Oblig8 FYS9130

Deadline: Thursday 4/11 at 14.15 (beginning of class)

1. A cosmological constant

Assume an action including a cosmological constant Λ

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} \left(R - 2\Lambda \right) + \mathcal{L}_m \right]$$
(1)

a) Show by variation of the action that the equations of motion can be written

$$M_P^2 E_{\mu\nu} = T_{\mu\nu}^m + T_{\mu\nu}^\Lambda \tag{2}$$

where $T^{\Lambda}_{\mu\nu}$ is the energy-momentum tensor for a perfect fluid with $\rho_{\Lambda} + p_{\Lambda} = 0$. Find ρ_{Λ} and p_{Λ} .

b) According to WMAP's 7-year release, the best fit cosmological parameters values for a Λ CDM model includes $\Omega_{\Lambda 0} = 0.734$ for the relative cosmological constant energy density today, as well as $H_0 = 71.0 \text{ km/s/Mpc}$ for the value of the Hubble parameter today. Find the corresponding value of $\rho_{\Lambda 0}$ expressed in eV.

2. The cosmological constant as a quantum mechanical vacuum energy

Let us assume that some quantum mechanical vaccum energy density $\epsilon_0 = E_0/V$ is inserted into the action as a matter contribution, $\mathcal{L}_{\epsilon} = -\epsilon_0$, and

$$S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + \mathcal{L}_m + \mathcal{L}_\epsilon \right]$$
(3)

- a) Show that this corresponds to a cosmological constant. Find Λ and ρ_{Λ} as a function of ϵ_0 .
- b) Let ϵ_0 be the vacuum energy density of a free, massless, scalar field regularized with a Planck-scale cutoff M_P . Find the corresponding ρ_{Λ} expressed in eV. Compare this with the measured value of $\rho_{\Lambda 0}$ calculated above.

If possible, deliver a paper copy, handwritten is ok. Otherwise, e-mail to ingunnkw@fys.uio.no