radiometers. Here we point out two special
cases, namely 26S and 21M.

First, as discussed above, we often find excess noise power
in the 30 and 44 GHz channels in the signal-subtracted data at in-
termediate frequencies, ∼0.01–5 Hz, which cannot be described
with a 1/ f noise model. The most extreme example of this is the
44 GHz 26S radiometer, as shown in the bottom panel of Fig. 13.
Here we see a jump in fknee around PID 20 800, after which the
noise parameters change abruptly. This is elucidated in Fig. 28,
which compares the noise PSD averaged over 10 PIDs in the
12 000–13 000 range with a corresponding average evaluated in
the 32 000–33 000 range. We see that the signal from the early
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period is consistent with a 1/ f spectrum, while for the later pe-
riod we find an excess in power at intermediate frequencies that
is not possible to fit with the 1/ f noise model. Considering that
the Planck spin period is 60 s, temporal frequencies of 0.1–1 Hz
correspond to angular scales of 6–60◦ on the sky. This noise ex-
cess therefore represents a significant contaminant with respect
to large-scale CMB polarization reconstruction, which is one of
the main scientific targets for the current BeyondPlanck analy-
sis. This is why the lognormal component was added, to prevent
this excess noise from leaking into any of the sky components or
other parts of our model.

The sudden degradation of 26S at around PID 21 000 has no
simultaneous counterpart in any other LFI radiometer, includ-
ing the coupled 26M which exhibits a normal behaviour (see
Fig. 13). This suggests a singular event within the 26S itself,
or in the bias circuits serving its RF components. Since we do
not observe significant changes in the radiometer output signal
level and no anomalies are seen in the LNAs currents, it is un-
likely that the problem resides in the HEMT amplifiers. A more
plausible cause would be a degradation of the phase switch per-
formance, possibly due to ageing, instability of the input cur-
rents, or loss of internal tuning balance (Mennella et al. 2010;
Cuttaia et al. 2009). Indeed sub-optimal operation of the phase
switches would not significantly change the signal output level,
but is known to introduce excess 1/ f noise, as verified during
the ground testing and in-flight commissioning phase.

The second anomalous case is the 70 GHz 21M radiome-
ter. While the noise properties of the other 70 GHz channels
are internally significantly correlated, this particular channel
does not show similar correlations. The reason for the differ-
ent behavior of 21M is still not fully understood. However, as
shown for PID 2201 in Fig. 29, this particular radiometer ex-
hibits a typical “popcorn” or “random telegraph” noise, i.e., a
white noise jumping between two different offset states. Dur-
ing ground testing this behavior was noted in the undifferenced
data of LFI21 and LFI23 and ascribed to bimodal instability
in the detector diodes. The effect was then recognized in-flight
and this prevented proper correction of ADC nonlinearity effect
(Planck Collaboration III 2014). However, because the timescale
of diode jumps between states (typically a few minutes) is longer
than the differencing between sky and reference load (0.25 ms,
corresponding to the phase switch frequency of 4 kHz), the effect
is efficiently removed in the differenced data. In the current anal-
ysis, we actually observe popcorn behavior in the differenced
data, suggesting either an increased instability of the affected
diode in 21M (possibly due to aging), or a different origin of
the effect. Popcorn noise has been also found in some HFI chan-
nels (Planck HFI Core Team 2011). We have not seen any sign
of popcorn noise in any of the other LFI channels besides 21M,
but we have also not performed a deep dedicated search for it.
However, the fact that the χ2 distribution for channel 21M ap-
pears acceptable suggests that this effect, even if surviving in the
differenced data stream, happens at a sufficiently long timescale
that ncorr is able to absorb it, preventing it from leaking into other
astrophysical components.

7. Conclusions

This paper has two main goals. First, it aims to describe Bayesian
noise estimation within a global CMB analysis framework (Be-
yondPlanck 2022). As such, this work represents the first real-
world application and demonstration of methods originally in-
troduced by Wehus et al. (2012), while at the same time taking
advantage of important numerical improvements introduced by
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Fig. 29. Signal subtracted data from radiometer 21M for PID 2201. The
data are averaged over a one second timescale.

Keihänen et al. (2022). The second main goal is to apply this
method to the Planck LFI measurements to characterize their
noise properties at a more fine-grained level than done previ-
ously (Planck Collaboration II 2020).

