Oblig2 FYS9130

Deadline: Tuesday 14/9 at 12.15 (beginning of class)

1. Covariant derivatives of the metric is zero by definition

$$g_{\mu\nu;\alpha} = 0 \tag{1}$$

show that this is so by using the definition of the covariant derivative in terms of Christoffel symboles, and the definition of Christoffel symbols in terms of the metric.

2. Integration by parts

a) Use the definiton of the covariant derivative in terms of Christoffelsymbols to show that the product rule holds also for covariant derivatives:

$$(A^{\mu}B_{\mu})_{;\nu} = A^{\mu}_{;\nu}B_{\mu} + A^{\mu}B_{\mu;\nu}$$
(2)

b) Show that

$$\Gamma^{\mu}_{\ \mu\nu} = \frac{1}{\sqrt{-g}} (\sqrt{-g})_{,\nu} \tag{3}$$

c) Further show that

$$A^{\mu}_{;\mu} = \frac{1}{\sqrt{-g}} (\sqrt{-g} A^{\mu})_{,\mu} \tag{4}$$

d) By using the normal Stoke's theorem, show that

$$\int d^n x \sqrt{-g} \nabla_\mu A^\mu \tag{5}$$

equals a surface term

e) You do not need to answer this question. Just note that when ignoring a surface term we have

$$\int d^n x \sqrt{-g} A^\mu B_{;\mu} = -\int d^n x \sqrt{-g} A^\mu_{;\mu} B \tag{6}$$

3. Variation of action

An action for gravity non-minimally coupled to a scalar field is given by:

$$S = \int d^{n}x \sqrt{-g} \left(\frac{M_{P}^{2}}{2}R - \frac{\xi}{2}R\phi^{2} - \frac{1}{2}g^{\mu\nu}\phi_{,\mu}\phi_{,\nu} - V(\phi) \right)$$
(7)

where M_P^2 and ξ are constants.

- a) Variate this action with respect to the metric $g_{\mu\nu}$ and find the corresponding equations of motion.
- b) Variate this action with respect to the scalar field ϕ and find the corresponding equation of motion.

If possible, deliver a paper copy, handwritten is ok. Otherwise, e-mail to ingunnkw@fys.uio.no