Problem set 2 FYS9130 – Week 36

1. Robertson-Walker metric with spatial curvature

Assume a metric given by the Robertson-Walker line element $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a^{2}(t)\left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}\right) \quad (1)$$

- a) Find the non-zero Christoffel symbols
- b) Find the non-zero components of the Riemann tensor
- c) Find the non-zero components of the Ricci tensor
- d) Calculate the Ricci scalar
- c) Find the non-zero components of the Einstein tensor

2. Friedmann equations

Assume that the geometry of our universe is described with the above metric, and that the matter content of the universe can be described as a perfect fluid, parametrised only with its pressure p and energy density ρ

$$T_{\mu\nu} = (\rho + p)U_{\mu}U_{\nu} + pg_{\mu\nu} \tag{2}$$

where the 4-velocity $U^{\mu} = [1, 0, 0, 0]$ in a comoving coordinate system.

- a) Write down the components of the Einstein equations for this system. These are the Friedmann equations.
- b) Assume a constant ratio between the pressure and the energy density, $p = w\rho$. Solve the Friedmann equations to find a(t), $\rho(a)$ and $\rho(t)$.
- c) What are the constraint on w for the universe to experience positive acceleration, $\ddot{a} > 0$?