An important question regarding the original work of We-
hus et al. (2012) was whether the method would be practical for
real-world observations, or whether it was too computationally
expensive to be useful in a real pipeline. We are now in a po-
sition to quantitatively answer this question: As summarized by
(BeyondPlanck 2022; Galloway et al. 2022a), the noise estima-
tion step in the BeyondPlanck pipeline accounts for 19 % of the
total runtime, or 27 CPU-hours per sample for the 70 GHz chan-
nel, most of which is spent Fourier transforming the raw time-
ordered data. As such, exact Bayesian noise estimation certainly
is an expensive pipeline component—but it is by no means not
prohibitive. Additionally, it is important to note that Bayesian
correlated noise sampling replaces both traditional mapmaking
and noise covariance matrix evaluations (Keihänen et al. 2022;
Suur-Uski et al. 2022), which are two of the most expensive pro-
cedures in a traditional CMB analysis pipeline (Planck Collab-
oration I 2020), and, in fact, this leads to lower computational
requirements overall. As an example, we note that a full Beyond-
Planck Gibbs sample (which includes both low- and high-level
processing with all LFI channels) costs 243 CPU-hours, while
producing a single component of the full Planck Full Focal Plane
(FFP) simulation of the 70 GHz channel costs 9360 CPU-hours
(Planck Collaboration XII 2016). Likewise, we also note that the
current BeyondPlanck analysis was run on an in-house cluster
with 256 cores and 4 TB of RAM, while the Planck simula-
tions were produced on a large national computing center with
O(105) cores (Planck Collaboration I 2020; Planck Collaboration
Int. LVII 2020). We believe that the computational speed of this
method alone should make it an attractive option for other CMB
experiments, not to mention the possibilities of performing joint
exact Bayesian analysis.

As far as LFI-specific results are concerned, the current re-
sults point toward generally complex noise behaviour with sub-
tle contributions from origins that have not yet been fully ac-
counted for. Most notably, the noise properties of each LFI ra-
diometer vary significantly in time, and depend sensitively on the
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thermal environment of the instrument. For the 70 GHz channel,
for which the correlated noise amplitude (and knee frequency)
is generally low, most of these variations may be described in
terms of a simple 1/ f model with time-dependent parameters.
With very few exceptions, the time-domain χ2 of this channel is
statistically acceptable throughout the mission.

However, for the 30 and 44 GHz channels a more complex
picture has emerged. Multiple observations suggest a yet unde-
tected source of non-thermal correlated noise in the 44 GHz (and
at a lower level in the 30 GHz radiometers) that is responsible for
mild, and possibly time-varying, deviations from the simple 1/ f
model. Inspection of individual PIDs indicates the presence of
excess power between 0.1 and 5 Hz, well above the Planck scan-
ning frequency of 0.017 Hz, thereby affecting the angular scales
that are relevant for large-scale CMB polarization science. This
excess motivated the addition of a lognormal noise component,
at intermediate frequencies, in addition to the 1/ f component,
for these bands.

Our analysis suggests that these effects are not due to temper-
ature fluctuations, but rather associated with other effects, such
as electrical instabilities or other environmental issues. We have
carried out a preliminary investigation by correlating the LFI
radiometers whose LNA bias were supplied by common elec-
tronics groups,7 but we have found no compelling evidence of
correlations or anomalies. Many other electrical effects must be
studied by exploiting all the available housekeeping information.
Most of the spikes in the rms of the temperature sensors (see,
e.g., Fig. 20) are readily understood as due to commanded cooler
adjustments, but a few of them deserve further investigation. The
influence of transient perturbations should also be systematically
investigated, including the possible effect of cosmic rays and so-
lar flares.

A complete and quantitative analysis will require a detailed
thermal model of the full instrument that includes the back-
end unit and interfaces with the V-grooves, coupled with ther-
mal susceptibility parameters of the relevant components (LNAs,
OMTs, waveguides, BEMs, detector diodes, data acquisition
electronics). Such a detailed study is beyond the scope of this
work, but this is now made possible through the present study.

In general, the detailed BeyondPlanck modelling approach
allows us to highlight a number of subtle systematic patterns in
the LFI radiometers that were already noted and reported in pre-
vious analyses, but only now, for the first time, have been pos-
sible to elucidate and understand in greater detail. Examples are
a detailed characterization of the nature of seasonal modulations
and long term drifts, and correlations between instrument noise
parameters with temperature sensor read-out information and de-
viations from the 1/ f noise model. These methods are likely to
play a central role in the analysis of future high-sensitivity CMB
B-mode experiments, for instance LiteBIRD (Sugai et al. 2020).

Acknowledgements. We thank Prof. Pedro Ferreira and Dr. Charles Lawrence for
useful suggestions, comments and discussions. We also thank the entire Planck
and WMAP teams for invaluable support and discussions, and for their dedi-
cated efforts through several decades without which this work would not be
possible. The current work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement num-
bers 776282 (COMPET-4; BeyondPlanck), 772253 (ERC; bits2cosmology), and
819478 (ERC; Cosmoglobe). In addition, the collaboration acknowledges sup-
port from ESA; ASI and INAF (Italy); NASA and DoE (USA); Tekes, Academy
of Finland (grant no. 295113), CSC, and Magnus Ehrnrooth foundation (Fin-
land); RCN (Norway; grant nos. 263011, 274990); and PRACE (EU).

7 There were four such power groups in LFI, feeding the radiometers
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